Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47879 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.4743 | 1.6855 | 0.8747 | [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] | [M:[[-5, 1, -5, 1], [2, 2, 2, 2]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^6.005 + t^6.066 + t^6.08 + 2*t^6.464 + 2*t^6.469 + t^6.924 + 5*t^6.928 + 7*t^6.933 + 3*t^6.938 + t^6.999 + 3*t^7.004 + 2*t^7.009 + t^7.013 - 2*t^7.018 + t^7.084 + 4*t^7.473 + 2*t^7.478 + 2*t^7.487 + t^7.932 + 4*t^7.937 + 10*t^7.942 + 11*t^7.946 + 4*t^7.951 + t^7.956 + t^8.012 + 2*t^8.017 - 3*t^8.022 - t^8.027 - t^8.032 + t^8.088 + t^8.102 + 2*t^8.406 + 6*t^8.411 + 6*t^8.415 + 2*t^8.42 - 2*t^8.491 - 4*t^8.496 - 2*t^8.5 + t^8.865 + 2*t^8.87 + 4*t^8.875 + 6*t^8.88 + 4*t^8.884 + 2*t^8.889 + t^8.894 + t^8.946 + 5*t^8.95 + 5*t^8.955 - t^8.96 - 4*t^8.965 - t^8.969 - t^4.013/y - t^5.027/y - t^6.035/y - t^6.968/y - (2*t^6.973)/y - t^6.978/y - t^7.049/y - t^7.054/y + t^7.977/y + t^7.982/y - t^7.987/y - t^8.057/y + t^8.062/y - t^8.067/y + (2*t^8.915)/y + (2*t^8.92)/y + (2*t^8.924)/y + t^8.995/y - t^4.013*y - t^5.027*y - t^6.035*y - t^6.968*y - 2*t^6.973*y - t^6.978*y - t^7.049*y - t^7.054*y + t^7.977*y + t^7.982*y - t^7.987*y - t^8.057*y + t^8.062*y - t^8.067*y + 2*t^8.915*y + 2*t^8.92*y + 2*t^8.924*y + t^8.995*y | (g2*g4*t^2.022)/(g1^5*g3^5) + g2^6*g4^6*t^2.955 + g2^6*g3^6*t^2.96 + g1^6*g4^6*t^2.96 + g1^6*g3^6*t^2.965 + t^3.04/(g1^3*g2^3*g3^3*g4^3) + (g2^5*g4^5*t^3.968)/(g1*g3) + (g2^5*g3^5*t^3.973)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.973 + (g1^5*g4^5*t^3.973)/(g2*g3) + (g2^2*g4^2*t^4.044)/(g1^10*g3^10) + (g2^7*g4^7*t^4.977)/(g1^5*g3^5) + (g2^7*g3*g4*t^4.982)/g1^5 + (g2^4*g4^4*t^4.982)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.982)/g3^5 + (g2^4*g3^4*t^4.987)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.987 + (g1^4*g4^4*t^4.987)/(g2^2*g3^2) + (g1^4*g3^4*t^4.991)/(g2^2*g4^2) + t^5.062/(g1^8*g2^2*g3^8*g4^2) + (g1^5*g2^11*t^5.451)/(g3*g4) + (g3^5*g4^11*t^5.451)/(g1*g2) + (g1^11*g2^5*t^5.456)/(g3*g4) + (g3^11*g4^5*t^5.456)/(g1*g2) + g2^12*g4^12*t^5.91 + g2^12*g3^6*g4^6*t^5.915 + g1^6*g2^6*g4^12*t^5.915 + g2^12*g3^12*t^5.92 + 2*g1^6*g2^6*g3^6*g4^6*t^5.92 + g1^12*g4^12*t^5.92 + g1^6*g2^6*g3^12*t^5.924 + g1^12*g3^6*g4^6*t^5.924 + g1^12*g3^12*t^5.929 + (g2^6*g4^6*t^5.99)/(g1^6*g3^6) + (2*g2^3*g4^3*t^5.995)/(g1^3*g3^3) - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) - (g1^6*t^6.005)/g2^6 - (g3^6*t^6.005)/g4^6 + (g1^3*g3^3*t^6.005)/(g2^3*g4^3) + (g2^3*g4^3*t^6.066)/(g1^15*g3^15) + t^6.08/(g1^6*g2^6*g3^6*g4^6) + (g1^4*g2^10*t^6.464)/(g3^2*g4^2) + (g3^4*g4^10*t^6.464)/(g1^2*g2^2) + (g1^10*g2^4*t^6.469)/(g3^2*g4^2) + (g3^10*g4^4*t^6.469)/(g1^2*g2^2) + (g2^11*g4^11*t^6.924)/(g1*g3) + (2*g2^11*g3^5*g4^5*t^6.928)/g1 + g1^2*g2^8*g3^2*g4^8*t^6.928 + (2*g1^5*g2^5*g4^11*t^6.928)/g3 + (g2^11*g3^11*t^6.933)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.933 + 3*g1^5*g2^5*g3^5*g4^5*t^6.933 + g1^8*g2^2*g3^2*g4^8*t^6.933 + (g1^11*g4^11*t^6.933)/(g2*g3) + (g1^5*g2^5*g3^11*t^6.938)/g4 + g1^8*g2^2*g3^8*g4^2*t^6.938 + (g1^11*g3^5*g4^5*t^6.938)/g2 + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (g2^8*g4^2*t^7.004)/(g1^10*g3^4) + (g2^5*g4^5*t^7.004)/(g1^7*g3^7) + (g2^2*g4^8*t^7.004)/(g1^4*g3^10) + (2*g2^2*g4^2*t^7.009)/(g1^4*g3^4) + (g2^2*g3^2*t^7.013)/(g1^4*g4^4) - t^7.013/(g1*g2*g3*g4) + (g1^2*g4^2*t^7.013)/(g2^4*g3^4) - (g3^5*t^7.018)/(g1*g2*g4^7) - (g1^5*t^7.018)/(g2^7*g3*g4) + t^7.084/(g1^13*g2*g3^13*g4) + (g2^12*t^7.473)/g3^6 + (g2^15*t^7.473)/(g1^3*g3^3*g4^3) + (g4^12*t^7.473)/g1^6 + (g4^15*t^7.473)/(g1^3*g2^3*g3^3) + (g1^3*g2^9*t^7.478)/(g3^3*g4^3) + (g3^3*g4^9*t^7.478)/(g1^3*g2^3) - (g1^6*g2^6*t^7.482)/g4^6 + (g1^9*g2^3*t^7.482)/(g3^3*g4^3) + (g3^9*g4^3*t^7.482)/(g1^3*g2^3) - (g3^6*g4^6*t^7.482)/g2^6 + (g1^15*t^7.487)/(g2^3*g3^3*g4^3) + (g3^15*t^7.487)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.932)/(g1^5*g3^5) + (g2^13*g3*g4^7*t^7.937)/g1^5 + (2*g2^10*g4^10*t^7.937)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.937)/g3^5 + (g2^13*g3^7*g4*t^7.942)/g1^5 + (3*g2^10*g3^4*g4^4*t^7.942)/g1^2 + 2*g1*g2^7*g3*g4^7*t^7.942 + (3*g1^4*g2^4*g4^10*t^7.942)/g3^2 + (g1^7*g2*g4^13*t^7.942)/g3^5 + (2*g2^10*g3^10*t^7.946)/(g1^2*g4^2) + g1*g2^7*g3^7*g4*t^7.946 + 5*g1^4*g2^4*g3^4*g4^4*t^7.946 + g1^7*g2*g3*g4^7*t^7.946 + (2*g1^10*g4^10*t^7.946)/(g2^2*g3^2) + (2*g1^4*g2^4*g3^10*t^7.951)/g4^2 + (2*g1^10*g3^4*g4^4*t^7.951)/g2^2 + (g1^10*g3^10*t^7.956)/(g2^2*g4^2) + (g2^7*g4^7*t^8.012)/(g1^11*g3^11) + (2*g2^4*g4^4*t^8.017)/(g1^8*g3^8) - (3*g2*g4*t^8.022)/(g1^5*g3^5) - t^8.027/(g1^2*g2^2*g3^2*g4^2) - (g3^4*t^8.032)/(g1^2*g2^2*g4^8) + (g1*g3*t^8.032)/(g2^5*g4^5) - (g1^4*t^8.032)/(g2^8*g3^2*g4^2) + (g2^4*g4^4*t^8.088)/(g1^20*g3^20) + t^8.102/(g1^11*g2^5*g3^11*g4^5) + (g1^5*g2^17*g4^5*t^8.406)/g3 + (g2^5*g3^5*g4^17*t^8.406)/g1 + (g1^5*g2^17*g3^5*t^8.411)/g4 + (2*g1^11*g2^11*g4^5*t^8.411)/g3 + (2*g2^5*g3^11*g4^11*t^8.411)/g1 + (g1^5*g3^5*g4^17*t^8.411)/g2 + (2*g1^11*g2^11*g3^5*t^8.415)/g4 + (g1^17*g2^5*g4^5*t^8.415)/g3 + (g2^5*g3^17*g4^5*t^8.415)/g1 + (2*g1^5*g3^11*g4^11*t^8.415)/g2 + (g1^17*g2^5*g3^5*t^8.42)/g4 + (g1^5*g3^17*g4^5*t^8.42)/g2 - (g2^11*t^8.491)/(g1*g3*g4^7) + (g1^2*g2^8*t^8.491)/(g3^4*g4^4) - (g1^5*g2^5*t^8.491)/(g3^7*g4) - (g3^5*g4^5*t^8.491)/(g1^7*g2) + (g3^2*g4^8*t^8.491)/(g1^4*g2^4) - (g4^11*t^8.491)/(g1*g2^7*g3) - (2*g1^5*g2^5*t^8.496)/(g3*g4^7) + (g1^8*g2^2*t^8.496)/(g3^4*g4^4) - (g1^11*t^8.496)/(g2*g3^7*g4) - (g3^11*t^8.496)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.496)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.496)/(g1*g2^7) - (g1^11*t^8.5)/(g2*g3*g4^7) - (g3^11*t^8.5)/(g1*g2^7*g4) + g2^18*g4^18*t^8.865 + g2^18*g3^6*g4^12*t^8.87 + g1^6*g2^12*g4^18*t^8.87 + g2^18*g3^12*g4^6*t^8.875 + 2*g1^6*g2^12*g3^6*g4^12*t^8.875 + g1^12*g2^6*g4^18*t^8.875 + g2^18*g3^18*t^8.88 + 2*g1^6*g2^12*g3^12*g4^6*t^8.88 + 2*g1^12*g2^6*g3^6*g4^12*t^8.88 + g1^18*g4^18*t^8.88 + g1^6*g2^12*g3^18*t^8.884 + 2*g1^12*g2^6*g3^12*g4^6*t^8.884 + g1^18*g3^6*g4^12*t^8.884 + g1^12*g2^6*g3^18*t^8.889 + g1^18*g3^12*g4^6*t^8.889 + g1^18*g3^18*t^8.894 + (g2^12*g4^12*t^8.946)/(g1^6*g3^6) + (g2^12*g4^6*t^8.95)/g1^6 + (3*g2^9*g4^9*t^8.95)/(g1^3*g3^3) + (g2^6*g4^12*t^8.95)/g3^6 + (4*g2^9*g3^3*g4^3*t^8.955)/g1^3 - 3*g2^6*g4^6*t^8.955 + (4*g1^3*g2^3*g4^9*t^8.955)/g3^3 - 5*g2^6*g3^6*t^8.96 + (2*g2^9*g3^9*t^8.96)/(g1^3*g4^3) + 5*g1^3*g2^3*g3^3*g4^3*t^8.96 - 5*g1^6*g4^6*t^8.96 + (2*g1^9*g4^9*t^8.96)/(g2^3*g3^3) - 6*g1^6*g3^6*t^8.965 - (g2^6*g3^12*t^8.965)/g4^6 + (2*g1^3*g2^3*g3^9*t^8.965)/g4^3 + (2*g1^9*g3^3*g4^3*t^8.965)/g2^3 - (g1^12*g4^6*t^8.965)/g2^6 - (g1^12*g3^6*t^8.969)/g2^6 - (g1^6*g3^12*t^8.969)/g4^6 + (g1^9*g3^9*t^8.969)/(g2^3*g4^3) - t^4.013/(g1*g2*g3*g4*y) - t^5.027/(g1^2*g2^2*g3^2*g4^2*y) - t^6.035/(g1^6*g3^6*y) - (g2^5*g4^5*t^6.968)/(g1*g3*y) - (g2^5*g3^5*t^6.973)/(g1*g4*y) - (g1^5*g4^5*t^6.973)/(g2*g3*y) - (g1^5*g3^5*t^6.978)/(g2*g4*y) - t^7.049/(g1^7*g2*g3^7*g4*y) - t^7.054/(g1^4*g2^4*g3^4*g4^4*y) + (g2^7*g4^7*t^7.977)/(g1^5*g3^5*y) + (g2^7*g3*g4*t^7.982)/(g1^5*y) - (g2^4*g4^4*t^7.982)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.982)/(g3^5*y) - (g2^4*g3^4*t^7.987)/(g1^2*g4^2*y) + (g1*g2*g3*g4*t^7.987)/y - (g1^4*g4^4*t^7.987)/(g2^2*g3^2*y) - (g2*g4*t^8.057)/(g1^11*g3^11*y) + t^8.062/(g1^8*g2^2*g3^8*g4^2*y) - t^8.067/(g1^5*g2^5*g3^5*g4^5*y) + (g2^12*g3^6*g4^6*t^8.915)/y + (g1^6*g2^6*g4^12*t^8.915)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.92)/y + (g1^6*g2^6*g3^12*t^8.924)/y + (g1^12*g3^6*g4^6*t^8.924)/y + (g2^3*g4^3*t^8.995)/(g1^3*g3^3*y) - (t^4.013*y)/(g1*g2*g3*g4) - (t^5.027*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.035*y)/(g1^6*g3^6) - (g2^5*g4^5*t^6.968*y)/(g1*g3) - (g2^5*g3^5*t^6.973*y)/(g1*g4) - (g1^5*g4^5*t^6.973*y)/(g2*g3) - (g1^5*g3^5*t^6.978*y)/(g2*g4) - (t^7.049*y)/(g1^7*g2*g3^7*g4) - (t^7.054*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^7.977*y)/(g1^5*g3^5) + (g2^7*g3*g4*t^7.982*y)/g1^5 - (g2^4*g4^4*t^7.982*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.982*y)/g3^5 - (g2^4*g3^4*t^7.987*y)/(g1^2*g4^2) + g1*g2*g3*g4*t^7.987*y - (g1^4*g4^4*t^7.987*y)/(g2^2*g3^2) - (g2*g4*t^8.057*y)/(g1^11*g3^11) + (t^8.062*y)/(g1^8*g2^2*g3^8*g4^2) - (t^8.067*y)/(g1^5*g2^5*g3^5*g4^5) + g2^12*g3^6*g4^6*t^8.915*y + g1^6*g2^6*g4^12*t^8.915*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.92*y + g1^6*g2^6*g3^12*t^8.924*y + g1^12*g3^6*g4^6*t^8.924*y + (g2^3*g4^3*t^8.995*y)/(g1^3*g3^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57309 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4951 | 1.7266 | 0.8659 | [M:[0.6736, 1.3249, 0.6736], q:[0.4937, 0.4937], qb:[0.4952, 0.4922], phi:[0.3376]] | 2*t^2.021 + 2*t^2.958 + 2*t^2.967 + t^3.038 + 2*t^3.97 + t^3.975 + 3*t^4.042 + 4*t^4.978 + 2*t^4.983 + 4*t^4.987 + 2*t^4.992 + 2*t^5.059 + t^5.451 + 2*t^5.456 + t^5.46 + 3*t^5.915 + 4*t^5.924 + 3*t^5.933 + 3*t^5.991 + 4*t^5.995 - 6*t^6. - t^4.013/y - t^5.025/y - t^4.013*y - t^5.025*y | detail | |
57310 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4951 | 1.7263 | 0.8661 | [M:[0.6749, 1.3251, 0.6749], q:[0.4938, 0.4938], qb:[0.4938, 0.4938], phi:[0.3375]] | 2*t^2.025 + 4*t^2.963 + t^3.037 + 3*t^3.975 + 3*t^4.049 + 12*t^4.988 + 2*t^5.062 + 4*t^5.457 + 10*t^5.926 + 2*t^6. - t^4.012/y - t^5.025/y - t^4.012*y - t^5.025*y | detail | |
57306 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4768 | 1.696 | 0.8707 | [M:[0.6885, 1.307, 0.9606], q:[0.4825, 0.478], qb:[0.4825, 0.478], phi:[0.3465]] | t^2.065 + t^2.868 + 3*t^2.882 + t^2.895 + t^3.908 + 3*t^3.921 + t^4.131 + t^4.934 + 4*t^4.947 + 3*t^4.961 + t^4.974 + 2*t^5.355 + 2*t^5.369 + t^5.736 + 3*t^5.75 + 7*t^5.763 + 3*t^5.777 + t^5.79 + t^5.973 + t^5.986 - 4*t^6. - t^4.039/y - t^5.079/y - t^4.039*y - t^5.079*y | detail | |
57292 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1.4741 | 1.6832 | 0.8758 | [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] | t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y | detail | |
57296 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4741 | 1.6841 | 0.8753 | [M:[0.6709, 1.3282], q:[0.4927, 0.4995], qb:[0.5005, 0.4918], phi:[0.3359]] | t^2.013 + t^2.954 + t^2.974 + t^2.98 + t^3. + t^3.023 + t^3.961 + t^3.982 + t^3.985 + t^4.008 + t^4.025 + t^4.966 + t^4.969 + t^4.987 + t^4.989 + t^4.992 + t^4.995 + t^5.013 + t^5.015 + t^5.036 + t^5.46 + t^5.463 + t^5.483 + t^5.486 + t^5.907 + t^5.928 + t^5.933 + t^5.948 + 2*t^5.954 + t^5.959 + t^5.974 + t^5.977 + t^5.994 + 2*t^5.997 - 3*t^6. - t^4.008/y - t^5.015/y - t^4.008*y - t^5.015*y | detail | |
57293 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4741 | 1.6834 | 0.8757 | [M:[0.6772, 1.3291], q:[0.4937, 0.5], qb:[0.4937, 0.5], phi:[0.3354]] | t^2.032 + t^2.962 + 2*t^2.981 + t^3. + t^3.019 + 3*t^3.987 + t^4.006 + t^4.063 + t^4.975 + 3*t^4.994 + 3*t^5.013 + t^5.032 + t^5.051 + 2*t^5.468 + 2*t^5.487 + t^5.924 + 2*t^5.943 + 4*t^5.962 + t^5.981 - t^6. - t^4.006/y - t^5.013/y - t^4.006*y - t^5.013*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47874 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4951 | 1.7264 | 0.866 | [M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] | t^2.021 + t^2.025 + t^2.958 + 2*t^2.962 + t^2.967 + t^3.038 + t^3.971 + 2*t^3.975 + t^4.041 + t^4.046 + t^4.05 + t^4.979 + 4*t^4.983 + 5*t^4.987 + 2*t^4.992 + t^5.058 + t^5.063 + 2*t^5.454 + 2*t^5.458 + t^5.916 + 2*t^5.92 + 4*t^5.925 + 2*t^5.929 + t^5.934 + t^5.991 + 2*t^5.996 - t^4.013/y - t^5.025/y - t^4.013*y - t^5.025*y | detail |