Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57897 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | 1.474 | 1.6826 | 0.876 | [X:[], M:[0.6738, 1.3315], q:[0.496, 0.5013], qb:[0.496, 0.5013], phi:[0.3342]] | [X:[], M:[[-8, 8], [2, -2]], q:[[3, -9], [-3, -3]], qb:[[6, 0], [0, 6]], phi:[[-1, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 0 | t^2.02 + t^2.98 + 2*t^2.99 + 2*t^3.01 + 3*t^3.99 + t^4.01 + t^4.04 + t^4.98 + 3*t^5. + 3*t^5.01 + 2*t^5.03 + 2*t^5.48 + 2*t^5.5 + t^5.95 + 2*t^5.97 + 3*t^5.98 + 4*t^6.02 + t^6.03 + t^6.06 + 2*t^6.49 + 2*t^6.5 + 3*t^6.97 + 5*t^6.99 + 6*t^7. + 3*t^7.02 + 3*t^7.04 + 2*t^7.05 + 2*t^7.47 + 2*t^7.5 + 4*t^7.52 + t^7.96 + 4*t^7.97 + 10*t^7.99 + 9*t^8.01 + t^8.02 + 4*t^8.04 + t^8.05 + t^8.09 + 2*t^8.46 + 4*t^8.47 + 2*t^8.49 + t^8.93 + 2*t^8.94 + 3*t^8.96 + 2*t^8.98 + 3*t^8.99 - t^4./y - t^5.01/y - t^6.02/y - t^6.98/y - (2*t^6.99)/y - (2*t^7.01)/y - t^7.03/y - t^8./y + (2*t^8.03)/y - t^8.05/y + (2*t^8.97)/y + (3*t^8.98)/y - t^4.*y - t^5.01*y - t^6.02*y - t^6.98*y - 2*t^6.99*y - 2*t^7.01*y - t^7.03*y - t^8.*y + 2*t^8.03*y - t^8.05*y + 2*t^8.97*y + 3*t^8.98*y | (g2^8*t^2.02)/g1^8 + (g1^9*t^2.98)/g2^9 + (2*g1^3*t^2.99)/g2^3 + (2*g2^3*t^3.01)/g1^3 + (3*g1^2*t^3.99)/g2^2 + (g2^4*t^4.01)/g1^4 + (g2^16*t^4.04)/g1^16 + (g1^7*t^4.98)/g2^7 + (3*g1*t^5.)/g2 + (3*g2^5*t^5.01)/g1^5 + (2*g2^11*t^5.03)/g1^11 + (g1^2*t^5.48)/g2^20 + g1^11*g2^7*t^5.48 + t^5.5/(g1^4*g2^14) + g1^5*g2^13*t^5.5 + (g1^18*t^5.95)/g2^18 + (2*g1^12*t^5.97)/g2^12 + (3*g1^6*t^5.98)/g2^6 + (4*g2^6*t^6.02)/g1^6 + (g2^12*t^6.03)/g1^12 + (g2^24*t^6.06)/g1^24 + (g1*t^6.49)/g2^19 + g1^10*g2^8*t^6.49 + t^6.5/(g1^5*g2^13) + g1^4*g2^14*t^6.5 + (3*g1^11*t^6.97)/g2^11 + (5*g1^5*t^6.99)/g2^5 + (6*g2*t^7.)/g1 + (3*g2^7*t^7.02)/g1^7 + (3*g2^13*t^7.04)/g1^13 + (2*g2^19*t^7.05)/g1^19 + (g1^6*t^7.47)/g2^24 + g1^15*g2^3*t^7.47 + t^7.5/(g1^6*g2^12) + g1^3*g2^15*t^7.5 + (2*t^7.52)/(g1^12*g2^6) + (2*g2^21*t^7.52)/g1^3 + (g1^16*t^7.96)/g2^16 + (4*g1^10*t^7.97)/g2^10 + (10*g1^4*t^7.99)/g2^4 + (9*g2^2*t^8.01)/g1^2 + (g2^8*t^8.02)/g1^8 + (4*g2^14*t^8.04)/g1^14 + (g2^20*t^8.05)/g1^20 + (g2^32*t^8.09)/g1^32 + (g1^11*t^8.46)/g2^29 + (g1^20*t^8.46)/g2^2 + (2*g1^5*t^8.47)/g2^23 + 2*g1^14*g2^4*t^8.47 + t^8.49/(g1*g2^17) + g1^8*g2^10*t^8.49 + (g1^27*t^8.93)/g2^27 + (2*g1^21*t^8.94)/g2^21 + (3*g1^15*t^8.96)/g2^15 + (2*g1^9*t^8.98)/g2^9 + (3*g1^3*t^8.99)/g2^3 - (g2*t^4.)/(g1*y) - (g2^2*t^5.01)/(g1^2*y) - (g2^9*t^6.02)/(g1^9*y) - (g1^8*t^6.98)/(g2^8*y) - (2*g1^2*t^6.99)/(g2^2*y) - (2*g2^4*t^7.01)/(g1^4*y) - (g2^10*t^7.03)/(g1^10*y) - (g1*t^8.)/(g2*y) + (2*g2^11*t^8.03)/(g1^11*y) - (g2^17*t^8.05)/(g1^17*y) + (2*g1^12*t^8.97)/(g2^12*y) + (3*g1^6*t^8.98)/(g2^6*y) - (g2*t^4.*y)/g1 - (g2^2*t^5.01*y)/g1^2 - (g2^9*t^6.02*y)/g1^9 - (g1^8*t^6.98*y)/g2^8 - (2*g1^2*t^6.99*y)/g2^2 - (2*g2^4*t^7.01*y)/g1^4 - (g2^10*t^7.03*y)/g1^10 - (g1*t^8.*y)/g2 + (2*g2^11*t^8.03*y)/g1^11 - (g2^17*t^8.05*y)/g1^17 + (2*g1^12*t^8.97*y)/g2^12 + (3*g1^6*t^8.98*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57292 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1.4741 | 1.6832 | 0.8758 | [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] | t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y | detail |