Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57808 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ | 1.4803 | 1.6879 | 0.877 | [X:[1.3589], M:[0.9247, 0.6782, 0.9222], q:[0.5196, 0.5171], qb:[0.4816, 0.5582], phi:[0.3206]] | [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -5], [1, 1, -12]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{6}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.03 + 2*t^2.77 + t^2.89 + 2*t^3. + t^3.96 + t^4.07 + t^4.08 + t^4.19 + t^4.2 + t^4.8 + t^4.81 + 2*t^4.92 + t^4.93 + t^5.03 + t^5.04 + t^5.15 + t^5.16 + 2*t^5.53 + t^5.54 + t^5.55 + t^5.62 + t^5.63 + t^5.65 + t^5.66 + 2*t^5.76 + 2*t^5.77 + t^5.78 + t^5.88 + t^5.89 + t^5.99 - 3*t^6. + t^6.1 + t^6.11 + t^6.22 + t^6.49 + 2*t^6.59 + 2*t^6.72 + 4*t^6.84 + t^6.85 + 3*t^6.95 + 2*t^6.96 + 4*t^7.07 + 2*t^7.08 + 2*t^7.18 + 2*t^7.19 + t^7.2 + t^7.22 - t^7.44 + t^7.45 + t^7.54 + 2*t^7.55 + t^7.56 + 2*t^7.58 + t^7.66 + t^7.68 + 4*t^7.69 + t^7.7 + t^7.79 + 4*t^7.8 + 2*t^7.81 + t^7.91 + 6*t^7.92 + t^7.93 - t^8.03 + t^8.14 + 5*t^8.15 + t^8.16 + t^8.26 + t^8.3 + 2*t^8.31 + t^8.32 + 2*t^8.38 + t^8.39 + t^8.41 + t^8.42 + 2*t^8.43 + t^8.51 + 2*t^8.52 + t^8.53 + 4*t^8.54 + t^8.55 + t^8.62 + t^8.63 + t^8.64 + t^8.65 + 3*t^8.66 + t^8.75 + t^8.76 - 4*t^8.77 + t^8.87 + 4*t^8.88 + 3*t^8.99 + t^8.89/y^2 - t^3.96/y - t^4.92/y - t^6./y - t^6.73/y - t^6.74/y - t^6.85/y - (2*t^6.96)/y - t^6.97/y - t^7.69/y - t^7.7/y + t^7.8/y + t^8.04/y + t^8.54/y + t^8.65/y + t^8.66/y + t^8.77/y + t^8.78/y - t^8.88/y + t^8.89/y - t^8.99/y - t^3.96*y - t^4.92*y - t^6.*y - t^6.73*y - t^6.74*y - t^6.85*y - 2*t^6.96*y - t^6.97*y - t^7.69*y - t^7.7*y + t^7.8*y + t^8.04*y + t^8.54*y + t^8.65*y + t^8.66*y + t^8.77*y + t^8.78*y - t^8.88*y + t^8.89*y - t^8.99*y + t^8.89*y^2 | (g1*g2*t^2.03)/g3^5 + t^2.77/(g1*g2) + (g1*g2*t^2.77)/g3^12 + t^2.89/g3^3 + (g1*g2*t^3.)/g3^6 + (g3^6*t^3.)/(g1*g2) + (g1*g2*t^3.96)/g3^7 + (g1^2*g2^2*t^4.07)/g3^10 + g3^2*t^4.08 + (g1*g2*t^4.19)/g3 + (g3^11*t^4.2)/(g1*g2) + (g1^2*g2^2*t^4.8)/g3^17 + t^4.81/g3^5 + (2*g1*g2*t^4.92)/g3^8 + (g3^4*t^4.93)/(g1*g2) + (g1^2*g2^2*t^5.03)/g3^11 + g3*t^5.04 + (g1*g2*t^5.15)/g3^2 + (g3^10*t^5.16)/(g1*g2) + (g1^2*g2^2*t^5.53)/g3^24 + (g2^3*t^5.53)/g3^13 + t^5.54/g3^12 + t^5.55/(g1^2*g2^2) + (g1*g3^11*t^5.62)/g2^2 + (g3^23*t^5.63)/(g1*g2^4) + (g1*g2*t^5.65)/g3^15 + t^5.66/(g1*g2*g3^3) + (g1^2*g2^2*t^5.76)/g3^18 + (g2^3*t^5.76)/g3^7 + (2*t^5.77)/g3^6 + (g3^6*t^5.78)/(g1^2*g2^2) + (g1*g2*t^5.88)/g3^9 + (g3^3*t^5.89)/(g1*g2) + (g1^2*g2^2*t^5.99)/g3^12 - 3*t^6. + (g1^3*g2^3*t^6.1)/g3^15 + (g1*g2*t^6.11)/g3^3 + (g1^2*g2^2*t^6.22)/g3^6 + (g2^3*t^6.49)/g3^14 + (g1*g3^10*t^6.59)/g2^2 + (g3^22*t^6.59)/(g1*g2^4) + (g1^2*g2^2*t^6.72)/g3^19 + (g2^3*t^6.72)/g3^8 + (g1^3*g2^3*t^6.84)/g3^22 + (3*g1*g2*t^6.84)/g3^10 + (g3^2*t^6.85)/(g1*g2) + (3*g1^2*g2^2*t^6.95)/g3^13 + (2*t^6.96)/g3 + (g1^3*g2^3*t^7.07)/g3^16 + (3*g1*g2*t^7.07)/g3^4 + (2*g3^8*t^7.08)/(g1*g2) + (2*g1^2*g2^2*t^7.18)/g3^7 + 2*g3^5*t^7.19 + (g3^17*t^7.2)/(g1^2*g2^2) + (g2^3*t^7.22)/g3^21 - (g3^12*t^7.44)/g2^3 + (g2^3*t^7.45)/g3^15 + (g1^3*t^7.54)/g3^3 + (g1*g3^9*t^7.55)/g2^2 + (g3^21*t^7.55)/(g1*g2^4) + (g3^33*t^7.56)/(g1^3*g2^6) + (g1^3*g2^3*t^7.57)/g3^29 - (g2^2*t^7.57)/(g1*g3^6) + (g1*g2*t^7.58)/g3^17 + t^7.58/(g1*g2*g3^5) + (g1^2*g3^6*t^7.66)/g2 + (g2^3*t^7.68)/g3^9 + (2*g1^2*g2^2*t^7.69)/g3^20 + (2*t^7.69)/g3^8 + (g3^4*t^7.7)/(g1^2*g2^2) + (g1*g2^4*t^7.79)/g3^12 + (g1^3*g2^3*t^7.8)/g3^23 + (3*g1*g2*t^7.8)/g3^11 + (2*g3*t^7.81)/(g1*g2) + (g2^3*t^7.91)/g3^3 + (3*g1^2*g2^2*t^7.92)/g3^14 + (3*t^7.92)/g3^2 + (g3^10*t^7.93)/(g1^2*g2^2) + (g1^3*g2^3*t^8.03)/g3^17 - (2*g1*g2*t^8.03)/g3^5 + (g1^4*g2^4*t^8.14)/g3^20 + (3*g1^2*g2^2*t^8.15)/g3^8 + 2*g3^4*t^8.15 + (g3^16*t^8.16)/(g1^2*g2^2) + (g1^3*g2^3*t^8.26)/g3^11 + (g1^3*g2^3*t^8.3)/g3^36 + (g1*g2*t^8.31)/g3^24 + t^8.31/(g1*g2*g3^12) + t^8.32/(g1^3*g2^3) + (g1^2*g2^2*t^8.38)/g3^2 + g3^10*t^8.38 + (g3^22*t^8.39)/(g1^2*g2^2) + (g2^3*t^8.41)/g3^16 + (g1^2*g2^2*t^8.42)/g3^27 + t^8.43/g3^15 + t^8.43/(g1^2*g2^2*g3^3) + (g1*g3^8*t^8.51)/g2^2 + (g1*g2^4*t^8.52)/g3^19 + (g3^20*t^8.52)/(g1*g2^4) + (g1^3*g2^3*t^8.53)/g3^30 + (2*g1*g2*t^8.54)/g3^18 + (2*t^8.54)/(g1*g2*g3^6) + (g3^6*t^8.55)/(g1^3*g2^3) + (g1^2*g3^5*t^8.62)/g2 + (g3^17*t^8.63)/g2^3 + (g2^3*t^8.64)/g3^10 + (g1^2*g2^2*t^8.65)/g3^21 + (2*t^8.66)/g3^9 + (g3^3*t^8.66)/(g1^2*g2^2) + (g1*g2^4*t^8.75)/g3^13 + (g1^3*g2^3*t^8.76)/g3^24 - (2*t^8.77)/(g1*g2) - (2*g1*g2*t^8.77)/g3^12 + (g1^4*g2^4*t^8.87)/g3^27 + (4*g1^2*g2^2*t^8.88)/g3^15 + (3*g1^3*g2^3*t^8.99)/g3^18 + t^8.89/(g3^3*y^2) - t^3.96/(g3*y) - t^4.92/(g3^2*y) - (g1*g2*t^6.)/(g3^6*y) - (g1*g2*t^6.73)/(g3^13*y) - t^6.74/(g1*g2*g3*y) - t^6.85/(g3^4*y) - (2*g1*g2*t^6.96)/(g3^7*y) - (g3^5*t^6.97)/(g1*g2*y) - (g1*g2*t^7.69)/(g3^14*y) - t^7.7/(g1*g2*g3^2*y) + (g1^2*g2^2*t^7.8)/(g3^17*y) + (g3*t^8.04)/y + t^8.54/(g3^12*y) + (g1*g2*t^8.65)/(g3^15*y) + t^8.66/(g1*g2*g3^3*y) + t^8.77/(g3^6*y) + (g3^6*t^8.78)/(g1^2*g2^2*y) - (g1*g2*t^8.88)/(g3^9*y) + (g3^3*t^8.89)/(g1*g2*y) - (g1^2*g2^2*t^8.99)/(g3^12*y) - (t^3.96*y)/g3 - (t^4.92*y)/g3^2 - (g1*g2*t^6.*y)/g3^6 - (g1*g2*t^6.73*y)/g3^13 - (t^6.74*y)/(g1*g2*g3) - (t^6.85*y)/g3^4 - (2*g1*g2*t^6.96*y)/g3^7 - (g3^5*t^6.97*y)/(g1*g2) - (g1*g2*t^7.69*y)/g3^14 - (t^7.7*y)/(g1*g2*g3^2) + (g1^2*g2^2*t^7.8*y)/g3^17 + g3*t^8.04*y + (t^8.54*y)/g3^12 + (g1*g2*t^8.65*y)/g3^15 + (t^8.66*y)/(g1*g2*g3^3) + (t^8.77*y)/g3^6 + (g3^6*t^8.78*y)/(g1^2*g2^2) - (g1*g2*t^8.88*y)/g3^9 + (g3^3*t^8.89*y)/(g1*g2) - (g1^2*g2^2*t^8.99*y)/g3^12 + (t^8.89*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57286 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6818 | 0.8775 | [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] | t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y | detail |