Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57286 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6818 | 0.8775 | [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] | [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -5]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. + 2*t^6.001 + t^6.096 + t^6.097 + t^6.098 + t^6.099 + t^6.193 + t^6.194 + 2*t^6.492 + t^6.589 + t^6.59 + t^6.887 + 2*t^6.983 + 3*t^6.984 + t^6.985 + 2*t^7.08 + 6*t^7.081 + t^7.082 + t^7.083 + t^7.177 + 3*t^7.178 + t^7.179 + t^7.378 + t^7.38 + 2*t^7.573 + t^7.669 + 2*t^7.67 + t^7.671 + 2*t^7.773 + 3*t^7.87 + t^7.871 + 4*t^7.967 + t^7.968 + 2*t^7.969 + 4*t^8.065 + 3*t^8.066 + t^8.161 + 4*t^8.162 + 3*t^8.163 + t^8.258 + 2*t^8.259 - t^8.459 + t^8.46 + 2*t^8.557 + 2*t^8.558 + t^8.563 + t^8.653 + t^8.654 + 2*t^8.655 + 2*t^8.66 + 2*t^8.757 + t^8.758 - t^8.854 + 2*t^8.855 + t^8.951 - t^8.952 + t^8.953 + t^8.951/y^2 - t^3.984/y - t^4.967/y - t^6.048/y - t^6.838/y - t^6.935/y - t^6.936/y - (2*t^7.032)/y - t^7.033/y - t^7.822/y + t^8.016/y - t^8.017/y + t^8.114/y + t^8.805/y + t^8.806/y + t^8.903/y + t^8.904/y - t^8.999/y - t^3.984*y - t^4.967*y - t^6.048*y - t^6.838*y - t^6.935*y - t^6.936*y - 2*t^7.032*y - t^7.033*y - t^7.822*y + t^8.016*y - t^8.017*y + t^8.114*y + t^8.805*y + t^8.806*y + t^8.903*y + t^8.904*y - t^8.999*y + t^8.951*y^2 | (g1*g2*t^2.064)/g3^5 + t^2.854/(g1*g2) + t^2.951/g3^3 + (g3^6*t^2.952)/(g1*g2) + (g1*g2*t^3.048)/g3^6 + (g3^12*t^3.049)/(g1*g2) + (g1*g2*t^4.032)/g3^7 + g3^2*t^4.033 + (g3^11*t^4.033)/(g1*g2) + (g1^2*g2^2*t^4.129)/g3^10 + (g1*g2*t^4.13)/g3 + t^4.919/g3^5 + (g3^4*t^4.919)/(g1*g2) + (2*g1*g2*t^5.016)/g3^8 + g3*t^5.016 + (g3^10*t^5.017)/(g1*g2) + (g1^2*g2^2*t^5.113)/g3^11 + (g1*g2*t^5.113)/g3^2 + g3^7*t^5.114 + (g2^3*t^5.508)/g3^13 + (g3^23*t^5.509)/(g1*g2^4) + (g1*g3^11*t^5.605)/g2^2 + (g2^3*t^5.606)/g3^7 + t^5.708/(g1^2*g2^2) + t^5.805/(g1*g2*g3^3) + (g3^6*t^5.806)/(g1^2*g2^2) + t^5.902/g3^6 + (g3^3*t^5.903)/(g1*g2) + (g3^12*t^5.904)/(g1^2*g2^2) + (g1*g2*t^5.999)/g3^9 - 3*t^6. + (g3^9*t^6.001)/(g1*g2) + (g3^18*t^6.001)/(g1^2*g2^2) + (g1^2*g2^2*t^6.096)/g3^12 + (g1*g2*t^6.097)/g3^3 + g3^6*t^6.098 + (g3^24*t^6.099)/(g1^2*g2^2) + (g1^3*g2^3*t^6.193)/g3^15 + (g1^2*g2^2*t^6.194)/g3^6 + (g2^3*t^6.492)/g3^14 + (g3^22*t^6.492)/(g1*g2^4) + (g1*g3^10*t^6.589)/g2^2 + (g2^3*t^6.59)/g3^8 + (g3^2*t^6.887)/(g1*g2) + (2*g1*g2*t^6.983)/g3^10 + t^6.984/g3 + (2*g3^8*t^6.984)/(g1*g2) + (g3^17*t^6.985)/(g1^2*g2^2) + (2*g1^2*g2^2*t^7.08)/g3^13 + (3*g1*g2*t^7.081)/g3^4 + 3*g3^5*t^7.081 + (g3^14*t^7.082)/(g1*g2) + (g3^23*t^7.083)/(g1^2*g2^2) + (g1^3*g2^3*t^7.177)/g3^16 + (2*g1^2*g2^2*t^7.178)/g3^7 + g1*g2*g3^2*t^7.178 + g3^11*t^7.179 + (g2^3*t^7.378)/g3^21 + (g3^33*t^7.38)/(g1^3*g2^6) + (g2^3*t^7.476)/g3^15 - (g2^2*t^7.476)/(g1*g3^6) - (g3^12*t^7.476)/g2^3 + (g3^21*t^7.476)/(g1*g2^4) + (g2^3*t^7.573)/g3^9 + (g1*g3^9*t^7.573)/g2^2 + (g1^3*t^7.669)/g3^3 + (g1*g2^4*t^7.67)/g3^12 + (g1^2*g3^6*t^7.67)/g2 + (g2^3*t^7.671)/g3^3 + t^7.773/(g1*g2*g3^5) + (g3^4*t^7.773)/(g1^2*g2^2) + t^7.87/g3^8 + (2*g3*t^7.87)/(g1*g2) + (g3^10*t^7.871)/(g1^2*g2^2) + (2*g1*g2*t^7.967)/g3^11 + (2*t^7.967)/g3^2 + (g3^7*t^7.968)/(g1*g2) + (2*g3^16*t^7.969)/(g1^2*g2^2) + (2*g1^2*g2^2*t^8.064)/g3^14 - (2*g1*g2*t^8.064)/g3^5 + 4*g3^4*t^8.065 + (g3^13*t^8.066)/(g1*g2) + (2*g3^22*t^8.066)/(g1^2*g2^2) + (g1^3*g2^3*t^8.161)/g3^17 + (3*g1^2*g2^2*t^8.162)/g3^8 + g1*g2*g3*t^8.162 + 2*g3^10*t^8.163 + (g3^19*t^8.163)/(g1*g2) + (g1^4*g2^4*t^8.258)/g3^20 + (g1^3*g2^3*t^8.259)/g3^11 + (g1^2*g2^2*t^8.259)/g3^2 - (g1*g2^4*t^8.459)/g3^25 + (g2^3*t^8.459)/g3^16 - (g3^11*t^8.459)/g2^3 + (g3^20*t^8.46)/(g1*g2^4) - (g1^2*t^8.556)/(g2*g3) + (g1*g3^8*t^8.556)/g2^2 + (g2^3*t^8.557)/g3^10 + (g3^17*t^8.557)/g2^3 + (g2^2*t^8.558)/(g1*g3) + (g3^35*t^8.558)/(g1^2*g2^5) + t^8.563/(g1^3*g2^3) + (g1^2*g3^5*t^8.653)/g2 + (g1*g2^4*t^8.654)/g3^13 + (g2^2*g3^5*t^8.655)/g1 + (g3^23*t^8.655)/g2^3 + t^8.66/(g1^2*g2^2*g3^3) + (g3^6*t^8.66)/(g1^3*g2^3) + t^8.757/(g1*g2*g3^6) + (g3^3*t^8.757)/(g1^2*g2^2) + (g3^12*t^8.758)/(g1^3*g2^3) - (2*t^8.854)/(g1*g2) + t^8.854/g3^9 + (g3^9*t^8.855)/(g1^2*g2^2) + (g3^18*t^8.855)/(g1^3*g2^3) + (g1*g2*t^8.951)/g3^12 - (3*g3^6*t^8.952)/(g1*g2) + (2*g3^15*t^8.952)/(g1^2*g2^2) + (g3^24*t^8.953)/(g1^3*g2^3) + t^8.951/(g3^3*y^2) - t^3.984/(g3*y) - t^4.967/(g3^2*y) - (g1*g2*t^6.048)/(g3^6*y) - t^6.838/(g1*g2*g3*y) - t^6.935/(g3^4*y) - (g3^5*t^6.936)/(g1*g2*y) - (2*g1*g2*t^7.032)/(g3^7*y) - (g3^11*t^7.033)/(g1*g2*y) - t^7.822/(g1*g2*g3^2*y) + (g3*t^8.016)/y - (g3^10*t^8.017)/(g1*g2*y) + (g3^7*t^8.114)/y + t^8.805/(g1*g2*g3^3*y) + (g3^6*t^8.806)/(g1^2*g2^2*y) + (g3^3*t^8.903)/(g1*g2*y) + (g3^12*t^8.904)/(g1^2*g2^2*y) - (g1*g2*t^8.999)/(g3^9*y) - (t^3.984*y)/g3 - (t^4.967*y)/g3^2 - (g1*g2*t^6.048*y)/g3^6 - (t^6.838*y)/(g1*g2*g3) - (t^6.935*y)/g3^4 - (g3^5*t^6.936*y)/(g1*g2) - (2*g1*g2*t^7.032*y)/g3^7 - (g3^11*t^7.033*y)/(g1*g2) - (t^7.822*y)/(g1*g2*g3^2) + g3*t^8.016*y - (g3^10*t^8.017*y)/(g1*g2) + g3^7*t^8.114*y + (t^8.805*y)/(g1*g2*g3^3) + (g3^6*t^8.806*y)/(g1^2*g2^2) + (g3^3*t^8.903*y)/(g1*g2) + (g3^12*t^8.904*y)/(g1^2*g2^2) - (g1*g2*t^8.999*y)/g3^9 + (t^8.951*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57800 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4741 | 1.6828 | 0.876 | [X:[1.3317], M:[0.9976, 0.6731], q:[0.4915, 0.5061], qb:[0.5012, 0.4963], phi:[0.3341]] | t^2.02 + t^2.96 + t^2.98 + t^2.99 + t^3.01 + t^3.02 + t^3.97 + t^4. + t^4.01 + t^4.02 + t^4.04 + t^4.97 + 2*t^4.98 + t^5. + 2*t^5.01 + 2*t^5.03 + t^5.04 + t^5.47 + t^5.48 + t^5.5 + t^5.51 + t^5.93 + t^5.94 + t^5.96 + 2*t^5.97 + 3*t^5.99 - 2*t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail | |
57803 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.4751 | 1.681 | 0.8775 | [X:[1.3445], M:[0.9664, 0.6723], q:[0.5083, 0.5083], qb:[0.4917, 0.5253], phi:[0.3277]] | t^2.02 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + 2*t^4.08 + t^4.92 + 3*t^4.97 + 2*t^5.02 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. - t^3.98/y - t^4.97/y - t^6./y - t^3.98*y - t^4.97*y - t^6.*y | detail | |
57793 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ | 1.2212 | 1.4138 | 0.8638 | [X:[1.2791, 1.4417], M:[0.8834, 0.9187], q:[0.2132, 0.7715], qb:[0.5077, 0.3451], phi:[0.3604]] | t^2.16 + t^2.65 + 2*t^2.76 + t^3.24 + 3*t^3.84 + 2*t^4.33 + t^4.43 + 2*t^4.67 + t^4.81 + 3*t^4.92 + 2*t^5.16 + t^5.3 + 2*t^5.41 + 3*t^5.51 + 2*t^5.76 + t^5.89 + 2*t^6. - t^4.08/y - t^5.16/y - t^4.08*y - t^5.16*y | detail | |
57795 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.411 | 1.5985 | 0.8827 | [X:[1.4286], M:[0.7143, 0.7143], q:[0.5595, 0.5595], qb:[0.4405, 0.7262], phi:[0.2857]] | 2*t^2.14 + t^2.57 + 2*t^3. + 2*t^3.86 + 4*t^4.29 + 6*t^4.71 + 4*t^5.14 + 4*t^5.57 + t^5.68 + 2*t^5.89 - t^3.86/y - t^4.71/y - (2*t^6.)/y - t^3.86*y - t^4.71*y - 2*t^6.*y | detail | {a: 61947/43904, c: 70179/43904, X1: 10/7, M1: 5/7, M2: 5/7, q1: 47/84, q2: 47/84, qb1: 37/84, qb2: 61/84, phi1: 2/7} |
57794 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4164 | 1.6206 | 0.874 | [X:[1.3524], M:[0.7809, 0.8381], q:[0.3655, 0.6893], qb:[0.4726, 0.5298], phi:[0.3238]] | t^2.34 + 2*t^2.51 + t^2.69 + t^2.91 + t^3.49 + t^3.66 + t^4.06 + 2*t^4.46 + 2*t^4.63 + t^4.69 + 2*t^4.86 + 3*t^5.03 + 2*t^5.2 + t^5.23 + t^5.26 + t^5.37 + t^5.4 + 3*t^5.43 + t^5.57 + 2*t^5.6 + t^5.83 - 2*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y | detail | |
57790 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{1}X_{2}$ | 1.2158 | 1.3838 | 0.8785 | [X:[1.3851, 1.4629], M:[0.5371, 1.0], q:[0.2794, 0.8942], qb:[0.4132, 0.5686], phi:[0.3074]] | t^2.08 + t^2.54 + t^2.77 + t^3. + t^3.47 + 2*t^3.92 + t^4.16 + 2*t^4.39 + t^4.62 + 2*t^4.84 + t^5.09 + t^5.11 + 2*t^5.28 + 2*t^5.31 + 2*t^5.54 + t^5.57 + 2*t^5.77 - 2*t^6. - t^3.92/y - t^4.84/y - t^6./y - t^3.92*y - t^4.84*y - t^6.*y | detail | |
57805 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4749 | 1.6821 | 0.8768 | [X:[1.3368], M:[0.9731, 0.6849, 1.0052], q:[0.4862, 0.5192], qb:[0.4973, 0.5077], phi:[0.3316]] | t^2.05 + t^2.92 + t^2.95 + t^2.98 + t^3.02 + t^3.05 + t^3.98 + t^4.01 + t^4.04 + t^4.08 + t^4.11 + t^4.94 + 2*t^4.97 + t^5.01 + 2*t^5.04 + 2*t^5.07 + t^5.1 + t^5.47 + t^5.5 + t^5.53 + t^5.57 + t^5.84 + t^5.87 + t^5.9 + 2*t^5.93 + t^5.96 + t^5.97 - 2*t^6. - t^3.99/y - t^4.99/y - t^3.99*y - t^4.99*y | detail | |
57806 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 1.4751 | 1.6811 | 0.8775 | [X:[1.3446], M:[0.9671, 0.6715, 0.9993], q:[0.509, 0.5075], qb:[0.4917, 0.5254], phi:[0.3277]] | t^2.01 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + t^4.08 + t^4.09 + t^4.92 + 2*t^4.96 + t^4.97 + 2*t^5.01 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. - t^3.98/y - t^4.97/y - t^6./y - t^3.98*y - t^4.97*y - t^6.*y | detail | |
57808 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.4803 | 1.6879 | 0.877 | [X:[1.3589], M:[0.9247, 0.6782, 0.9222], q:[0.5196, 0.5171], qb:[0.4816, 0.5582], phi:[0.3206]] | t^2.03 + 2*t^2.77 + t^2.89 + 2*t^3. + t^3.96 + t^4.07 + t^4.08 + t^4.19 + t^4.2 + t^4.8 + t^4.81 + 2*t^4.92 + t^4.93 + t^5.03 + t^5.04 + t^5.15 + t^5.16 + 2*t^5.53 + t^5.54 + t^5.55 + t^5.62 + t^5.63 + t^5.65 + t^5.66 + 2*t^5.76 + 2*t^5.77 + t^5.78 + t^5.88 + t^5.89 + t^5.99 - 3*t^6. - t^3.96/y - t^4.92/y - t^6./y - t^3.96*y - t^4.92*y - t^6.*y | detail | |
57799 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.469 | 1.673 | 0.878 | [X:[1.353], M:[0.9049, 0.7127], q:[0.5105, 0.583], qb:[0.4532, 0.5121], phi:[0.3235]] | t^2.14 + t^2.71 + t^2.89 + t^2.91 + t^3.07 + t^3.11 + t^4.04 + t^4.06 + t^4.08 + t^4.26 + t^4.28 + t^4.83 + t^4.85 + t^5.01 + t^5.03 + 2*t^5.05 + t^5.21 + 2*t^5.23 + t^5.25 + t^5.4 + t^5.43 + t^5.61 + t^5.63 + 2*t^5.78 + t^5.8 + t^5.82 + t^5.96 + t^5.98 - 2*t^6. - t^3.97/y - t^4.94/y - t^3.97*y - t^4.94*y | detail | |
57797 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4652 | 1.6684 | 0.8782 | [X:[1.3565], M:[0.9395, 0.6693], q:[0.5654, 0.5475], qb:[0.4436, 0.513], phi:[0.3218]] | t^2.01 + t^2.82 + t^2.9 + t^2.97 + t^3.03 + t^3.24 + t^3.94 + t^4.02 + t^4.07 + t^4.15 + t^4.2 + t^4.83 + 2*t^4.9 + t^4.96 + t^4.98 + t^5.03 + t^5.11 + 2*t^5.17 + t^5.24 + t^5.37 + t^5.64 + t^5.71 + t^5.79 + t^5.85 + t^5.87 + t^5.92 + 2*t^5.95 - 2*t^6. - t^3.97/y - t^4.93/y - t^5.97/y - t^3.97*y - t^4.93*y - t^5.97*y | detail | |
57798 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.4702 | 1.6727 | 0.8789 | [X:[1.3599], M:[0.9063, 0.6939], q:[0.4792, 0.5071], qb:[0.5068, 0.5866], phi:[0.32]] | t^2.08 + t^2.72 + t^2.88 + t^2.96 + t^3.04 + t^3.2 + t^4. + t^4.08 + 2*t^4.16 + t^4.24 + t^4.8 + t^4.88 + 2*t^4.96 + t^5.04 + 2*t^5.12 + t^5.2 + t^5.28 + t^5.36 + 2*t^5.44 + t^5.6 + t^5.68 + 2*t^5.76 + t^5.84 + 2*t^5.92 - 2*t^6. - t^3.96/y - t^4.92/y - t^3.96*y - t^4.92*y | detail | |
57796 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | 1.4612 | 1.6661 | 0.877 | [X:[1.3488], M:[0.9394, 0.6887], q:[0.443, 0.4716], qb:[0.5427, 0.589], phi:[0.3256]] | t^2.07 + t^2.82 + t^2.93 + t^2.96 + t^3.04 + t^3.1 + t^4.02 + t^4.05 + t^4.07 + t^4.13 + t^4.16 + t^4.88 + t^4.91 + 2*t^5. + t^5.02 + 2*t^5.05 + t^5.11 + 2*t^5.14 + t^5.16 + t^5.64 + t^5.75 + t^5.78 + t^5.86 + t^5.89 + t^5.91 + t^5.97 - 2*t^6. - t^3.98/y - t^4.95/y - t^3.98*y - t^4.95*y | detail | |
57802 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{6}$ | 1.4747 | 1.6831 | 0.8762 | [X:[1.3333], M:[0.9833, 0.6833], q:[0.4835, 0.5168], qb:[0.4999, 0.4999], phi:[0.3333]] | t^2.05 + 3*t^2.95 + t^3. + t^3.05 + t^3.95 + t^4. + 2*t^4.05 + t^4.1 + 2*t^4.95 + 3*t^5. + 3*t^5.05 + t^5.1 + t^5.45 + 2*t^5.5 + t^5.55 + 5*t^5.9 + 3*t^5.95 - t^6. - t^4./y - t^5./y - t^4.*y - t^5.*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47886 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4552 | 1.6417 | 0.8864 | [X:[1.3445], M:[0.9482], q:[0.49, 0.5268], qb:[0.4916, 0.525], phi:[0.3278]] | t^2.845 + t^2.945 + t^2.95 + t^3.045 + t^3.055 + t^3.928 + t^4.028 + t^4.033 + t^4.038 + t^4.139 + t^4.911 + t^5.012 + t^5.022 + t^5.122 + t^5.504 + t^5.508 + t^5.608 + t^5.614 + t^5.689 + t^5.789 + t^5.794 + t^5.89 + t^5.895 + t^5.9 + t^5.99 + t^5.995 - 3*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y | detail |