Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57898 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ 1.4748 1.6836 0.876 [X:[], M:[0.6881, 1.3312, 0.9839], q:[0.4951, 0.5015], qb:[0.4824, 0.5146], phi:[0.3344]] [X:[], M:[[-5, -11, 1], [2, 2, 2], [0, 6, -6]], q:[[6, 0, 0], [0, -6, -6]], qb:[[0, 12, 0], [0, 0, 12]], phi:[[-1, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$ ${}$ -4 t^2.06 + t^2.93 + 2*t^2.95 + t^3.01 + t^3.03 + t^3.95 + t^3.99 + t^4.03 + t^4.05 + t^4.13 + t^4.94 + t^4.96 + t^5. + 2*t^5.02 + t^5.04 + t^5.05 + t^5.07 + t^5.09 + t^5.44 + t^5.48 + t^5.5 + t^5.54 + t^5.86 + 2*t^5.88 + 2*t^5.9 + t^5.94 + 3*t^5.96 + t^5.98 - 4*t^6. + t^6.02 + t^6.04 + 2*t^6.06 + t^6.12 + t^6.19 + t^6.44 + t^6.48 + t^6.5 + t^6.54 + t^6.89 + t^6.91 + t^6.93 + 2*t^6.95 + 2*t^6.96 + 3*t^6.98 + t^7. + t^7.02 + t^7.04 + 3*t^7.06 + 3*t^7.08 + t^7.12 + t^7.14 + t^7.16 + t^7.35 + t^7.47 + t^7.48 - t^7.49 + t^7.5 + t^7.52 + t^7.54 + t^7.56 + t^7.6 + t^7.64 + t^7.87 + 3*t^7.89 + 2*t^7.91 + 3*t^7.95 + 5*t^7.97 + 4*t^7.99 + 2*t^8.01 + 2*t^8.03 + 2*t^8.05 - t^8.06 + 3*t^8.08 + t^8.1 + 2*t^8.12 + t^8.18 + t^8.26 + t^8.37 + t^8.39 + 2*t^8.43 + t^8.45 + t^8.47 + t^8.49 + t^8.51 + t^8.57 - t^8.59 + t^8.8 + 2*t^8.82 + 2*t^8.84 + 2*t^8.85 + t^8.87 + 4*t^8.89 + 4*t^8.91 - 4*t^8.93 - 6*t^8.95 + 4*t^8.97 + 5*t^8.99 - t^4./y - t^5.01/y - t^6.07/y - t^6.94/y - (2*t^6.95)/y - t^7.01/y - t^7.03/y - t^7.07/y - (2*t^7.96)/y + t^8./y + t^8.02/y - t^8.04/y + t^8.07/y + t^8.09/y - t^8.13/y + (2*t^8.88)/y + t^8.9/y + t^8.94/y + (2*t^8.96)/y + (2*t^8.98)/y - t^4.*y - t^5.01*y - t^6.07*y - t^6.94*y - 2*t^6.95*y - t^7.01*y - t^7.03*y - t^7.07*y - 2*t^7.96*y + t^8.*y + t^8.02*y - t^8.04*y + t^8.07*y + t^8.09*y - t^8.13*y + 2*t^8.88*y + t^8.9*y + t^8.94*y + 2*t^8.96*y + 2*t^8.98*y (g3*t^2.06)/(g1^5*g2^11) + g1^6*g2^12*t^2.93 + (2*g2^6*t^2.95)/g3^6 + t^3.01/(g1^3*g2^3*g3^3) + g1^6*g3^12*t^3.03 + (g2^5*t^3.95)/(g1*g3^7) + g1^2*g2^2*g3^2*t^3.99 + (g1^5*g3^11*t^4.03)/g2 + (g3^5*t^4.05)/(g1*g2^7) + (g3^2*t^4.13)/(g1^10*g2^22) + (g1^4*g2^10*t^4.94)/g3^2 + (g2^4*t^4.96)/(g1^2*g3^8) + g1*g2*g3*t^5. + (2*t^5.02)/(g1^5*g2^5*g3^5) + (g1^4*g3^10*t^5.04)/g2^2 + (g3^4*t^5.05)/(g1^2*g2^8) + t^5.07/(g1^8*g2^14*g3^2) + (g1*g3^13*t^5.09)/g2^11 + (g2^23*g3^11*t^5.44)/g1 + (g1^11*t^5.48)/(g2^7*g3^7) + (g1^5*t^5.5)/(g2^13*g3^13) + (g2^11*g3^23*t^5.54)/g1 + g1^12*g2^24*t^5.86 + (2*g1^6*g2^18*t^5.88)/g3^6 + (2*g2^12*t^5.9)/g3^12 + (g1^3*g2^9*t^5.94)/g3^3 + (2*g2^3*t^5.96)/(g1^3*g3^9) + g1^12*g2^12*g3^12*t^5.96 + g1^6*g2^6*g3^6*t^5.98 - 4*t^6. + t^6.02/(g1^6*g2^6*g3^6) + (g1^3*g3^9*t^6.04)/g2^3 + (g3^3*t^6.06)/(g1^3*g2^9) + g1^12*g3^24*t^6.06 + (g3^6*t^6.12)/(g1^6*g2^18) + (g3^3*t^6.19)/(g1^15*g2^33) + (g2^22*g3^10*t^6.44)/g1^2 + (g1^10*t^6.48)/(g2^8*g3^8) + (g1^4*t^6.5)/(g2^14*g3^14) + (g2^10*g3^22*t^6.54)/g1^2 + (g1^5*g2^17*t^6.89)/g3^7 + (g2^11*t^6.91)/(g1*g3^13) + g1^8*g2^14*g3^2*t^6.93 + (2*g1^2*g2^8*t^6.95)/g3^4 + (g2^2*t^6.96)/(g1^4*g3^10) + g1^11*g2^11*g3^11*t^6.96 + 3*g1^5*g2^5*g3^5*t^6.98 + t^7./(g1*g2*g3) + g1^8*g2^2*g3^14*t^7.02 + (g1^2*g3^8*t^7.04)/g2^4 + (2*g3^2*t^7.06)/(g1^4*g2^10) + (g1^11*g3^23*t^7.06)/g2 + (2*t^7.08)/(g1^10*g2^16*g3^4) + (g1^5*g3^17*t^7.08)/g2^7 + (g3^5*t^7.12)/(g1^7*g2^19) + t^7.14/(g1^13*g2^25*g3) + (g3^14*t^7.16)/(g1^4*g2^22) + (g2^33*t^7.35)/(g1^3*g3^3) - (g1^6*t^7.45)/(g2^6*g3^18) + (g2^21*g3^9*t^7.45)/g1^3 + (g1^15*t^7.47)/(g2^3*g3^3) + (g1^9*t^7.48)/(g2^9*g3^9) - g2^18*g3^18*t^7.49 + (g1^3*t^7.5)/(g2^15*g3^15) + t^7.52/(g1^3*g2^21*g3^21) + (g2^9*g3^21*t^7.54)/g1^3 + t^7.56/(g2^24*g3^12) + (g3^24*t^7.6)/g1^6 + (g3^33*t^7.64)/(g1^3*g2^3) + (g1^10*g2^22*t^7.87)/g3^2 + (3*g1^4*g2^16*t^7.89)/g3^8 + (2*g2^10*t^7.91)/(g1^2*g3^14) + (3*g1*g2^7*t^7.95)/g3^5 + (3*g2*t^7.97)/(g1^5*g3^11) + 2*g1^10*g2^10*g3^10*t^7.97 + 4*g1^4*g2^4*g3^4*t^7.99 + (2*t^8.01)/(g1^2*g2^2*g3^2) + t^8.03/(g1^8*g2^8*g3^8) + g1^7*g2*g3^13*t^8.03 + (2*g1*g3^7*t^8.05)/g2^5 - (3*g3*t^8.06)/(g1^5*g2^11) + (2*g1^10*g3^22*t^8.06)/g2^2 + t^8.08/(g1^11*g2^17*g3^5) + (2*g1^4*g3^16*t^8.08)/g2^8 + (g3^10*t^8.1)/(g1^2*g2^14) + (g3^4*t^8.12)/(g1^8*g2^20) + (g1^7*g3^25*t^8.12)/g2^11 + (g3^7*t^8.18)/(g1^11*g2^29) + (g3^4*t^8.26)/(g1^20*g2^44) + g1^5*g2^35*g3^11*t^8.37 + (g2^29*g3^5*t^8.39)/g1 + (g1^17*g2^5*t^8.41)/g3^7 - (g2^23*t^8.41)/(g1^7*g3) + (2*g1^11*t^8.43)/(g2*g3^13) + (g2^20*g3^8*t^8.45)/g1^4 - t^8.47/(g1*g2^13*g3^25) + 2*g1^5*g2^23*g3^23*t^8.47 + (g1^8*t^8.49)/(g2^10*g3^10) + (g1^2*t^8.51)/(g2^16*g3^16) + (g1^17*g3^5*t^8.51)/g2^7 - (g2^11*g3^11*t^8.51)/g1^7 - (g1^5*t^8.55)/(g2^19*g3^7) + (g2^8*g3^20*t^8.55)/g1^4 + g1^5*g2^11*g3^35*t^8.57 - (g2^5*g3^29*t^8.59)/g1 + g1^18*g2^36*t^8.8 + (2*g1^12*g2^30*t^8.82)/g3^6 + (2*g1^6*g2^24*t^8.84)/g3^12 + (2*g2^18*t^8.85)/g3^18 + (g1^9*g2^21*t^8.87)/g3^3 + (3*g1^3*g2^15*t^8.89)/g3^9 + g1^18*g2^24*g3^12*t^8.89 + (3*g2^9*t^8.91)/(g1^3*g3^15) + g1^12*g2^18*g3^6*t^8.91 - 4*g1^6*g2^12*t^8.93 - (6*g2^6*t^8.95)/g3^6 + (2*t^8.97)/(g1^6*g3^12) + 2*g1^9*g2^9*g3^9*t^8.97 + 4*g1^3*g2^3*g3^3*t^8.99 + g1^18*g2^12*g3^24*t^8.99 - t^4./(g1*g2*g3*y) - t^5.01/(g1^2*g2^2*g3^2*y) - t^6.07/(g1^6*g2^12*y) - (g1^5*g2^11*t^6.94)/(g3*y) - (2*g2^5*t^6.95)/(g1*g3^7*y) - t^7.01/(g1^4*g2^4*g3^4*y) - (g1^5*g3^11*t^7.03)/(g2*y) - t^7.07/(g1^7*g2^13*g3*y) - (2*g2^4*t^7.96)/(g1^2*g3^8*y) + (g1*g2*g3*t^8.)/y + t^8.02/(g1^5*g2^5*g3^5*y) - (g1^4*g3^10*t^8.04)/(g2^2*y) + t^8.07/(g1^8*g2^14*g3^2*y) + (g1*g3^13*t^8.09)/(g2^11*y) - (g3*t^8.13)/(g1^11*g2^23*y) + (2*g1^6*g2^18*t^8.88)/(g3^6*y) + (g2^12*t^8.9)/(g3^12*y) + (g1^3*g2^9*t^8.94)/(g3^3*y) + (g2^3*t^8.96)/(g1^3*g3^9*y) + (g1^12*g2^12*g3^12*t^8.96)/y + (2*g1^6*g2^6*g3^6*t^8.98)/y - (t^4.*y)/(g1*g2*g3) - (t^5.01*y)/(g1^2*g2^2*g3^2) - (t^6.07*y)/(g1^6*g2^12) - (g1^5*g2^11*t^6.94*y)/g3 - (2*g2^5*t^6.95*y)/(g1*g3^7) - (t^7.01*y)/(g1^4*g2^4*g3^4) - (g1^5*g3^11*t^7.03*y)/g2 - (t^7.07*y)/(g1^7*g2^13*g3) - (2*g2^4*t^7.96*y)/(g1^2*g3^8) + g1*g2*g3*t^8.*y + (t^8.02*y)/(g1^5*g2^5*g3^5) - (g1^4*g3^10*t^8.04*y)/g2^2 + (t^8.07*y)/(g1^8*g2^14*g3^2) + (g1*g3^13*t^8.09*y)/g2^11 - (g3*t^8.13*y)/(g1^11*g2^23) + (2*g1^6*g2^18*t^8.88*y)/g3^6 + (g2^12*t^8.9*y)/g3^12 + (g1^3*g2^9*t^8.94*y)/g3^3 + (g2^3*t^8.96*y)/(g1^3*g3^9) + g1^12*g2^12*g3^12*t^8.96*y + 2*g1^6*g2^6*g3^6*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57292 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.4741 1.6832 0.8758 [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y detail