Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58413 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ | 1.4776 | 1.6858 | 0.8765 | [X:[1.3443], M:[0.9514, 0.688, 1.0164, 0.9469], q:[0.5054, 0.5098], qb:[0.5433, 0.4743], phi:[0.3279]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 1], [0, 0, 0, 3], [-1, -1, 0, 0]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ | ${}M_{3}q_{2}\tilde{q}_{2}$ | -3 | t^2.06 + t^2.84 + t^2.85 + t^2.94 + t^2.95 + t^3.05 + t^3.92 + t^4.03 + 2*t^4.13 + t^4.14 + t^4.9 + t^4.91 + 2*t^4.92 + t^5. + t^5.02 + 2*t^5.11 + t^5.13 + t^5.46 + t^5.55 + t^5.56 + t^5.67 + t^5.68 + t^5.69 + t^5.71 + t^5.78 + t^5.79 + t^5.81 + t^5.88 + 2*t^5.89 + 2*t^5.9 + t^5.99 - 3*t^6. - t^6.01 + 2*t^6.1 + 2*t^6.19 + t^6.44 + t^6.53 + t^6.54 + t^6.65 + t^6.76 + t^6.86 + t^6.87 + t^6.88 + t^6.89 + 4*t^6.97 + t^6.98 + t^6.99 + 2*t^7.07 + 4*t^7.08 + t^7.1 + 3*t^7.18 + t^7.19 + t^7.22 - t^7.42 + t^7.43 + t^7.5 + t^7.51 + t^7.53 + t^7.61 + t^7.63 + t^7.73 + 2*t^7.75 + 2*t^7.76 + 2*t^7.77 + 2*t^7.84 + 2*t^7.85 + 3*t^7.86 + 2*t^7.87 + t^7.94 + t^7.95 + 2*t^7.96 + 2*t^7.97 + 3*t^8.05 - 4*t^8.06 + 4*t^8.07 + 3*t^8.16 - t^8.17 + t^8.18 + 3*t^8.26 + t^8.27 + t^8.29 + t^8.4 + t^8.41 + t^8.48 + 2*t^8.5 + 2*t^8.51 + t^8.54 + t^8.55 + t^8.56 + t^8.59 + t^8.61 + t^8.62 + t^8.63 + t^8.65 + t^8.66 + 2*t^8.72 + t^8.73 + t^8.74 + t^8.75 + 2*t^8.76 + t^8.82 + 3*t^8.83 - t^8.84 - 4*t^8.85 + 2*t^8.86 - t^8.87 + t^8.93 - t^8.94 - t^8.95 - t^8.97 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6.05/y - t^6.82/y - t^6.84/y - t^6.92/y - t^6.94/y - (2*t^7.03)/y - t^7.81/y - t^7.82/y + t^7.9/y - t^7.91/y + t^7.92/y + t^8./y + t^8.69/y + t^8.78/y + (2*t^8.79)/y + t^8.81/y + t^8.99/y - t^3.98*y - t^4.97*y - t^6.05*y - t^6.82*y - t^6.84*y - t^6.92*y - t^6.94*y - 2*t^7.03*y - t^7.81*y - t^7.82*y + t^7.9*y - t^7.91*y + t^7.92*y + t^8.*y + t^8.69*y + t^8.78*y + 2*t^8.79*y + t^8.81*y + t^8.99*y + t^8.95*y^2 | (g4*t^2.06)/(g1*g3) + t^2.84/(g1*g2) + (g1*g3*t^2.85)/g4^6 + (g4^6*t^2.94)/(g1*g2) + g1*g3*t^2.95 + g4^3*t^3.05 + (g4^5*t^3.92)/(g1*g2) + g4^2*t^4.03 + (g4^2*t^4.13)/(g1^2*g3^2) + (g4^5*t^4.13)/(g1*g3) + (g1*g2*t^4.14)/g4 + (g4*t^4.9)/(g1^2*g2*g3) + (g4^4*t^4.91)/(g1*g2) + t^4.92/g4^5 + (g1*g3*t^4.92)/g4^2 + (g4^7*t^5.)/(g1^2*g2*g3) + g4*t^5.02 + (2*g4^4*t^5.11)/(g1*g3) + (g1*g2*t^5.13)/g4^2 + (g2*g3^2*t^5.46)/g4 + (g4^11*t^5.55)/(g1*g2^2*g3^2) + (g1*g4^5*t^5.56)/(g2*g3) + (g2^2*g3*t^5.67)/g4 + t^5.68/(g1^2*g2^2) + (g3*t^5.69)/(g2*g4^6) + (g1^2*g3^2*t^5.71)/g4^12 + (g4^6*t^5.78)/(g1^2*g2^2) + (g3*t^5.79)/g2 + (g1^2*g3^2*t^5.81)/g4^6 + (g4^12*t^5.88)/(g1^2*g2^2) + (g4^3*t^5.89)/(g1*g2) + (g3*g4^6*t^5.89)/g2 + g1^2*g3^2*t^5.9 + (g1*g3*t^5.9)/g4^3 + (g4^9*t^5.99)/(g1*g2) - 4*t^6. + g1*g3*g4^3*t^6. - (g1^2*g2*g3*t^6.01)/g4^6 + (g4^3*t^6.1)/(g1*g3) + g4^6*t^6.1 + (g4^3*t^6.19)/(g1^3*g3^3) + (g4^6*t^6.19)/(g1^2*g3^2) + (g2*g3^2*t^6.44)/g4^2 + (g4^10*t^6.53)/(g1*g2^2*g3^2) + (g1*g4^4*t^6.54)/(g2*g3) + (g2^2*g3*t^6.65)/g4^2 + (g4^5*t^6.76)/(g1^2*g2^2) + (g4^11*t^6.86)/(g1^2*g2^2) + (g4^2*t^6.87)/(g1*g2) + (g3*g4^5*t^6.88)/g2 + (g1*g3*t^6.89)/g4^4 + (g4^2*t^6.97)/(g1^3*g2*g3^2) + (g4^5*t^6.97)/(g1^2*g2*g3) + (2*g4^8*t^6.97)/(g1*g2) + t^6.98/(g1*g3*g4^4) + g1*g3*g4^2*t^6.99 + (g4^8*t^7.07)/(g1^3*g2*g3^2) + (g4^11*t^7.07)/(g1^2*g2*g3) + (g4^2*t^7.08)/(g1*g3) + 3*g4^5*t^7.08 + (g1^2*g2*g3*t^7.1)/g4 + (2*g4^5*t^7.18)/(g1^2*g3^2) + (g4^8*t^7.18)/(g1*g3) + g1*g2*g4^2*t^7.19 + (g3^3*t^7.22)/g4^3 - (g4^6*t^7.42)/(g2^2*g3) + (g2*g3^2*t^7.43)/g4^3 + (g4^15*t^7.5)/(g1^3*g2^3*g3^3) + (g4^9*t^7.51)/(g1*g2^2*g3^2) + (g1*g4^3*t^7.53)/(g2*g3) - (g1*g2^2*g3^2*t^7.54)/g4^6 + (g1^3*t^7.54)/g4^3 + (g4^12*t^7.61)/(g1^2*g2^2*g3^3) + (g2^2*g3*t^7.63)/g4^3 + (g2^2*t^7.73)/g1 + (g4*t^7.75)/(g1^3*g2^2*g3) + (g4^4*t^7.75)/(g1^2*g2^2) + t^7.76/(g1*g2*g4^5) + (g3*t^7.76)/(g2*g4^2) + (g1*g3*t^7.77)/g4^11 + (g1^2*g3^2*t^7.77)/g4^8 + (g2^3*t^7.84)/g4^3 + (g4^7*t^7.84)/(g1^3*g2^2*g3) + (2*g4^10*t^7.85)/(g1^2*g2^2) + (g4*t^7.86)/(g1*g2) + (2*g3*g4^4*t^7.86)/g2 + (g1*g3*t^7.87)/g4^5 + (g1^2*g3^2*t^7.87)/g4^2 + (g4^13*t^7.94)/(g1^3*g2^2*g3) + (g4^4*t^7.95)/(g1^2*g2*g3) + (2*g4^7*t^7.96)/(g1*g2) + t^7.97/g4^2 + g1*g3*g4*t^7.97 + (3*g4^10*t^8.05)/(g1^2*g2*g3) - (4*g4*t^8.06)/(g1*g3) + 4*g4^4*t^8.07 - (g1*g2*t^8.08)/g4^5 + (g1^2*g2*g3*t^8.08)/g4^2 + (g4^4*t^8.16)/(g1^2*g3^2) + (2*g4^7*t^8.16)/(g1*g3) - (g2*t^8.17)/(g3*g4^2) + g1*g2*g4*t^8.18 + (g4^4*t^8.26)/(g1^4*g3^4) + (g4^7*t^8.26)/(g1^3*g3^3) + (g4^10*t^8.26)/(g1^2*g3^2) + (g2*g4^4*t^8.27)/g3 + (g1^2*g2^2*t^8.29)/g4^2 + (g3^2*g4^5*t^8.4)/g1 + (g1*g2*g3^3*t^8.41)/g4 + (g4^17*t^8.48)/(g1^2*g2^3*g3^2) + (2*g4^11*t^8.5)/(g2^2*g3) + g2*g3^2*g4^2*t^8.51 + (g1^2*g4^5*t^8.51)/g2 + t^8.52/(g1^3*g2^3) - (g1*g2^2*g3^2*t^8.52)/g4^7 + (g3*t^8.54)/(g1*g2^2*g4^6) + (g1*g3^2*t^8.55)/(g2*g4^12) + (g1^3*g3^3*t^8.56)/g4^18 + (g4^14*t^8.59)/(g1*g2^2*g3^2) - (g4^5*t^8.61)/(g2*g3^2) + (g2*g3*g4^5*t^8.61)/g1 + (g1*g4^8*t^8.61)/(g2*g3) - (g1^2*t^8.62)/(g3*g4) + (g1*g2^2*g3^2*t^8.62)/g4 + (g4^6*t^8.62)/(g1^3*g2^3) + (g3*t^8.63)/(g1*g2^2) + (g1*g3^2*t^8.65)/(g2*g4^6) + (g1^3*g3^3*t^8.66)/g4^12 + g2^2*g3*g4^2*t^8.72 + (g4^12*t^8.72)/(g1^3*g2^3) - (g1*g2^3*g3*t^8.73)/g4^7 + (g4^3*t^8.73)/(g1^2*g2^2) + (g3*g4^6*t^8.73)/(g1*g2^2) + (g3*t^8.74)/(g2*g4^3) + (g1*g3^2*t^8.75)/g2 + (g1^2*g3^2*t^8.76)/g4^9 + (g1^3*g3^3*t^8.76)/g4^6 + (g4^18*t^8.82)/(g1^3*g2^3) + (2*g4^9*t^8.83)/(g1^2*g2^2) + (g3*g4^12*t^8.83)/(g1*g2^2) - (4*t^8.84)/(g1*g2) + (2*g3*g4^3*t^8.84)/g2 + (g1*g3^2*g4^6*t^8.84)/g2 - (4*g1*g3*t^8.85)/g4^6 + g1^3*g3^3*t^8.86 + (g1^2*g3^2*t^8.86)/g4^3 - (g1^3*g2*g3^2*t^8.87)/g4^12 + (g4^15*t^8.93)/(g1^2*g2^2) + (g4^3*t^8.94)/(g1^2*g2*g3) - (3*g4^6*t^8.94)/(g1*g2) + (g3*g4^9*t^8.94)/g2 - 4*g1*g3*t^8.95 + (2*t^8.95)/g4^3 + g1^2*g3^2*g4^3*t^8.95 - (g1^3*g2*g3^2*t^8.97)/g4^6 + t^8.95/(g4^3*y^2) - t^3.98/(g4*y) - t^4.97/(g4^2*y) - t^6.05/(g1*g3*y) - t^6.82/(g1*g2*g4*y) - (g1*g3*t^6.84)/(g4^7*y) - (g4^5*t^6.92)/(g1*g2*y) - (g1*g3*t^6.94)/(g4*y) - t^7.03/(g1*g3*g4*y) - (g4^2*t^7.03)/y - t^7.81/(g1*g2*g4^2*y) - (g1*g3*t^7.82)/(g4^8*y) + (g4*t^7.9)/(g1^2*g2*g3*y) - (g4^4*t^7.91)/(g1*g2*y) + t^7.92/(g4^5*y) + (g4^7*t^8.)/(g1^2*g2*g3*y) - (g4*t^8.11)/(g1^2*g3^2*y) + (g4^4*t^8.11)/(g1*g3*y) + (g3*t^8.69)/(g2*g4^6*y) + (g4^6*t^8.78)/(g1^2*g2^2*y) + (2*g3*t^8.79)/(g2*y) + (g1^2*g3^2*t^8.81)/(g4^6*y) - t^8.89/(g1^2*g2*g3*y) + (g3*g4^6*t^8.89)/(g2*y) - t^8.9/(g4^6*y) + (g1*g3*t^8.9)/(g4^3*y) + (g4^9*t^8.99)/(g1*g2*y) - (t^3.98*y)/g4 - (t^4.97*y)/g4^2 - (t^6.05*y)/(g1*g3) - (t^6.82*y)/(g1*g2*g4) - (g1*g3*t^6.84*y)/g4^7 - (g4^5*t^6.92*y)/(g1*g2) - (g1*g3*t^6.94*y)/g4 - (t^7.03*y)/(g1*g3*g4) - g4^2*t^7.03*y - (t^7.81*y)/(g1*g2*g4^2) - (g1*g3*t^7.82*y)/g4^8 + (g4*t^7.9*y)/(g1^2*g2*g3) - (g4^4*t^7.91*y)/(g1*g2) + (t^7.92*y)/g4^5 + (g4^7*t^8.*y)/(g1^2*g2*g3) - (g4*t^8.11*y)/(g1^2*g3^2) + (g4^4*t^8.11*y)/(g1*g3) + (g3*t^8.69*y)/(g2*g4^6) + (g4^6*t^8.78*y)/(g1^2*g2^2) + (2*g3*t^8.79*y)/g2 + (g1^2*g3^2*t^8.81*y)/g4^6 - (t^8.89*y)/(g1^2*g2*g3) + (g3*g4^6*t^8.89*y)/g2 - (t^8.9*y)/g4^6 + (g1*g3*t^8.9*y)/g4^3 + (g4^9*t^8.99*y)/(g1*g2) + (t^8.95*y^2)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
60941 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4737 | 1.6793 | 0.8776 | [X:[1.3607], M:[0.9109, 0.6874, 1.041, 0.9067], q:[0.4955, 0.4997], qb:[0.5936, 0.4932], phi:[0.3197]] | t^2.06 + t^2.72 + t^2.73 + t^2.97 + t^2.98 + t^3.12 + t^3.93 + t^4.08 + t^4.12 + t^4.23 + t^4.24 + t^4.78 + t^4.8 + t^4.88 + t^4.9 + t^5.03 + t^5.04 + 2*t^5.19 + t^5.2 + t^5.43 + 2*t^5.44 + t^5.45 + t^5.47 + t^5.69 + 2*t^5.7 + t^5.71 + t^5.84 + t^5.86 + t^5.93 + t^5.94 + t^5.96 - 3*t^6. - t^3.96/y - t^4.92/y - t^3.96*y - t^4.92*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57360 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4756 | 1.686 | 0.8752 | [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] | t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |