Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58412 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.4754 1.6843 0.876 [X:[1.3316], M:[0.9726, 0.6984, 0.9974], q:[0.511, 0.4862], qb:[0.5164, 0.4812], phi:[0.3342]] [X:[[0, 0, 2]], M:[[-1, 1, -9], [1, -1, 4], [0, 0, 3]], q:[[0, -1, 9], [-1, 0, -3]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.1 + t^2.9 + t^2.92 + t^2.98 + t^2.99 + t^3.01 + t^3.98 + t^3.99 + t^4.01 + t^4.08 + t^4.19 + t^4.91 + t^4.98 + t^5. + 2*t^5.01 + t^5.07 + 2*t^5.09 + t^5.1 + t^5.44 + t^5.45 + t^5.53 + t^5.54 + t^5.8 + t^5.82 + t^5.84 + t^5.88 + t^5.89 + 2*t^5.91 + t^5.95 + t^5.97 + 2*t^5.98 - 3*t^6. + t^6.02 + t^6.09 + t^6.18 + t^6.29 + t^6.44 + t^6.46 + t^6.53 + t^6.55 + t^6.88 + t^6.9 + 2*t^6.91 + t^6.96 + 2*t^6.97 + 4*t^6.99 + t^7. + t^7.02 + t^7.06 + t^7.08 + 2*t^7.09 + t^7.11 + t^7.17 + 2*t^7.18 + t^7.2 + t^7.34 + t^7.38 + t^7.53 + t^7.55 + t^7.61 + t^7.62 + t^7.64 + t^7.66 + t^7.81 + t^7.83 + 2*t^7.88 + t^7.9 + 3*t^7.92 + t^7.93 + 2*t^7.96 + 2*t^7.97 + 5*t^7.99 + 2*t^8.01 + 2*t^8.02 + t^8.05 + 3*t^8.06 + 2*t^8.08 - t^8.1 + t^8.17 + t^8.19 + t^8.28 + t^8.34 + t^8.36 + t^8.38 + t^8.42 + 2*t^8.43 + 2*t^8.45 - t^8.48 + t^8.5 + t^8.52 + t^8.54 - t^8.57 + t^8.71 + t^8.72 + t^8.74 + t^8.75 + t^8.78 + t^8.8 + 2*t^8.81 + t^8.83 + t^8.86 + t^8.87 + 3*t^8.89 - 3*t^8.9 - t^8.92 + t^8.93 + t^8.95 + 3*t^8.96 - 2*t^8.98 + t^8.99 - t^4./y - t^5.01/y - t^6.1/y - t^6.9/y - t^6.92/y - t^6.98/y - t^6.99/y - t^7.01/y - t^7.1/y - t^7.92/y - t^7.98/y + t^8.07/y + t^8.09/y + t^8.1/y - t^8.19/y + t^8.82/y + t^8.88/y + (2*t^8.89)/y + (2*t^8.91)/y + t^8.93/y + t^8.97/y - t^4.*y - t^5.01*y - t^6.1*y - t^6.9*y - t^6.92*y - t^6.98*y - t^6.99*y - t^7.01*y - t^7.1*y - t^7.92*y - t^7.98*y + t^8.07*y + t^8.09*y + t^8.1*y - t^8.19*y + t^8.82*y + t^8.88*y + 2*t^8.89*y + 2*t^8.91*y + t^8.93*y + t^8.97*y (g1*g3^4*t^2.1)/g2 + (g2*t^2.9)/(g1*g3^3) + (g2*t^2.92)/(g1*g3^9) + g3^9*t^2.98 + g3^3*t^2.99 + t^3.01/g3^3 + g3^8*t^3.98 + g3^2*t^3.99 + t^4.01/g3^4 + (g1*g3^8*t^4.08)/g2 + (g1^2*g3^8*t^4.19)/g2^2 + (g2*t^4.91)/(g1*g3^5) + g3^7*t^4.98 + g3*t^5. + (2*t^5.01)/g3^5 + (g1*g3^13*t^5.07)/g2 + (2*g1*g3^7*t^5.09)/g2 + (g1*g3*t^5.1)/g2 + (g1*g2^2*t^5.44)/g3 + (g3^2*t^5.45)/(g1^2*g2) + (g3^14*t^5.53)/(g1*g2^2) + (g1^2*g2*t^5.54)/g3 + (g2^2*t^5.8)/(g1^2*g3^6) + (g2^2*t^5.82)/(g1^2*g3^12) + (g2^2*t^5.84)/(g1^2*g3^18) + (g2*g3^6*t^5.88)/g1 + (g2*t^5.89)/g1 + (2*g2*t^5.91)/(g1*g3^6) + g3^18*t^5.95 + g3^12*t^5.97 + 2*g3^6*t^5.98 - 3*t^6. + t^6.02/g3^6 + (g1*g3^6*t^6.09)/g2 + (g1^2*g3^12*t^6.18)/g2^2 + (g1^3*g3^12*t^6.29)/g2^3 + (g1*g2^2*t^6.44)/g3^2 + (g3*t^6.46)/(g1^2*g2) + (g3^13*t^6.53)/(g1*g2^2) + (g1^2*g2*t^6.55)/g3^2 + (g2*g3^5*t^6.88)/g1 + (g2*t^6.9)/(g1*g3) + (2*g2*t^6.91)/(g1*g3^7) + g3^17*t^6.96 + 2*g3^11*t^6.97 + 4*g3^5*t^6.99 + t^7./g3 + t^7.02/g3^7 + (g1*g3^17*t^7.06)/g2 + (g1*g3^11*t^7.08)/g2 + (2*g1*g3^5*t^7.09)/g2 + (g1*t^7.11)/(g2*g3) + (g1^2*g3^17*t^7.17)/g2^2 + (2*g1^2*g3^11*t^7.18)/g2^2 + (g1^2*g3^5*t^7.2)/g2^2 + (g2^3*t^7.34)/g3^3 + t^7.38/(g1^3*g3^12) + (g1*g2^2*t^7.44)/g3^3 - (g3^6*t^7.44)/(g1^2*g2) + t^7.46/(g1^2*g2) - (g1*g2^2*t^7.46)/g3^9 + (g3^12*t^7.53)/(g1*g2^2) + (g1^2*g2*t^7.55)/g3^3 + (g3^24*t^7.61)/g2^3 + (g3^18*t^7.62)/g2^3 + g1^3*g3^3*t^7.64 + (g1^3*t^7.66)/g3^3 + (g2^2*t^7.81)/(g1^2*g3^8) + (g2^2*t^7.83)/(g1^2*g3^14) + (2*g2*g3^4*t^7.88)/g1 + (g2*t^7.9)/(g1*g3^2) + (3*g2*t^7.92)/(g1*g3^8) + (g2*t^7.93)/(g1*g3^14) + 2*g3^16*t^7.96 + 2*g3^10*t^7.97 + 5*g3^4*t^7.99 + (2*t^8.01)/g3^2 + (2*t^8.02)/g3^8 + (g1*g3^22*t^8.05)/g2 + (3*g1*g3^16*t^8.06)/g2 + (2*g1*g3^10*t^8.08)/g2 - (g1*g3^4*t^8.1)/g2 + (g1^2*g3^16*t^8.17)/g2^2 + (g1^2*g3^10*t^8.19)/g2^2 + (g1^3*g3^16*t^8.28)/g2^3 + (g2^3*t^8.34)/g3^4 + t^8.36/(g1^3*g3) + (g1^4*g3^16*t^8.38)/g2^4 + g1*g2^2*g3^8*t^8.42 + (2*g3^11*t^8.43)/(g1^2*g2) + (2*g1*g2^2*t^8.45)/g3^4 - (g1*g2^2*t^8.46)/g3^10 + t^8.46/(g1^2*g2*g3) - t^8.48/(g1^2*g2*g3^7) + (g3^23*t^8.5)/(g1*g2^2) + g1^2*g2*g3^8*t^8.52 + (g3^11*t^8.54)/(g1*g2^2) + (g1^2*g2*t^8.55)/g3^4 - (g3^5*t^8.55)/(g1*g2^2) - (g1^2*g2*t^8.57)/g3^10 + (g2^3*t^8.71)/(g1^3*g3^9) + (g2^3*t^8.72)/(g1^3*g3^15) + (g2^3*t^8.74)/(g1^3*g3^21) + (g2^3*t^8.75)/(g1^3*g3^27) + (g2^2*g3^3*t^8.78)/g1^2 + (g2^2*t^8.8)/(g1^2*g3^3) + (2*g2^2*t^8.81)/(g1^2*g3^9) + (g2^2*t^8.83)/(g1^2*g3^15) + (g2*g3^15*t^8.86)/g1 + (g2*g3^9*t^8.87)/g1 + (3*g2*g3^3*t^8.89)/g1 - (3*g2*t^8.9)/(g1*g3^3) - (g2*t^8.92)/(g1*g3^9) + g3^27*t^8.93 + g3^21*t^8.95 + 3*g3^15*t^8.96 - 2*g3^9*t^8.98 + g3^3*t^8.99 - t^4./(g3*y) - t^5.01/(g3^2*y) - (g1*g3^3*t^6.1)/(g2*y) - (g2*t^6.9)/(g1*g3^4*y) - (g2*t^6.92)/(g1*g3^10*y) - (g3^8*t^6.98)/y - (g3^2*t^6.99)/y - t^7.01/(g3^4*y) - (g1*g3^2*t^7.1)/(g2*y) - (g2*t^7.92)/(g1*g3^11*y) - (g3^7*t^7.98)/y + (g1*g3^13*t^8.07)/(g2*y) + (g1*g3^7*t^8.09)/(g2*y) + (g1*g3*t^8.1)/(g2*y) - (g1^2*g3^7*t^8.19)/(g2^2*y) + (g2^2*t^8.82)/(g1^2*g3^12*y) + (g2*g3^6*t^8.88)/(g1*y) + (2*g2*t^8.89)/(g1*y) + (2*g2*t^8.91)/(g1*g3^6*y) + (g2*t^8.93)/(g1*g3^12*y) + (g3^12*t^8.97)/y - (t^4.*y)/g3 - (t^5.01*y)/g3^2 - (g1*g3^3*t^6.1*y)/g2 - (g2*t^6.9*y)/(g1*g3^4) - (g2*t^6.92*y)/(g1*g3^10) - g3^8*t^6.98*y - g3^2*t^6.99*y - (t^7.01*y)/g3^4 - (g1*g3^2*t^7.1*y)/g2 - (g2*t^7.92*y)/(g1*g3^11) - g3^7*t^7.98*y + (g1*g3^13*t^8.07*y)/g2 + (g1*g3^7*t^8.09*y)/g2 + (g1*g3*t^8.1*y)/g2 - (g1^2*g3^7*t^8.19*y)/g2^2 + (g2^2*t^8.82*y)/(g1^2*g3^12) + (g2*g3^6*t^8.88*y)/g1 + (2*g2*t^8.89*y)/g1 + (2*g2*t^8.91*y)/(g1*g3^6) + (g2*t^8.93*y)/(g1*g3^12) + g3^12*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57360 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4756 1.686 0.8752 [X:[1.3266], M:[0.981, 0.7025, 0.9899], q:[0.5095, 0.4804], qb:[0.5095, 0.4804], phi:[0.3367]] t^2.107 + t^2.882 + t^2.943 + 3*t^2.97 + 3*t^3.98 + t^4.067 + t^4.215 + t^4.903 + 3*t^4.99 + t^5.051 + 4*t^5.077 + 2*t^5.421 + 2*t^5.508 + t^5.765 + t^5.825 + 3*t^5.852 + t^5.886 + t^5.913 + 6*t^5.939 - 4*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail