Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57899 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.475 1.6864 0.8746 [X:[], M:[0.6882, 1.3238, 0.9857], q:[0.4787, 0.5072], qb:[0.495, 0.4905], phi:[0.3381]] [X:[], M:[[-5, -11, 1], [2, 2, 2], [3, 3, 3]], q:[[6, 0, 0], [0, -6, -6]], qb:[[0, 12, 0], [0, 0, 12]], phi:[[-1, -1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ ${}$ -3 t^2.06 + t^2.91 + t^2.92 + t^2.96 + t^2.99 + t^3.01 + t^3.92 + t^3.97 + t^4.01 + t^4.02 + t^4.13 + t^4.94 + t^4.95 + t^4.97 + t^4.99 + 2*t^5.02 + t^5.04 + t^5.06 + t^5.07 + t^5.41 + t^5.44 + t^5.46 + t^5.49 + t^5.81 + t^5.83 + t^5.84 + t^5.86 + t^5.88 + t^5.9 + 2*t^5.91 + t^5.93 + t^5.95 + t^5.96 + t^5.99 - 3*t^6. + t^6.04 + t^6.07 + t^6.19 + t^6.42 + t^6.46 + t^6.47 + t^6.51 + t^6.83 + t^6.84 + 2*t^6.88 + t^6.89 + 2*t^6.91 + 3*t^6.93 + t^6.94 + 2*t^6.96 + 2*t^6.98 + t^7. + t^7.04 + t^7.05 + 2*t^7.09 + t^7.12 + t^7.14 + t^7.35 - t^7.43 + t^7.44 + t^7.46 + t^7.47 + t^7.48 - t^7.49 + t^7.5 + t^7.51 + t^7.52 + t^7.56 + t^7.61 + 2*t^7.84 + 2*t^7.86 + t^7.87 + t^7.88 + 2*t^7.89 + t^7.91 + 4*t^7.93 + 5*t^7.94 + 2*t^7.96 + t^7.97 + 3*t^7.98 + 2*t^7.99 + 2*t^8.01 + 2*t^8.03 + t^8.04 + t^8.05 - 3*t^8.06 + t^8.1 - t^8.11 + t^8.14 + t^8.26 + t^8.32 + t^8.33 + t^8.35 + 2*t^8.36 + t^8.37 + t^8.38 + 2*t^8.4 + 2*t^8.41 + t^8.45 - t^8.5 - t^8.53 - t^8.55 - t^8.59 + t^8.72 + t^8.74 + t^8.75 + t^8.76 + t^8.77 + t^8.79 + t^8.8 + t^8.81 + 2*t^8.82 + 2*t^8.84 + t^8.85 + 2*t^8.86 + 3*t^8.87 + 2*t^8.89 - 2*t^8.91 - 3*t^8.92 + 4*t^8.94 + t^8.97 + 2*t^8.98 - t^8.99 - t^4.01/y - t^5.03/y - t^6.08/y - t^6.92/y - t^6.94/y - t^6.97/y - t^7.01/y - t^7.02/y - t^7.09/y - t^7.94/y + t^7.97/y - t^8.04/y + t^8.06/y + t^8.07/y - t^8.14/y + t^8.83/y + t^8.86/y + t^8.88/y + t^8.9/y + (2*t^8.91)/y + t^8.93/y + t^8.96/y - t^4.01*y - t^5.03*y - t^6.08*y - t^6.92*y - t^6.94*y - t^6.97*y - t^7.01*y - t^7.02*y - t^7.09*y - t^7.94*y + t^7.97*y - t^8.04*y + t^8.06*y + t^8.07*y - t^8.14*y + t^8.83*y + t^8.86*y + t^8.88*y + t^8.9*y + 2*t^8.91*y + t^8.93*y + t^8.96*y (g3*t^2.06)/(g1^5*g2^11) + g1^6*g3^12*t^2.91 + g1^6*g2^12*t^2.92 + g1^3*g2^3*g3^3*t^2.96 + (g3^6*t^2.99)/g2^6 + (g2^6*t^3.01)/g3^6 + (g1^5*g3^11*t^3.92)/g2 + g1^2*g2^2*g3^2*t^3.97 + (g3^5*t^4.01)/(g1*g2^7) + (g2^5*t^4.02)/(g1*g3^7) + (g3^2*t^4.13)/(g1^10*g2^22) + (g1^4*g3^10*t^4.94)/g2^2 + (g1^4*g2^10*t^4.95)/g3^2 + (g1*g3^13*t^4.97)/g2^11 + g1*g2*g3*t^4.99 + (2*g3^4*t^5.02)/(g1^2*g2^8) + (g2^4*t^5.04)/(g1^2*g3^8) + (g3^7*t^5.06)/(g1^5*g2^17) + t^5.07/(g1^5*g2^5*g3^5) + (g1^11*t^5.41)/(g2^7*g3^7) + (g2^11*g3^23*t^5.44)/g1 + (g2^23*g3^11*t^5.46)/g1 + (g1^5*t^5.49)/(g2^13*g3^13) + g1^12*g3^24*t^5.81 + g1^12*g2^12*g3^12*t^5.83 + g1^12*g2^24*t^5.84 + g1^9*g2^3*g3^15*t^5.86 + g1^9*g2^15*g3^3*t^5.88 + (g1^6*g3^18*t^5.9)/g2^6 + 2*g1^6*g2^6*g3^6*t^5.91 + (g1^6*g2^18*t^5.93)/g3^6 + (g1^3*g3^9*t^5.95)/g2^3 + (g1^3*g2^9*t^5.96)/g3^3 + (g3^12*t^5.99)/g2^12 - 3*t^6. + (g3^3*t^6.04)/(g1^3*g2^9) + (g3^6*t^6.07)/(g1^6*g2^18) + (g3^3*t^6.19)/(g1^15*g2^33) + (g1^10*t^6.42)/(g2^8*g3^8) + (g2^10*g3^22*t^6.46)/g1^2 + (g2^22*g3^10*t^6.47)/g1^2 + (g1^4*t^6.51)/(g2^14*g3^14) + (g1^11*g3^23*t^6.83)/g2 + g1^11*g2^11*g3^11*t^6.84 + 2*g1^8*g2^2*g3^14*t^6.88 + g1^8*g2^14*g3^2*t^6.89 + (2*g1^5*g3^17*t^6.91)/g2^7 + 3*g1^5*g2^5*g3^5*t^6.93 + (g1^5*g2^17*t^6.94)/g3^7 + (2*g1^2*g3^8*t^6.96)/g2^4 + (2*g1^2*g2^8*t^6.98)/g3^4 + (g3^11*t^7.)/(g1*g2^13) + (g3^14*t^7.04)/(g1^4*g2^22) + (g3^2*t^7.05)/(g1^4*g2^10) + (2*g3^5*t^7.09)/(g1^7*g2^19) + (g3^8*t^7.12)/(g1^10*g2^28) + t^7.14/(g1^10*g2^16*g3^4) + (g1^15*t^7.35)/(g2^3*g3^3) - g2^18*g3^18*t^7.43 + (g1^9*t^7.44)/(g2^9*g3^9) + (g3^33*t^7.46)/(g1^3*g2^3) + (g2^9*g3^21*t^7.47)/g1^3 + (g2^21*g3^9*t^7.48)/g1^3 - (g1^6*t^7.49)/(g2^6*g3^18) + (g2^33*t^7.5)/(g1^3*g3^3) + (g3^24*t^7.51)/g1^6 + (g1^3*t^7.52)/(g2^15*g3^15) + t^7.56/(g2^24*g3^12) + t^7.61/(g1^3*g2^21*g3^21) + (2*g1^10*g3^22*t^7.84)/g2^2 + 2*g1^10*g2^10*g3^10*t^7.86 + (g1^10*g2^22*t^7.87)/g3^2 + (g1^7*g3^25*t^7.88)/g2^11 + 2*g1^7*g2*g3^13*t^7.89 + g1^7*g2^13*g3*t^7.91 + (4*g1^4*g3^16*t^7.93)/g2^8 + 5*g1^4*g2^4*g3^4*t^7.94 + (2*g1^4*g2^16*t^7.96)/g3^8 + (g1*g3^19*t^7.97)/g2^17 + (3*g1*g3^7*t^7.98)/g2^5 + (2*g1*g2^7*t^7.99)/g3^5 + (2*g3^10*t^8.01)/(g1^2*g2^14) + (2*t^8.03)/(g1^2*g2^2*g3^2) + (g2^10*t^8.04)/(g1^2*g3^14) + (g3^13*t^8.05)/(g1^5*g2^23) - (3*g3*t^8.06)/(g1^5*g2^11) + (g3^4*t^8.1)/(g1^8*g2^20) - t^8.11/(g1^8*g2^8*g3^8) + (g3^7*t^8.14)/(g1^11*g2^29) + (g3^4*t^8.26)/(g1^20*g2^44) + (g1^17*g3^5*t^8.32)/g2^7 + (g1^17*g2^5*t^8.33)/g3^7 + g1^5*g2^11*g3^35*t^8.35 + 2*g1^5*g2^23*g3^23*t^8.36 + (g1^14*t^8.37)/(g2^4*g3^4) + g1^5*g2^35*g3^11*t^8.38 + (g1^11*t^8.4)/(g2^13*g3) + g1^2*g2^14*g3^26*t^8.4 + (g1^11*t^8.41)/(g2*g3^13) + g1^2*g2^26*g3^14*t^8.41 + (g1^8*t^8.45)/(g2^10*g3^10) - (g1^5*t^8.5)/(g2^7*g3^19) - (g2^11*g3^11*t^8.53)/g1^7 - (g2^23*t^8.55)/(g1^7*g3) - t^8.59/(g1*g2^13*g3^25) + g1^18*g3^36*t^8.72 + g1^18*g2^12*g3^24*t^8.74 + g1^18*g2^24*g3^12*t^8.75 + g1^18*g2^36*t^8.76 + g1^15*g2^3*g3^27*t^8.77 + g1^15*g2^15*g3^15*t^8.79 + g1^15*g2^27*g3^3*t^8.8 + (g1^12*g3^30*t^8.81)/g2^6 + 2*g1^12*g2^6*g3^18*t^8.82 + 2*g1^12*g2^18*g3^6*t^8.84 + (g1^12*g2^30*t^8.85)/g3^6 + (2*g1^9*g3^21*t^8.86)/g2^3 + 3*g1^9*g2^9*g3^9*t^8.87 + (g1^9*g2^21*t^8.89)/g3^3 + (g1^6*g3^24*t^8.89)/g2^12 - 2*g1^6*g3^12*t^8.91 - 3*g1^6*g2^12*t^8.92 + (4*g1^3*g3^15*t^8.94)/g2^9 + (g1^3*g2^15*t^8.97)/g3^9 + (2*g3^18*t^8.98)/g2^18 - (g3^6*t^8.99)/g2^6 - t^4.01/(g1*g2*g3*y) - t^5.03/(g1^2*g2^2*g3^2*y) - t^6.08/(g1^6*g2^12*y) - (g1^5*g3^11*t^6.92)/(g2*y) - (g1^5*g2^11*t^6.94)/(g3*y) - (g1^2*g2^2*g3^2*t^6.97)/y - (g3^5*t^7.01)/(g1*g2^7*y) - (g2^5*t^7.02)/(g1*g3^7*y) - t^7.09/(g1^7*g2^13*g3*y) - (g1^4*g3^10*t^7.94)/(g2^2*y) + (g1*g3^13*t^7.97)/(g2^11*y) - (g2^4*t^8.04)/(g1^2*g3^8*y) + (g3^7*t^8.06)/(g1^5*g2^17*y) + t^8.07/(g1^5*g2^5*g3^5*y) - (g3*t^8.14)/(g1^11*g2^23*y) + (g1^12*g2^12*g3^12*t^8.83)/y + (g1^9*g2^3*g3^15*t^8.86)/y + (g1^9*g2^15*g3^3*t^8.88)/y + (g1^6*g3^18*t^8.9)/(g2^6*y) + (2*g1^6*g2^6*g3^6*t^8.91)/y + (g1^6*g2^18*t^8.93)/(g3^6*y) + (g1^3*g2^9*t^8.96)/(g3^3*y) - (t^4.01*y)/(g1*g2*g3) - (t^5.03*y)/(g1^2*g2^2*g3^2) - (t^6.08*y)/(g1^6*g2^12) - (g1^5*g3^11*t^6.92*y)/g2 - (g1^5*g2^11*t^6.94*y)/g3 - g1^2*g2^2*g3^2*t^6.97*y - (g3^5*t^7.01*y)/(g1*g2^7) - (g2^5*t^7.02*y)/(g1*g3^7) - (t^7.09*y)/(g1^7*g2^13*g3) - (g1^4*g3^10*t^7.94*y)/g2^2 + (g1*g3^13*t^7.97*y)/g2^11 - (g2^4*t^8.04*y)/(g1^2*g3^8) + (g3^7*t^8.06*y)/(g1^5*g2^17) + (t^8.07*y)/(g1^5*g2^5*g3^5) - (g3*t^8.14*y)/(g1^11*g2^23) + g1^12*g2^12*g3^12*t^8.83*y + g1^9*g2^3*g3^15*t^8.86*y + g1^9*g2^15*g3^3*t^8.88*y + (g1^6*g3^18*t^8.9*y)/g2^6 + 2*g1^6*g2^6*g3^6*t^8.91*y + (g1^6*g2^18*t^8.93*y)/g3^6 + (g1^3*g2^9*t^8.96*y)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57292 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.4741 1.6832 0.8758 [M:[0.6739, 1.3301], q:[0.4928, 0.5024], qb:[0.4984, 0.4968], phi:[0.3349]] t^2.022 + t^2.969 + t^2.974 + t^2.998 + t^3.002 + t^3.014 + t^3.974 + t^3.99 + t^4.002 + t^4.007 + t^4.043 + t^4.978 + t^4.983 + t^4.99 + t^4.995 + t^5.007 + t^5.012 + t^5.019 + t^5.024 + t^5.036 + t^5.469 + t^5.481 + t^5.485 + t^5.498 + t^5.938 + t^5.942 + t^5.947 + t^5.967 + t^5.971 + t^5.976 + t^5.983 + t^5.988 + t^5.995 - 3*t^6. - t^4.005/y - t^5.01/y - t^4.005*y - t^5.01*y detail