Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57900 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ | 1.4949 | 1.7242 | 0.867 | [X:[], M:[0.6735, 1.3306, 0.6735], q:[0.4939, 0.5021], qb:[0.4979, 0.4979], phi:[0.3347]] | [X:[], M:[[-5, -11, 1], [2, 2, 2], [-5, 1, -11]], q:[[6, 0, 0], [0, -6, -6]], qb:[[0, 12, 0], [0, 0, 12]], phi:[[-1, -1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | ${}q_{2}^{2}\tilde{q}_{2}^{2}$ | -3 | 2*t^2.02 + 2*t^2.98 + 2*t^3. + t^3.01 + t^3.99 + 2*t^4. + 3*t^4.04 + 2*t^4.98 + 4*t^5. + 2*t^5.01 + 4*t^5.02 + 2*t^5.03 + t^5.47 + 2*t^5.49 + t^5.5 + 3*t^5.95 + 3*t^5.98 + 2*t^5.99 - 3*t^6. + 4*t^6.01 + 4*t^6.02 + 4*t^6.06 + t^6.48 + 2*t^6.49 + t^6.5 + 2*t^6.97 + 3*t^6.98 + 2*t^6.99 + 4*t^7. + 8*t^7.02 + 3*t^7.03 + 6*t^7.04 + 3*t^7.05 + t^7.46 + 4*t^7.49 + 4*t^7.51 + 2*t^7.52 + t^7.53 + 4*t^7.96 + 4*t^7.97 + 7*t^7.98 + 8*t^8. + 7*t^8.01 - 4*t^8.02 + 6*t^8.03 + 6*t^8.04 + 5*t^8.08 + 2*t^8.45 + 4*t^8.46 + 2*t^8.47 + t^8.49 + 2*t^8.5 + t^8.51 + 4*t^8.93 + 4*t^8.95 + 3*t^8.96 - 8*t^8.98 + 10*t^8.99 - t^4./y - t^5.01/y - (2*t^6.02)/y - (2*t^6.98)/y - (2*t^7.)/y - t^7.02/y - (2*t^7.03)/y + t^7.04/y + (4*t^8.)/y - (2*t^8.01)/y + (3*t^8.02)/y + (2*t^8.03)/y - (3*t^8.04)/y + t^8.95/y + (4*t^8.98)/y + (2*t^8.99)/y - t^4.*y - t^5.01*y - 2*t^6.02*y - 2*t^6.98*y - 2*t^7.*y - t^7.02*y - 2*t^7.03*y + t^7.04*y + 4*t^8.*y - 2*t^8.01*y + 3*t^8.02*y + 2*t^8.03*y - 3*t^8.04*y + t^8.95*y + 4*t^8.98*y + 2*t^8.99*y | (g2*t^2.02)/(g1^5*g3^11) + (g3*t^2.02)/(g1^5*g2^11) + g1^6*g2^12*t^2.98 + g1^6*g3^12*t^2.98 + (g2^6*t^3.)/g3^6 + (g3^6*t^3.)/g2^6 + t^3.01/(g1^3*g2^3*g3^3) + g1^2*g2^2*g3^2*t^3.99 + (g2^5*t^4.)/(g1*g3^7) + (g3^5*t^4.)/(g1*g2^7) + (g2^2*t^4.04)/(g1^10*g3^22) + t^4.04/(g1^10*g2^10*g3^10) + (g3^2*t^4.04)/(g1^10*g2^22) + (g1^4*g2^10*t^4.98)/g3^2 + (g1^4*g3^10*t^4.98)/g2^2 + (g1*g2^13*t^5.)/g3^11 + 2*g1*g2*g3*t^5. + (g1*g3^13*t^5.)/g2^11 + (g2^4*t^5.01)/(g1^2*g3^8) + (g3^4*t^5.01)/(g1^2*g2^8) + (g2^7*t^5.02)/(g1^5*g3^17) + (2*t^5.02)/(g1^5*g2^5*g3^5) + (g3^7*t^5.02)/(g1^5*g2^17) + t^5.03/(g1^8*g2^2*g3^14) + t^5.03/(g1^8*g2^14*g3^2) + (g1^11*t^5.47)/(g2^7*g3^7) + (g2^23*g3^11*t^5.49)/g1 + (g2^11*g3^23*t^5.49)/g1 + (g1^5*t^5.5)/(g2^13*g3^13) + g1^12*g2^24*t^5.95 + g1^12*g2^12*g3^12*t^5.95 + g1^12*g3^24*t^5.95 + (g1^6*g2^18*t^5.98)/g3^6 + g1^6*g2^6*g3^6*t^5.98 + (g1^6*g3^18*t^5.98)/g2^6 + (g1^3*g2^9*t^5.99)/g3^3 + (g1^3*g3^9*t^5.99)/g2^3 - 3*t^6. + (2*g2^3*t^6.01)/(g1^3*g3^9) + (2*g3^3*t^6.01)/(g1^3*g2^9) + (g2^6*t^6.02)/(g1^6*g3^18) + (2*t^6.02)/(g1^6*g2^6*g3^6) + (g3^6*t^6.02)/(g1^6*g2^18) + (g2^3*t^6.06)/(g1^15*g3^33) + t^6.06/(g1^15*g2^9*g3^21) + t^6.06/(g1^15*g2^21*g3^9) + (g3^3*t^6.06)/(g1^15*g2^33) + (g1^10*t^6.48)/(g2^8*g3^8) + (g2^22*g3^10*t^6.49)/g1^2 + (g2^10*g3^22*t^6.49)/g1^2 + (g1^4*t^6.5)/(g2^14*g3^14) + g1^8*g2^14*g3^2*t^6.97 + g1^8*g2^2*g3^14*t^6.97 + (g1^5*g2^17*t^6.98)/g3^7 + g1^5*g2^5*g3^5*t^6.98 + (g1^5*g3^17*t^6.98)/g2^7 + (g1^2*g2^8*t^6.99)/g3^4 + (g1^2*g3^8*t^6.99)/g2^4 + (g2^11*t^7.)/(g1*g3^13) + (2*t^7.)/(g1*g2*g3) + (g3^11*t^7.)/(g1*g2^13) + (g2^14*t^7.02)/(g1^4*g3^22) + (3*g2^2*t^7.02)/(g1^4*g3^10) + (3*g3^2*t^7.02)/(g1^4*g2^10) + (g3^14*t^7.02)/(g1^4*g2^22) + (g2^5*t^7.03)/(g1^7*g3^19) + t^7.03/(g1^7*g2^7*g3^7) + (g3^5*t^7.03)/(g1^7*g2^19) + (g2^8*t^7.04)/(g1^10*g3^28) + (2*t^7.04)/(g1^10*g2^4*g3^16) + (2*t^7.04)/(g1^10*g2^16*g3^4) + (g3^8*t^7.04)/(g1^10*g2^28) + t^7.05/(g1^13*g2*g3^25) + t^7.05/(g1^13*g2^13*g3^13) + t^7.05/(g1^13*g2^25*g3) + (g1^15*t^7.46)/(g2^3*g3^3) + (g1^9*t^7.48)/(g2^9*g3^9) - g2^18*g3^18*t^7.48 + (g2^33*t^7.49)/(g1^3*g3^3) + (g2^21*g3^9*t^7.49)/g1^3 + (g2^9*g3^21*t^7.49)/g1^3 + (g3^33*t^7.49)/(g1^3*g2^3) + (g2^24*t^7.51)/g1^6 + (g1^3*t^7.51)/(g2^15*g3^15) + (g2^12*g3^12*t^7.51)/g1^6 + (g3^24*t^7.51)/g1^6 + t^7.52/(g2^12*g3^24) + t^7.52/(g2^24*g3^12) + t^7.53/(g1^3*g2^21*g3^21) + (g1^10*g2^22*t^7.96)/g3^2 + 2*g1^10*g2^10*g3^10*t^7.96 + (g1^10*g3^22*t^7.96)/g2^2 + (g1^7*g2^25*t^7.97)/g3^11 + g1^7*g2^13*g3*t^7.97 + g1^7*g2*g3^13*t^7.97 + (g1^7*g3^25*t^7.97)/g2^11 + (2*g1^4*g2^16*t^7.98)/g3^8 + 3*g1^4*g2^4*g3^4*t^7.98 + (2*g1^4*g3^16*t^7.98)/g2^8 + (g1*g2^19*t^8.)/g3^17 + (3*g1*g2^7*t^8.)/g3^5 + (3*g1*g3^7*t^8.)/g2^5 + (g1*g3^19*t^8.)/g2^17 + (2*g2^10*t^8.01)/(g1^2*g3^14) + (3*t^8.01)/(g1^2*g2^2*g3^2) + (2*g3^10*t^8.01)/(g1^2*g2^14) - (2*g2*t^8.02)/(g1^5*g3^11) - (2*g3*t^8.02)/(g1^5*g2^11) + (2*g2^4*t^8.03)/(g1^8*g3^20) + (2*t^8.03)/(g1^8*g2^8*g3^8) + (2*g3^4*t^8.03)/(g1^8*g2^20) + (g2^7*t^8.04)/(g1^11*g3^29) + (2*t^8.04)/(g1^11*g2^5*g3^17) + (2*t^8.04)/(g1^11*g2^17*g3^5) + (g3^7*t^8.04)/(g1^11*g2^29) + (g2^4*t^8.08)/(g1^20*g3^44) + t^8.08/(g1^20*g2^8*g3^32) + t^8.08/(g1^20*g2^20*g3^20) + t^8.08/(g1^20*g2^32*g3^8) + (g3^4*t^8.08)/(g1^20*g2^44) + (g1^17*g2^5*t^8.45)/g3^7 + (g1^17*g3^5*t^8.45)/g2^7 + g1^5*g2^35*g3^11*t^8.46 + 2*g1^5*g2^23*g3^23*t^8.46 + g1^5*g2^11*g3^35*t^8.46 + (g1^11*t^8.47)/(g2*g3^13) + (g1^11*t^8.47)/(g2^13*g3) + (g1^8*t^8.49)/(g2^10*g3^10) + (g2^20*g3^8*t^8.5)/g1^4 + (g2^8*g3^20*t^8.5)/g1^4 + (g1^2*t^8.51)/(g2^16*g3^16) + g1^18*g2^36*t^8.93 + g1^18*g2^24*g3^12*t^8.93 + g1^18*g2^12*g3^24*t^8.93 + g1^18*g3^36*t^8.93 + (g1^12*g2^30*t^8.95)/g3^6 + g1^12*g2^18*g3^6*t^8.95 + g1^12*g2^6*g3^18*t^8.95 + (g1^12*g3^30*t^8.95)/g2^6 + (g1^9*g2^21*t^8.96)/g3^3 + g1^9*g2^9*g3^9*t^8.96 + (g1^9*g3^21*t^8.96)/g2^3 - 4*g1^6*g2^12*t^8.98 - 4*g1^6*g3^12*t^8.98 + (3*g1^3*g2^15*t^8.99)/g3^9 + 4*g1^3*g2^3*g3^3*t^8.99 + (3*g1^3*g3^15*t^8.99)/g2^9 - t^4./(g1*g2*g3*y) - t^5.01/(g1^2*g2^2*g3^2*y) - t^6.02/(g1^6*g2^12*y) - t^6.02/(g1^6*g3^12*y) - (g1^5*g2^11*t^6.98)/(g3*y) - (g1^5*g3^11*t^6.98)/(g2*y) - (g2^5*t^7.)/(g1*g3^7*y) - (g3^5*t^7.)/(g1*g2^7*y) - t^7.02/(g1^4*g2^4*g3^4*y) - t^7.03/(g1^7*g2*g3^13*y) - t^7.03/(g1^7*g2^13*g3*y) + t^7.04/(g1^10*g2^10*g3^10*y) + (g1*g2^13*t^8.)/(g3^11*y) + (2*g1*g2*g3*t^8.)/y + (g1*g3^13*t^8.)/(g2^11*y) - (g2^4*t^8.01)/(g1^2*g3^8*y) - (g3^4*t^8.01)/(g1^2*g2^8*y) + (g2^7*t^8.02)/(g1^5*g3^17*y) + t^8.02/(g1^5*g2^5*g3^5*y) + (g3^7*t^8.02)/(g1^5*g2^17*y) + t^8.03/(g1^8*g2^2*g3^14*y) + t^8.03/(g1^8*g2^14*g3^2*y) - (g2*t^8.04)/(g1^11*g3^23*y) - t^8.04/(g1^11*g2^11*g3^11*y) - (g3*t^8.04)/(g1^11*g2^23*y) + (g1^12*g2^12*g3^12*t^8.95)/y + (g1^6*g2^18*t^8.98)/(g3^6*y) + (2*g1^6*g2^6*g3^6*t^8.98)/y + (g1^6*g3^18*t^8.98)/(g2^6*y) + (g1^3*g2^9*t^8.99)/(g3^3*y) + (g1^3*g3^9*t^8.99)/(g2^3*y) - (t^4.*y)/(g1*g2*g3) - (t^5.01*y)/(g1^2*g2^2*g3^2) - (t^6.02*y)/(g1^6*g2^12) - (t^6.02*y)/(g1^6*g3^12) - (g1^5*g2^11*t^6.98*y)/g3 - (g1^5*g3^11*t^6.98*y)/g2 - (g2^5*t^7.*y)/(g1*g3^7) - (g3^5*t^7.*y)/(g1*g2^7) - (t^7.02*y)/(g1^4*g2^4*g3^4) - (t^7.03*y)/(g1^7*g2*g3^13) - (t^7.03*y)/(g1^7*g2^13*g3) + (t^7.04*y)/(g1^10*g2^10*g3^10) + (g1*g2^13*t^8.*y)/g3^11 + 2*g1*g2*g3*t^8.*y + (g1*g3^13*t^8.*y)/g2^11 - (g2^4*t^8.01*y)/(g1^2*g3^8) - (g3^4*t^8.01*y)/(g1^2*g2^8) + (g2^7*t^8.02*y)/(g1^5*g3^17) + (t^8.02*y)/(g1^5*g2^5*g3^5) + (g3^7*t^8.02*y)/(g1^5*g2^17) + (t^8.03*y)/(g1^8*g2^2*g3^14) + (t^8.03*y)/(g1^8*g2^14*g3^2) - (g2*t^8.04*y)/(g1^11*g3^23) - (t^8.04*y)/(g1^11*g2^11*g3^11) - (g3*t^8.04*y)/(g1^11*g2^23) + g1^12*g2^12*g3^12*t^8.95*y + (g1^6*g2^18*t^8.98*y)/g3^6 + 2*g1^6*g2^6*g3^6*t^8.98*y + (g1^6*g3^18*t^8.98*y)/g2^6 + (g1^3*g2^9*t^8.99*y)/g3^3 + (g1^3*g3^9*t^8.99*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61024 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}^{3}$ | 1.4957 | 1.7261 | 0.8665 | [X:[], M:[0.6871, 1.3252, 0.6871, 0.9878], q:[0.4817, 0.5062], qb:[0.4938, 0.4938], phi:[0.3374]] | 2*t^2.06 + 2*t^2.93 + t^2.96 + 2*t^3. + t^3.98 + 2*t^4.01 + 3*t^4.12 + 2*t^4.95 + 4*t^4.99 + 4*t^5.02 + 4*t^5.06 + t^5.42 + 2*t^5.46 + t^5.49 + 3*t^5.85 + 2*t^5.89 + 4*t^5.93 + 2*t^5.96 - 3*t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57292 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1.4741 | 1.6832 | 0.8758 | [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] | t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y | detail |