Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57806 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ | 1.4751 | 1.6811 | 0.8775 | [X:[1.3446], M:[0.9671, 0.6715, 0.9993], q:[0.509, 0.5075], qb:[0.4917, 0.5254], phi:[0.3277]] | [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -5], [1, 1, -6]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{6}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ | ${}M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$ | -1 | t^2.01 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + t^4.08 + t^4.09 + t^4.92 + 2*t^4.96 + t^4.97 + 2*t^5.01 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. + t^6.04 + 2*t^6.05 + 3*t^6.1 + t^6.21 + t^6.49 + 2*t^6.54 + t^6.59 + 3*t^6.93 + 3*t^6.98 + 5*t^7.03 + t^7.04 + 6*t^7.08 + t^7.13 + t^7.14 + 2*t^7.19 + t^7.38 - t^7.47 + t^7.48 + 2*t^7.52 + t^7.53 + t^7.57 + t^7.58 + t^7.63 + t^7.68 + t^7.82 + 2*t^7.87 + 3*t^7.91 + t^7.92 + 4*t^7.96 + t^7.97 + 5*t^8.06 + 5*t^8.07 + t^8.11 + 2*t^8.12 + t^8.16 + 4*t^8.17 + t^8.22 - t^8.41 - t^8.45 + t^8.5 + t^8.51 + 2*t^8.55 + t^8.56 + 2*t^8.61 + 2*t^8.66 + t^8.7 + t^8.71 + t^8.75 + 2*t^8.8 + 2*t^8.85 + 4*t^8.95 + 5*t^8.99 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6./y - t^6.88/y - t^6.93/y - (3*t^6.98)/y - t^7.09/y - t^7.87/y - t^7.96/y + t^7.97/y + t^8.01/y - t^8.07/y + t^8.12/y + t^8.85/y + t^8.9/y - t^3.98*y - t^4.97*y - t^6.*y - t^6.88*y - t^6.93*y - 3*t^6.98*y - t^7.09*y - t^7.87*y - t^7.96*y + t^7.97*y + t^8.01*y - t^8.07*y + t^8.12*y + t^8.85*y + t^8.9*y + t^8.95*y^2 | (g1*g2*t^2.01)/g3^5 + t^2.9/(g1*g2) + t^2.95/g3^3 + (2*g1*g2*t^3.)/g3^6 + (g3^12*t^3.1)/(g1*g2) + (g1*g2*t^3.98)/g3^7 + (g1^2*g2^2*t^4.03)/g3^10 + g3^2*t^4.03 + (g1*g2*t^4.08)/g3 + (g3^11*t^4.09)/(g1*g2) + t^4.92/g3^5 + (2*g1*g2*t^4.96)/g3^8 + (g3^4*t^4.97)/(g1*g2) + (2*g1^2*g2^2*t^5.01)/g3^11 + (g1*g2*t^5.07)/g3^2 + (g3^10*t^5.07)/(g1*g2) + g3^7*t^5.12 + (g2^3*t^5.51)/g3^13 + (g1*g3^11*t^5.56)/g2^2 + (g3^23*t^5.56)/(g1*g2^4) + (g2^3*t^5.61)/g3^7 + t^5.8/(g1^2*g2^2) + t^5.85/(g1*g2*g3^3) + (2*t^5.9)/g3^6 + (2*g1*g2*t^5.95)/g3^9 - 4*t^6. + (3*g1^2*g2^2*t^6.)/g3^12 + (g1^3*g2^3*t^6.04)/g3^15 + (g1*g2*t^6.05)/g3^3 + (g3^9*t^6.05)/(g1*g2) + (g1^2*g2^2*t^6.1)/g3^6 + 2*g3^6*t^6.1 + (g3^24*t^6.21)/(g1^2*g2^2) + (g2^3*t^6.49)/g3^14 + (g1*g3^10*t^6.54)/g2^2 + (g3^22*t^6.54)/(g1*g2^4) + (g2^3*t^6.59)/g3^8 + (2*g1*g2*t^6.93)/g3^10 + (g3^2*t^6.93)/(g1*g2) + (3*g1^2*g2^2*t^6.98)/g3^13 + (2*g1^3*g2^3*t^7.03)/g3^16 + (3*g1*g2*t^7.03)/g3^4 + (g3^8*t^7.04)/(g1*g2) + (3*g1^2*g2^2*t^7.08)/g3^7 + 3*g3^5*t^7.08 + g1*g2*g3^2*t^7.13 + (g3^14*t^7.14)/(g1*g2) + g3^11*t^7.19 + (g3^23*t^7.19)/(g1^2*g2^2) + (g2^3*t^7.38)/g3^21 - (g3^12*t^7.47)/g2^3 + (g2^3*t^7.48)/g3^15 + (g1^3*t^7.52)/g3^3 + (g1*g3^9*t^7.52)/g2^2 - (g2^2*t^7.53)/(g1*g3^6) + (g3^21*t^7.53)/(g1*g2^4) + (g3^33*t^7.53)/(g1^3*g2^6) + (g1^2*g3^6*t^7.57)/g2 + (g2^3*t^7.58)/g3^9 + (g1*g2^4*t^7.63)/g3^12 + (g2^3*t^7.68)/g3^3 + t^7.82/(g1*g2*g3^5) + t^7.87/g3^8 + (g3^4*t^7.87)/(g1^2*g2^2) + (3*g1*g2*t^7.91)/g3^11 + (g3*t^7.92)/(g1*g2) + (4*g1^2*g2^2*t^7.96)/g3^14 + t^7.97/g3^2 + (3*g1^3*g2^3*t^8.01)/g3^17 - (3*g1*g2*t^8.01)/g3^5 + (g1^4*g2^4*t^8.06)/g3^20 + (4*g1^2*g2^2*t^8.06)/g3^8 + 4*g3^4*t^8.07 + (g3^16*t^8.07)/(g1^2*g2^2) + (g1^3*g2^3*t^8.11)/g3^11 + 2*g1*g2*g3*t^8.12 + (g1^2*g2^2*t^8.16)/g3^2 + 2*g3^10*t^8.17 + (2*g3^22*t^8.17)/(g1^2*g2^2) + (g3^19*t^8.22)/(g1*g2) - (g1*g2^4*t^8.41)/g3^25 - (g1^2*t^8.45)/(g2*g3) + (g2^3*t^8.46)/g3^16 - (g3^11*t^8.46)/g2^3 + (g1*g3^8*t^8.5)/g2^2 + (g1*g2^4*t^8.51)/g3^19 - (g2^2*t^8.51)/(g1*g3^7) + (g3^20*t^8.51)/(g1*g2^4) + (2*g1^2*g3^5*t^8.55)/g2 + (g2^3*t^8.56)/g3^10 + (g3^17*t^8.56)/g2^3 - (g3^29*t^8.56)/(g1^2*g2^5) + (2*g1*g2^4*t^8.61)/g3^13 + (g3^23*t^8.66)/g2^3 + (g3^35*t^8.66)/(g1^2*g2^5) + t^8.7/(g1^3*g2^3) + (g2^2*g3^5*t^8.71)/g1 + t^8.75/(g1^2*g2^2*g3^3) + (2*t^8.8)/(g1*g2*g3^6) + (2*t^8.85)/g3^9 - (3*t^8.9)/(g1*g2) + (3*g1*g2*t^8.9)/g3^12 + (5*g1^2*g2^2*t^8.95)/g3^15 - t^8.95/g3^3 + (5*g1^3*g2^3*t^8.99)/g3^18 + t^8.95/(g3^3*y^2) - t^3.98/(g3*y) - t^4.97/(g3^2*y) - (g1*g2*t^6.)/(g3^6*y) - t^6.88/(g1*g2*g3*y) - t^6.93/(g3^4*y) - (3*g1*g2*t^6.98)/(g3^7*y) - (g3^11*t^7.09)/(g1*g2*y) - t^7.87/(g1*g2*g3^2*y) - (g1*g2*t^7.96)/(g3^8*y) + (g3^4*t^7.97)/(g1*g2*y) + (g1^2*g2^2*t^8.01)/(g3^11*y) - (g3^10*t^8.07)/(g1*g2*y) + (g3^7*t^8.12)/y + t^8.85/(g1*g2*g3^3*y) + t^8.9/(g3^6*y) - (t^3.98*y)/g3 - (t^4.97*y)/g3^2 - (g1*g2*t^6.*y)/g3^6 - (t^6.88*y)/(g1*g2*g3) - (t^6.93*y)/g3^4 - (3*g1*g2*t^6.98*y)/g3^7 - (g3^11*t^7.09*y)/(g1*g2) - (t^7.87*y)/(g1*g2*g3^2) - (g1*g2*t^7.96*y)/g3^8 + (g3^4*t^7.97*y)/(g1*g2) + (g1^2*g2^2*t^8.01*y)/g3^11 - (g3^10*t^8.07*y)/(g1*g2) + g3^7*t^8.12*y + (t^8.85*y)/(g1*g2*g3^3) + (t^8.9*y)/g3^6 + (t^8.95*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57286 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6818 | 0.8775 | [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] | t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y | detail |