Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57292 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.4741 1.6832 0.8758 [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] [M:[[-5, -11, 1], [2, 2, 2]], q:[[6, 0, 0], [0, -6, -6]], qb:[[0, 12, 0], [0, 0, 12]], phi:[[-1, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. + 2*t^6.012 + t^6.017 + t^6.024 + t^6.029 + t^6.065 + t^6.474 + t^6.486 + t^6.49 + t^6.502 + t^6.943 + t^6.947 + t^6.959 + t^6.964 + 2*t^6.971 + 2*t^6.976 + t^6.981 + 2*t^6.988 + t^6.993 + t^7. + t^7.005 + t^7.012 + 2*t^7.017 + t^7.022 + t^7.029 + t^7.041 + t^7.046 + t^7.058 + t^7.45 - t^7.478 + t^7.479 + t^7.486 + t^7.49 + t^7.5 + t^7.502 + t^7.507 + t^7.519 + t^7.536 + 2*t^7.947 + 2*t^7.952 + t^7.957 + t^7.959 + t^7.964 + 3*t^7.976 + 4*t^7.981 + 2*t^7.986 + t^7.988 + 2*t^7.993 + 2*t^7.998 + 2*t^8.005 + 2*t^8.01 + t^8.014 + t^8.017 - 2*t^8.022 + t^8.026 + 2*t^8.034 + t^8.046 + t^8.05 + t^8.086 + t^8.438 + t^8.443 + t^8.45 + 2*t^8.454 + t^8.459 + t^8.467 + t^8.471 + t^8.483 + t^8.495 - t^8.517 - t^8.529 + t^8.907 + t^8.911 + t^8.916 + t^8.921 + t^8.935 + t^8.94 + t^8.945 + t^8.95 + 2*t^8.952 + 2*t^8.957 + t^8.962 + t^8.964 - 3*t^8.969 - 4*t^8.974 + 4*t^8.981 + 4*t^8.986 + 2*t^8.99 + 2*t^8.993 - t^8.998 - t^4.005/y - t^5.01/y - t^6.026/y - t^6.974/y - t^6.978/y - t^7.002/y - t^7.007/y - t^7.019/y - t^7.031/y - t^7.978/y + t^7.99/y + t^7.995/y - t^8.007/y - t^8.012/y + t^8.019/y + t^8.036/y - t^8.048/y + t^8.942/y + t^8.967/y + (2*t^8.971)/y + t^8.976/y + t^8.988/y - t^4.005*y - t^5.01*y - t^6.026*y - t^6.974*y - t^6.978*y - t^7.002*y - t^7.007*y - t^7.019*y - t^7.031*y - t^7.978*y + t^7.99*y + t^7.995*y - t^8.007*y - t^8.012*y + t^8.019*y + t^8.036*y - t^8.048*y + t^8.942*y + t^8.967*y + 2*t^8.971*y + t^8.976*y + t^8.988*y (g3*t^2.022)/(g1^5*g2^11) + g1^6*g3^12*t^2.969 + g1^6*g2^12*t^2.974 + (g3^6*t^2.998)/g2^6 + (g2^6*t^3.002)/g3^6 + t^3.014/(g1^3*g2^3*g3^3) + (g1^5*g3^11*t^3.974)/g2 + g1^2*g2^2*g3^2*t^3.99 + (g3^5*t^4.002)/(g1*g2^7) + (g2^5*t^4.007)/(g1*g3^7) + (g3^2*t^4.043)/(g1^10*g2^22) + (g1^4*g3^10*t^4.978)/g2^2 + (g1^4*g2^10*t^4.983)/g3^2 + (g1*g3^13*t^4.99)/g2^11 + g1*g2*g3*t^4.995 + (g3^4*t^5.007)/(g1^2*g2^8) + (g2^4*t^5.012)/(g1^2*g3^8) + (g3^7*t^5.019)/(g1^5*g2^17) + t^5.024/(g1^5*g2^5*g3^5) + t^5.036/(g1^8*g2^14*g3^2) + (g1^11*t^5.469)/(g2^7*g3^7) + (g2^11*g3^23*t^5.481)/g1 + (g2^23*g3^11*t^5.485)/g1 + (g1^5*t^5.498)/(g2^13*g3^13) + g1^12*g3^24*t^5.938 + g1^12*g2^12*g3^12*t^5.942 + g1^12*g2^24*t^5.947 + (g1^6*g3^18*t^5.967)/g2^6 + g1^6*g2^6*g3^6*t^5.971 + (g1^6*g2^18*t^5.976)/g3^6 + (g1^3*g3^9*t^5.983)/g2^3 + (g1^3*g2^9*t^5.988)/g3^3 + (g3^12*t^5.995)/g2^12 - 3*t^6. + (2*g3^3*t^6.012)/(g1^3*g2^9) + (g2^3*t^6.017)/(g1^3*g3^9) + (g3^6*t^6.024)/(g1^6*g2^18) + t^6.029/(g1^6*g2^6*g3^6) + (g3^3*t^6.065)/(g1^15*g2^33) + (g1^10*t^6.474)/(g2^8*g3^8) + (g2^10*g3^22*t^6.486)/g1^2 + (g2^22*g3^10*t^6.49)/g1^2 + (g1^4*t^6.502)/(g2^14*g3^14) + (g1^11*g3^23*t^6.943)/g2 + g1^11*g2^11*g3^11*t^6.947 + g1^8*g2^2*g3^14*t^6.959 + g1^8*g2^14*g3^2*t^6.964 + (2*g1^5*g3^17*t^6.971)/g2^7 + 2*g1^5*g2^5*g3^5*t^6.976 + (g1^5*g2^17*t^6.981)/g3^7 + (2*g1^2*g3^8*t^6.988)/g2^4 + (g1^2*g2^8*t^6.993)/g3^4 + (g3^11*t^7.)/(g1*g2^13) + t^7.005/(g1*g2*g3) + (g3^14*t^7.012)/(g1^4*g2^22) + (2*g3^2*t^7.017)/(g1^4*g2^10) + (g2^2*t^7.022)/(g1^4*g3^10) + (g3^5*t^7.029)/(g1^7*g2^19) + (g3^8*t^7.041)/(g1^10*g2^28) + t^7.046/(g1^10*g2^16*g3^4) + t^7.058/(g1^13*g2^25*g3) + (g1^15*t^7.45)/(g2^3*g3^3) - g2^18*g3^18*t^7.478 + (g1^9*t^7.479)/(g2^9*g3^9) + (g3^33*t^7.486)/(g1^3*g2^3) + (g2^9*g3^21*t^7.49)/g1^3 - (g1^6*t^7.495)/(g2^6*g3^18) + (g2^21*g3^9*t^7.495)/g1^3 + (g2^33*t^7.5)/(g1^3*g3^3) + (g3^24*t^7.502)/g1^6 + (g1^3*t^7.507)/(g2^15*g3^15) + t^7.519/(g2^24*g3^12) + t^7.536/(g1^3*g2^21*g3^21) + (2*g1^10*g3^22*t^7.947)/g2^2 + 2*g1^10*g2^10*g3^10*t^7.952 + (g1^10*g2^22*t^7.957)/g3^2 + (g1^7*g3^25*t^7.959)/g2^11 + g1^7*g2*g3^13*t^7.964 + (3*g1^4*g3^16*t^7.976)/g2^8 + 4*g1^4*g2^4*g3^4*t^7.981 + (2*g1^4*g2^16*t^7.986)/g3^8 + (g1*g3^19*t^7.988)/g2^17 + (2*g1*g3^7*t^7.993)/g2^5 + (2*g1*g2^7*t^7.998)/g3^5 + (2*g3^10*t^8.005)/(g1^2*g2^14) + (2*t^8.01)/(g1^2*g2^2*g3^2) + (g2^10*t^8.014)/(g1^2*g3^14) + (g3^13*t^8.017)/(g1^5*g2^23) - (2*g3*t^8.022)/(g1^5*g2^11) + (g2*t^8.026)/(g1^5*g3^11) + (2*g3^4*t^8.034)/(g1^8*g2^20) + (g3^7*t^8.046)/(g1^11*g2^29) + t^8.05/(g1^11*g2^17*g3^5) + (g3^4*t^8.086)/(g1^20*g2^44) + (g1^17*g3^5*t^8.438)/g2^7 + (g1^17*g2^5*t^8.443)/g3^7 + g1^5*g2^11*g3^35*t^8.45 + 2*g1^5*g2^23*g3^23*t^8.454 + g1^5*g2^35*g3^11*t^8.459 + (g1^11*t^8.467)/(g2^13*g3) + (g1^11*t^8.471)/(g2*g3^13) + (g1^8*t^8.483)/(g2^10*g3^10) + (g2^8*g3^20*t^8.495)/g1^4 - (g1^5*t^8.5)/(g2^7*g3^19) + (g2^20*g3^8*t^8.5)/g1^4 + (g1^2*t^8.512)/(g2^16*g3^16) - (g2^11*g3^11*t^8.512)/g1^7 - (g2^23*t^8.517)/(g1^7*g3) - t^8.529/(g1*g2^13*g3^25) + g1^18*g3^36*t^8.907 + g1^18*g2^12*g3^24*t^8.911 + g1^18*g2^24*g3^12*t^8.916 + g1^18*g2^36*t^8.921 + (g1^12*g3^30*t^8.935)/g2^6 + g1^12*g2^6*g3^18*t^8.94 + g1^12*g2^18*g3^6*t^8.945 + (g1^12*g2^30*t^8.95)/g3^6 + (2*g1^9*g3^21*t^8.952)/g2^3 + 2*g1^9*g2^9*g3^9*t^8.957 + (g1^9*g2^21*t^8.962)/g3^3 + (g1^6*g3^24*t^8.964)/g2^12 - 3*g1^6*g3^12*t^8.969 - 4*g1^6*g2^12*t^8.974 + (4*g1^3*g3^15*t^8.981)/g2^9 + 4*g1^3*g2^3*g3^3*t^8.986 + (2*g1^3*g2^15*t^8.99)/g3^9 + (2*g3^18*t^8.993)/g2^18 - (g3^6*t^8.998)/g2^6 - t^4.005/(g1*g2*g3*y) - t^5.01/(g1^2*g2^2*g3^2*y) - t^6.026/(g1^6*g2^12*y) - (g1^5*g3^11*t^6.974)/(g2*y) - (g1^5*g2^11*t^6.978)/(g3*y) - (g3^5*t^7.002)/(g1*g2^7*y) - (g2^5*t^7.007)/(g1*g3^7*y) - t^7.019/(g1^4*g2^4*g3^4*y) - t^7.031/(g1^7*g2^13*g3*y) - (g1^4*g3^10*t^7.978)/(g2^2*y) + (g1*g3^13*t^7.99)/(g2^11*y) + (g1*g2*g3*t^7.995)/y - (g3^4*t^8.007)/(g1^2*g2^8*y) - (g2^4*t^8.012)/(g1^2*g3^8*y) + (g3^7*t^8.019)/(g1^5*g2^17*y) + t^8.036/(g1^8*g2^14*g3^2*y) - (g3*t^8.048)/(g1^11*g2^23*y) + (g1^12*g2^12*g3^12*t^8.942)/y + (g1^6*g3^18*t^8.967)/(g2^6*y) + (2*g1^6*g2^6*g3^6*t^8.971)/y + (g1^6*g2^18*t^8.976)/(g3^6*y) + (g1^3*g2^9*t^8.988)/(g3^3*y) - (t^4.005*y)/(g1*g2*g3) - (t^5.01*y)/(g1^2*g2^2*g3^2) - (t^6.026*y)/(g1^6*g2^12) - (g1^5*g3^11*t^6.974*y)/g2 - (g1^5*g2^11*t^6.978*y)/g3 - (g3^5*t^7.002*y)/(g1*g2^7) - (g2^5*t^7.007*y)/(g1*g3^7) - (t^7.019*y)/(g1^4*g2^4*g3^4) - (t^7.031*y)/(g1^7*g2^13*g3) - (g1^4*g3^10*t^7.978*y)/g2^2 + (g1*g3^13*t^7.99*y)/g2^11 + g1*g2*g3*t^7.995*y - (g3^4*t^8.007*y)/(g1^2*g2^8) - (g2^4*t^8.012*y)/(g1^2*g3^8) + (g3^7*t^8.019*y)/(g1^5*g2^17) + (t^8.036*y)/(g1^8*g2^14*g3^2) - (g3*t^8.048*y)/(g1^11*g2^23) + g1^12*g2^12*g3^12*t^8.942*y + (g1^6*g3^18*t^8.967*y)/g2^6 + 2*g1^6*g2^6*g3^6*t^8.971*y + (g1^6*g2^18*t^8.976*y)/g3^6 + (g1^3*g2^9*t^8.988*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57896 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4103 1.6303 0.865 [X:[], M:[0.8959, 1.264], q:[0.3474, 0.5555], qb:[0.3887, 0.5003], phi:[0.368]] t^2.21 + t^2.54 + t^2.69 + t^2.83 + t^3.17 + t^3.31 + t^3.65 + t^3.79 + t^3.94 + t^4.27 + 2*t^4.42 + 2*t^4.75 + t^4.85 + t^4.9 + t^4.94 + 2*t^5.04 + t^5.09 + t^5.23 + t^5.27 + 3*t^5.38 + t^5.48 + 2*t^5.52 + t^5.71 + 3*t^5.86 + t^5.96 - t^6. - t^4.1/y - t^5.21/y - t^4.1*y - t^5.21*y detail
57895 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ 1.4146 1.6232 0.8715 [X:[], M:[0.8781, 1.2975], q:[0.4137, 0.5212], qb:[0.3569, 0.6006], phi:[0.3513]] t^2.31 + 2*t^2.63 + t^3.04 + t^3.16 + t^3.37 + t^3.69 + t^3.89 + t^4.1 + 2*t^4.42 + t^4.62 + t^4.74 + 2*t^4.95 + t^5. + t^5.1 + t^5.15 + 2*t^5.27 + t^5.35 + t^5.42 + 2*t^5.47 + 2*t^5.68 + t^5.73 + 2*t^5.8 - t^6. - t^4.05/y - t^5.11/y - t^4.05*y - t^5.11*y detail
57894 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ 1.3232 1.5187 0.8713 [X:[1.3753], M:[1.0, 1.2494], q:[0.3114, 0.5632], qb:[0.3133, 0.5603], phi:[0.3753]] t^2.62 + t^2.63 + t^3. + t^3.37 + t^3.38 + t^3.74 + t^3.75 + t^3.76 + 2*t^4.13 + t^4.5 + t^4.68 + t^4.69 + t^4.87 + t^4.88 + t^5.23 + t^5.43 + t^5.44 + 2*t^5.62 + t^5.63 + 2*t^5.81 + 2*t^5.99 - 2*t^6. - t^4.13/y - t^5.25/y - t^4.13*y - t^5.25*y detail
57900 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4949 1.7242 0.867 [X:[], M:[0.6735, 1.3306, 0.6735], q:[0.4939, 0.5021], qb:[0.4979, 0.4979], phi:[0.3347]] 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + t^3.99 + 2*t^4. + 3*t^4.04 + 2*t^4.98 + 4*t^5. + 2*t^5.01 + 4*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
57899 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.475 1.6864 0.8746 [X:[], M:[0.6882, 1.3238, 0.9857], q:[0.4787, 0.5072], qb:[0.495, 0.4905], phi:[0.3381]] t^2.06 + t^2.91 + t^2.92 + t^2.96 + t^2.99 + t^3.01 + t^3.92 + t^3.97 + t^4.01 + t^4.02 + t^4.13 + t^4.94 + t^4.95 + t^4.97 + t^4.99 + 2*t^5.02 + t^5.04 + t^5.06 + t^5.07 + t^5.41 + t^5.44 + t^5.46 + t^5.49 + t^5.81 + t^5.83 + t^5.84 + t^5.86 + t^5.88 + t^5.9 + 2*t^5.91 + t^5.93 + t^5.95 + t^5.96 + t^5.99 - 3*t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail
57898 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 1.4748 1.6836 0.876 [X:[], M:[0.6881, 1.3312, 0.9839], q:[0.4951, 0.5015], qb:[0.4824, 0.5146], phi:[0.3344]] t^2.06 + t^2.93 + 2*t^2.95 + t^3.01 + t^3.03 + t^3.95 + t^3.99 + t^4.03 + t^4.05 + t^4.13 + t^4.94 + t^4.96 + t^5. + 2*t^5.02 + t^5.04 + t^5.05 + t^5.07 + t^5.09 + t^5.44 + t^5.48 + t^5.5 + t^5.54 + t^5.86 + 2*t^5.88 + 2*t^5.9 + t^5.94 + 3*t^5.96 + t^5.98 - 4*t^6. - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail
57897 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 1.474 1.6826 0.876 [X:[], M:[0.6738, 1.3315], q:[0.496, 0.5013], qb:[0.496, 0.5013], phi:[0.3342]] t^2.02 + t^2.98 + 2*t^2.99 + 2*t^3.01 + 3*t^3.99 + t^4.01 + t^4.04 + t^4.98 + 3*t^5. + 3*t^5.01 + 2*t^5.03 + 2*t^5.48 + 2*t^5.5 + t^5.95 + 2*t^5.97 + 3*t^5.98 - t^4./y - t^5.01/y - t^4.*y - t^5.01*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47879 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4743 1.6855 0.8747 [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y detail