Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57894 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.3232 | 1.5187 | 0.8713 | [X:[1.3753], M:[1.0, 1.2494], q:[0.3114, 0.5632], qb:[0.3133, 0.5603], phi:[0.3753]] | [X:[[0, 1]], M:[[0, 0], [0, -2]], q:[[-1, -11], [-1, -5]], qb:[[1, 10], [1, 0]], phi:[[0, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | ${}$ | -2 | t^2.62 + t^2.63 + t^3. + t^3.37 + t^3.38 + t^3.74 + t^3.75 + t^3.76 + 2*t^4.13 + t^4.5 + t^4.68 + t^4.69 + t^4.87 + t^4.88 + t^5.23 + t^5.43 + t^5.44 + 2*t^5.62 + t^5.63 + 2*t^5.81 + 2*t^5.99 - 2*t^6. + t^6.01 + t^6.18 + t^6.2 + 2*t^6.36 + 2*t^6.37 + 2*t^6.38 + t^6.55 + t^6.57 + 3*t^6.74 + t^6.75 + 3*t^6.76 - t^6.93 + t^6.94 + 2*t^7.11 + 2*t^7.12 + 3*t^7.13 + 2*t^7.3 + 2*t^7.48 + 7*t^7.5 + t^7.51 + t^7.68 + t^7.69 + t^7.85 + 4*t^7.87 + 2*t^7.88 + t^8.04 + t^8.05 + 2*t^8.06 - 2*t^8.07 + t^8.23 + 4*t^8.24 + 4*t^8.25 + t^8.26 + t^8.42 + 4*t^8.43 + 2*t^8.44 + t^8.45 + t^8.6 + 2*t^8.61 + t^8.62 - 2*t^8.63 + t^8.64 + 4*t^8.81 - t^8.82 + t^8.83 + t^8.97 + t^8.98 + 5*t^8.99 - t^4.13/y - t^5.25/y - t^6.74/y - t^6.76/y - (2*t^7.5)/y - t^7.87/y - t^7.88/y + t^8.24/y - (2*t^8.25)/y + t^8.99/y - t^4.13*y - t^5.25*y - t^6.74*y - t^6.76*y - 2*t^7.5*y - t^7.87*y - t^7.88*y + t^8.24*y - 2*t^8.25*y + t^8.99*y | t^2.62/g2^11 + g2^5*t^2.63 + t^3. + t^3.37/g2^5 + g2^3*t^3.38 + t^3.74/g2^10 + t^3.75/g2^2 + g2^6*t^3.76 + 2*g2*t^4.13 + t^4.5/g2^4 + t^4.68/(g1^3*g2^26) + g1^3*g2^21*t^4.69 + t^4.87/g2^9 + g2^7*t^4.88 + t^5.23/g2^22 + g1^3*g2^11*t^5.43 + t^5.44/(g1^3*g2^20) + t^5.62/g2^11 + t^5.62/g2^3 + g2^5*t^5.63 + t^5.81/(g1^3*g2^25) + g1^3*g2^22*t^5.81 + t^5.99/g2^16 + t^5.99/g2^8 - 2*t^6. + g2^8*t^6.01 + t^6.18/(g1^3*g2^30) + g1^3*g2^33*t^6.2 + t^6.36/g2^21 + t^6.36/g2^13 + (2*t^6.37)/g2^5 + 2*g2^3*t^6.38 + g1^3*g2^12*t^6.55 + t^6.57/(g1^3*g2^19) + (3*t^6.74)/g2^10 + t^6.75/g2^2 + 3*g2^6*t^6.76 - g1^3*g2^15*t^6.93 + t^6.94/(g1^3*g2^24) - t^6.94/(g1^3*g2^16) + g1^3*g2^23*t^6.94 + (2*t^7.11)/g2^15 + (2*t^7.12)/g2^7 + 2*g2*t^7.13 + g2^9*t^7.13 + t^7.3/(g1^3*g2^37) + g1^3*g2^10*t^7.3 + (2*t^7.48)/g2^20 + (5*t^7.5)/g2^4 + 2*g2^4*t^7.5 + g2^12*t^7.51 + g1^3*g2^13*t^7.68 + t^7.69/(g1^3*g2^18) + t^7.85/g2^33 + (3*t^7.87)/g2^9 + t^7.87/g2 + 2*g2^7*t^7.88 + g1^3*t^8.04 + t^8.05/(g1^3*g2^31) + t^8.06/(g1^3*g2^23) + g1^3*g2^24*t^8.06 - t^8.07/(g1^3*g2^15) - g1^3*g2^32*t^8.07 + t^8.23/g2^22 + (3*t^8.24)/g2^14 + t^8.24/g2^6 + 4*g2^2*t^8.25 + g2^10*t^8.26 + g1^3*g2^3*t^8.42 + (2*t^8.43)/(g1^3*g2^36) + 2*g1^3*g2^11*t^8.43 + t^8.44/(g1^3*g2^20) + g1^3*g2^27*t^8.44 + t^8.45/(g1^3*g2^12) + t^8.6/g2^27 + (2*t^8.61)/g2^19 - (3*t^8.62)/g2^11 + (4*t^8.62)/g2^3 - 2*g2^5*t^8.63 + g2^13*t^8.64 + t^8.8/(g1^3*g2^41) - t^8.8/(g1^3*g2^33) + (2*t^8.81)/(g1^3*g2^25) + g1^3*g2^14*t^8.81 + g1^3*g2^22*t^8.81 + t^8.82/(g1^3*g2^17) - t^8.82/(g1^3*g2^9) - g1^3*g2^30*t^8.82 + g1^3*g2^38*t^8.83 + t^8.97/g2^32 + t^8.98/g2^24 + t^8.99/g2^16 + (4*t^8.99)/g2^8 - (g2*t^4.13)/y - (g2^2*t^5.25)/y - t^6.74/(g2^10*y) - (g2^6*t^6.76)/y - t^7.5/(g2^4*y) - (g2^4*t^7.5)/y - t^7.87/(g2^9*y) - (g2^7*t^7.88)/y + t^8.24/(g2^6*y) - (2*g2^2*t^8.25)/y + t^8.62/(g2^11*y) - t^8.62/(g2^3*y) + t^8.99/(g2^16*y) - g2*t^4.13*y - g2^2*t^5.25*y - (t^6.74*y)/g2^10 - g2^6*t^6.76*y - (t^7.5*y)/g2^4 - g2^4*t^7.5*y - (t^7.87*y)/g2^9 - g2^7*t^7.88*y + (t^8.24*y)/g2^6 - 2*g2^2*t^8.25*y + (t^8.62*y)/g2^11 - (t^8.62*y)/g2^3 + (t^8.99*y)/g2^16 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57292 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1.4741 | 1.6832 | 0.8758 | [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] | t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y | detail |