Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47879 SU3adj1nf2 $M_1\phi_1q_1\tilde{q}_1$ + $ M_2\phi_1^2$ 1.4743 1.6855 0.8747 [X:[], M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] [X:[], M:[[-5, 1, -5, 1], [2, 2, 2, 2]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_2\tilde{q}_1$, $ M_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_1^2$, $ M_1q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1\phi_1^3$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ q_1^2\tilde{q}_1^2$, $ M_1\phi_1q_2\tilde{q}_2$ $M_1M_2$, $ \phi_1^3q_1\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$ -1 t^2.02 + 4*t^2.96 + t^3.04 + 4*t^3.97 + t^4.04 + 4*t^4.98 + 4*t^4.99 + t^5.06 + 2*t^5.45 + 2*t^5.46 + 3*t^5.91 + 6*t^5.92 + t^5.93 + t^5.99 - t^6. + t^6.07 + t^6.08 + 2*t^6.46 + 2*t^6.47 + t^6.92 + 12*t^6.93 + 3*t^6.94 + 4*t^7. + 3*t^7.01 - 2*t^7.02 + t^7.08 + 4*t^7.47 + 2*t^7.48 + 2*t^7.49 + t^7.93 + 14*t^7.94 + 15*t^7.95 + t^7.96 + t^8.01 - t^8.02 - 2*t^8.03 + t^8.09 + t^8.1 + 8*t^8.41 + 8*t^8.42 - 2*t^8.49 - 6*t^8.5 + 7*t^8.87 + 10*t^8.88 + 3*t^8.89 + 6*t^8.95 - t^8.97 - t^4.01/y - t^5.03/y - t^6.04/y - (3*t^6.97)/y - t^6.98/y - (2*t^7.05)/y + (2*t^7.98)/y - t^7.99/y - t^8.07/y + (2*t^8.91)/y + (4*t^8.92)/y - t^4.01*y - t^5.03*y - t^6.04*y - 3*t^6.97*y - t^6.98*y - 2*t^7.05*y + 2*t^7.98*y - t^7.99*y - t^8.07*y + 2*t^8.91*y + 4*t^8.92*y (g2*g4*t^2.02)/(g1^5*g3^5) + g1^6*g3^6*t^2.96 + g2^6*g3^6*t^2.96 + g1^6*g4^6*t^2.96 + g2^6*g4^6*t^2.96 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g2^5*g3^5*t^3.97)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.97 + (g1^5*g4^5*t^3.97)/(g2*g3) + (g2^5*g4^5*t^3.97)/(g1*g3) + (g2^2*g4^2*t^4.04)/(g1^10*g3^10) + (g2^7*g3*g4*t^4.98)/g1^5 + (g2^4*g4^4*t^4.98)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.98)/g3^5 + (g2^7*g4^7*t^4.98)/(g1^5*g3^5) + (g1^4*g3^4*t^4.99)/(g2^2*g4^2) + (g2^4*g3^4*t^4.99)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.99 + (g1^4*g4^4*t^4.99)/(g2^2*g3^2) + t^5.06/(g1^8*g2^2*g3^8*g4^2) + (g1^5*g2^11*t^5.45)/(g3*g4) + (g3^5*g4^11*t^5.45)/(g1*g2) + (g1^11*g2^5*t^5.46)/(g3*g4) + (g3^11*g4^5*t^5.46)/(g1*g2) + g2^12*g3^6*g4^6*t^5.91 + g1^6*g2^6*g4^12*t^5.91 + g2^12*g4^12*t^5.91 + g1^6*g2^6*g3^12*t^5.92 + g2^12*g3^12*t^5.92 + g1^12*g3^6*g4^6*t^5.92 + 2*g1^6*g2^6*g3^6*g4^6*t^5.92 + g1^12*g4^12*t^5.92 + g1^12*g3^12*t^5.93 + (g2^6*g4^6*t^5.99)/(g1^6*g3^6) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g3^6*t^6.)/g4^6 + (g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (2*g2^3*g4^3*t^6.)/(g1^3*g3^3) + (g2^3*g4^3*t^6.07)/(g1^15*g3^15) + t^6.08/(g1^6*g2^6*g3^6*g4^6) + (g1^4*g2^10*t^6.46)/(g3^2*g4^2) + (g3^4*g4^10*t^6.46)/(g1^2*g2^2) + (g1^10*g2^4*t^6.47)/(g3^2*g4^2) + (g3^10*g4^4*t^6.47)/(g1^2*g2^2) + (g2^11*g4^11*t^6.92)/(g1*g3) + (g2^11*g3^11*t^6.93)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.93 + 3*g1^5*g2^5*g3^5*g4^5*t^6.93 + (2*g2^11*g3^5*g4^5*t^6.93)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.93 + g1^2*g2^8*g3^2*g4^8*t^6.93 + (g1^11*g4^11*t^6.93)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.93)/g3 + (g1^5*g2^5*g3^11*t^6.94)/g4 + g1^8*g2^2*g3^8*g4^2*t^6.94 + (g1^11*g3^5*g4^5*t^6.94)/g2 + (g2^8*g4^2*t^7.)/(g1^10*g3^4) + (g2^5*g4^5*t^7.)/(g1^7*g3^7) + (g2^2*g4^8*t^7.)/(g1^4*g3^10) + (g2^8*g4^8*t^7.)/(g1^10*g3^10) + (g2^2*g3^2*t^7.01)/(g1^4*g4^4) - t^7.01/(g1*g2*g3*g4) + (g1^2*g4^2*t^7.01)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.01)/(g1^4*g3^4) - (g3^5*t^7.02)/(g1*g2*g4^7) - (g1^5*t^7.02)/(g2^7*g3*g4) + t^7.08/(g1^13*g2*g3^13*g4) + (g2^12*t^7.47)/g3^6 + (g2^15*t^7.47)/(g1^3*g3^3*g4^3) + (g4^12*t^7.47)/g1^6 + (g4^15*t^7.47)/(g1^3*g2^3*g3^3) - (g1^6*g2^6*t^7.48)/g4^6 + (g1^9*g2^3*t^7.48)/(g3^3*g4^3) + (g1^3*g2^9*t^7.48)/(g3^3*g4^3) + (g3^9*g4^3*t^7.48)/(g1^3*g2^3) - (g3^6*g4^6*t^7.48)/g2^6 + (g3^3*g4^9*t^7.48)/(g1^3*g2^3) + (g1^15*t^7.49)/(g2^3*g3^3*g4^3) + (g3^15*t^7.49)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.93)/(g1^5*g3^5) + (g2^13*g3^7*g4*t^7.94)/g1^5 + (3*g2^10*g3^4*g4^4*t^7.94)/g1^2 + 2*g1*g2^7*g3*g4^7*t^7.94 + (g2^13*g3*g4^7*t^7.94)/g1^5 + (3*g1^4*g2^4*g4^10*t^7.94)/g3^2 + (2*g2^10*g4^10*t^7.94)/(g1^2*g3^2) + (g1^7*g2*g4^13*t^7.94)/g3^5 + (g1*g2^7*g4^13*t^7.94)/g3^5 + (2*g1^4*g2^4*g3^10*t^7.95)/g4^2 + (2*g2^10*g3^10*t^7.95)/(g1^2*g4^2) + g1*g2^7*g3^7*g4*t^7.95 + (2*g1^10*g3^4*g4^4*t^7.95)/g2^2 + 5*g1^4*g2^4*g3^4*g4^4*t^7.95 + g1^7*g2*g3*g4^7*t^7.95 + (2*g1^10*g4^10*t^7.95)/(g2^2*g3^2) + (g1^10*g3^10*t^7.96)/(g2^2*g4^2) + (g2^7*g4^7*t^8.01)/(g1^11*g3^11) - (3*g2*g4*t^8.02)/(g1^5*g3^5) + (2*g2^4*g4^4*t^8.02)/(g1^8*g3^8) - (g3^4*t^8.03)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.03)/(g2^5*g4^5) - (g1^4*t^8.03)/(g2^8*g3^2*g4^2) - t^8.03/(g1^2*g2^2*g3^2*g4^2) + (g2^4*g4^4*t^8.09)/(g1^20*g3^20) + t^8.1/(g1^11*g2^5*g3^11*g4^5) + (g1^5*g2^17*g3^5*t^8.41)/g4 + (2*g1^11*g2^11*g4^5*t^8.41)/g3 + (g1^5*g2^17*g4^5*t^8.41)/g3 + (2*g2^5*g3^11*g4^11*t^8.41)/g1 + (g1^5*g3^5*g4^17*t^8.41)/g2 + (g2^5*g3^5*g4^17*t^8.41)/g1 + (g1^17*g2^5*g3^5*t^8.42)/g4 + (2*g1^11*g2^11*g3^5*t^8.42)/g4 + (g1^17*g2^5*g4^5*t^8.42)/g3 + (g1^5*g3^17*g4^5*t^8.42)/g2 + (g2^5*g3^17*g4^5*t^8.42)/g1 + (2*g1^5*g3^11*g4^11*t^8.42)/g2 - (g2^11*t^8.49)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.49)/(g3^4*g4^4) - (g1^5*g2^5*t^8.49)/(g3^7*g4) - (g3^5*g4^5*t^8.49)/(g1^7*g2) + (g3^2*g4^8*t^8.49)/(g1^4*g2^4) - (g4^11*t^8.49)/(g1*g2^7*g3) - (g1^11*t^8.5)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.5)/(g3*g4^7) + (g1^8*g2^2*t^8.5)/(g3^4*g4^4) - (g1^11*t^8.5)/(g2*g3^7*g4) - (g3^11*t^8.5)/(g1*g2^7*g4) - (g3^11*t^8.5)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.5)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.5)/(g1*g2^7) + g2^18*g3^12*g4^6*t^8.87 + 2*g1^6*g2^12*g3^6*g4^12*t^8.87 + g2^18*g3^6*g4^12*t^8.87 + g1^12*g2^6*g4^18*t^8.87 + g1^6*g2^12*g4^18*t^8.87 + g2^18*g4^18*t^8.87 + g1^6*g2^12*g3^18*t^8.88 + g2^18*g3^18*t^8.88 + 2*g1^12*g2^6*g3^12*g4^6*t^8.88 + 2*g1^6*g2^12*g3^12*g4^6*t^8.88 + g1^18*g3^6*g4^12*t^8.88 + 2*g1^12*g2^6*g3^6*g4^12*t^8.88 + g1^18*g4^18*t^8.88 + g1^18*g3^18*t^8.89 + g1^12*g2^6*g3^18*t^8.89 + g1^18*g3^12*g4^6*t^8.89 + (g2^12*g4^6*t^8.95)/g1^6 + (3*g2^9*g4^9*t^8.95)/(g1^3*g3^3) + (g2^6*g4^12*t^8.95)/g3^6 + (g2^12*g4^12*t^8.95)/(g1^6*g3^6) - 6*g1^6*g3^6*t^8.96 - 5*g2^6*g3^6*t^8.96 - (g2^6*g3^12*t^8.96)/g4^6 + (2*g1^3*g2^3*g3^9*t^8.96)/g4^3 + (2*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + (2*g1^9*g3^3*g4^3*t^8.96)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.96 + (4*g2^9*g3^3*g4^3*t^8.96)/g1^3 - 5*g1^6*g4^6*t^8.96 - (g1^12*g4^6*t^8.96)/g2^6 - 3*g2^6*g4^6*t^8.96 + (2*g1^9*g4^9*t^8.96)/(g2^3*g3^3) + (4*g1^3*g2^3*g4^9*t^8.96)/g3^3 - (g1^12*g3^6*t^8.97)/g2^6 - (g1^6*g3^12*t^8.97)/g4^6 + (g1^9*g3^9*t^8.97)/(g2^3*g4^3) - t^4.01/(g1*g2*g3*g4*y) - t^5.03/(g1^2*g2^2*g3^2*g4^2*y) - t^6.04/(g1^6*g3^6*y) - (g2^5*g3^5*t^6.97)/(g1*g4*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g4^5*t^6.97)/(g1*g3*y) - (g1^5*g3^5*t^6.98)/(g2*g4*y) - t^7.05/(g1^4*g2^4*g3^4*g4^4*y) - t^7.05/(g1^7*g2*g3^7*g4*y) + (g2^7*g3*g4*t^7.98)/(g1^5*y) - (g2^4*g4^4*t^7.98)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.98)/(g3^5*y) + (g2^7*g4^7*t^7.98)/(g1^5*g3^5*y) - (g2^4*g3^4*t^7.99)/(g1^2*g4^2*y) + (g1*g2*g3*g4*t^7.99)/y - (g1^4*g4^4*t^7.99)/(g2^2*g3^2*y) + t^8.06/(g1^8*g2^2*g3^8*g4^2*y) - (g2*g4*t^8.06)/(g1^11*g3^11*y) - t^8.07/(g1^5*g2^5*g3^5*g4^5*y) + (g2^12*g3^6*g4^6*t^8.91)/y + (g1^6*g2^6*g4^12*t^8.91)/y + (g1^6*g2^6*g3^12*t^8.92)/y + (g1^12*g3^6*g4^6*t^8.92)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.92)/y - (t^4.01*y)/(g1*g2*g3*g4) - (t^5.03*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.04*y)/(g1^6*g3^6) - (g2^5*g3^5*t^6.97*y)/(g1*g4) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g4^5*t^6.97*y)/(g1*g3) - (g1^5*g3^5*t^6.98*y)/(g2*g4) - (t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) - (t^7.05*y)/(g1^7*g2*g3^7*g4) + (g2^7*g3*g4*t^7.98*y)/g1^5 - (g2^4*g4^4*t^7.98*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.98*y)/g3^5 + (g2^7*g4^7*t^7.98*y)/(g1^5*g3^5) - (g2^4*g3^4*t^7.99*y)/(g1^2*g4^2) + g1*g2*g3*g4*t^7.99*y - (g1^4*g4^4*t^7.99*y)/(g2^2*g3^2) + (t^8.06*y)/(g1^8*g2^2*g3^8*g4^2) - (g2*g4*t^8.06*y)/(g1^11*g3^11) - (t^8.07*y)/(g1^5*g2^5*g3^5*g4^5) + g2^12*g3^6*g4^6*t^8.91*y + g1^6*g2^6*g4^12*t^8.91*y + g1^6*g2^6*g3^12*t^8.92*y + g1^12*g3^6*g4^6*t^8.92*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.92*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47874 SU3adj1nf2 $M_1\phi_1q_1\tilde{q}_1$ 1.4951 1.7264 0.866 [X:[], M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] t^2.02 + t^2.03 + 3*t^2.96 + t^2.97 + t^3.04 + 3*t^3.97 + t^4.04 + 2*t^4.05 + 5*t^4.98 + 7*t^4.99 + 2*t^5.06 + 2*t^5.45 + 2*t^5.46 + 7*t^5.92 + 3*t^5.93 + t^5.99 + t^6. - t^4.01/y - t^5.03/y - t^4.01*y - t^5.03*y detail