Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57797 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4652 1.6684 0.8782 [X:[1.3565], M:[0.9395, 0.6693], q:[0.5654, 0.5475], qb:[0.4436, 0.513], phi:[0.3218]] [X:[[0, 2]], M:[[3, -23], [-3, 18]], q:[[2, -11], [-4, 23]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ ${}$ -2 t^2.01 + t^2.82 + t^2.9 + t^2.97 + t^3.03 + t^3.24 + t^3.94 + t^4.02 + t^4.07 + t^4.15 + t^4.2 + t^4.83 + 2*t^4.9 + t^4.96 + t^4.98 + t^5.03 + t^5.11 + 2*t^5.17 + t^5.24 + t^5.37 + t^5.64 + t^5.71 + t^5.79 + t^5.85 + t^5.87 + t^5.92 + 2*t^5.95 - 2*t^6. + t^6.02 + t^6.05 + t^6.08 + 2*t^6.13 + t^6.15 + t^6.21 + t^6.26 + t^6.34 + t^6.47 + 2*t^6.83 + 2*t^6.89 + 3*t^6.91 + 2*t^6.97 + t^6.99 + 3*t^7.04 + 3*t^7.1 + 2*t^7.12 + 3*t^7.17 + t^7.25 + 2*t^7.3 + 2*t^7.38 + t^7.44 + t^7.51 + t^7.64 + t^7.72 + t^7.78 + t^7.8 + t^7.82 + 2*t^7.85 + 3*t^7.88 + 2*t^7.93 + 2*t^7.95 + 2*t^7.98 - 2*t^8.01 + t^8.03 + 2*t^8.06 + 3*t^8.09 + 4*t^8.14 + t^8.16 + 2*t^8.19 + t^8.22 + 2*t^8.27 + t^8.29 + 3*t^8.35 + 3*t^8.4 + t^8.46 + t^8.48 + t^8.53 + 2*t^8.61 + t^8.66 + t^8.69 - t^8.71 + t^8.74 - 2*t^8.82 + 4*t^8.84 + t^8.87 + t^8.9 + 3*t^8.92 + t^8.95 - 3*t^8.97 + t^8.9/y^2 - t^8.97/y^2 - t^3.97/y - t^4.93/y - t^5.97/y - t^6.78/y - t^6.86/y - (2*t^6.94)/y - t^6.99/y - t^7.2/y - t^7.75/y + t^8.03/y - t^8.17/y + t^8.24/y + t^8.71/y + t^8.85/y - t^8.87/y + t^8.92/y - t^8.95/y - t^3.97*y - t^4.93*y - t^5.97*y - t^6.78*y - t^6.86*y - 2*t^6.94*y - t^6.99*y - t^7.2*y - t^7.75*y + t^8.03*y - t^8.17*y + t^8.24*y + t^8.71*y + t^8.85*y - t^8.87*y + t^8.92*y - t^8.95*y + t^8.9*y^2 - t^8.97*y^2 (g2^18*t^2.01)/g1^3 + (g1^3*t^2.82)/g2^23 + t^2.9/g2^3 + (g2^17*t^2.97)/g1^3 + (g1^3*t^3.03)/g2^17 + (g1^3*t^3.24)/g2^11 + (g2^16*t^3.94)/g1^3 + (g2^36*t^4.02)/g1^6 + g2^2*t^4.07 + (g2^22*t^4.15)/g1^3 + (g1^3*t^4.2)/g2^12 + t^4.83/g2^5 + (2*g2^15*t^4.9)/g1^3 + (g1^3*t^4.96)/g2^19 + (g2^35*t^4.98)/g1^6 + g2*t^5.03 + (g2^21*t^5.11)/g1^3 + (2*g1^3*t^5.17)/g2^13 + g2^7*t^5.24 + (g1^3*t^5.37)/g2^7 + (g1^6*t^5.64)/g2^46 + (g1^3*t^5.71)/g2^26 + t^5.79/g2^6 + (g1^6*t^5.85)/g2^40 + (g2^14*t^5.87)/g1^3 + (g1^3*t^5.92)/g2^20 + (2*g2^34*t^5.95)/g1^6 - 2*t^6. + (g2^54*t^6.02)/g1^9 + (g1^6*t^6.05)/g2^34 + (g2^20*t^6.08)/g1^3 + (2*g1^3*t^6.13)/g2^14 + (g2^40*t^6.15)/g1^6 + g2^6*t^6.21 + (g1^6*t^6.26)/g2^28 + (g1^3*t^6.34)/g2^8 + (g1^6*t^6.47)/g2^22 + (2*g2^13*t^6.83)/g1^3 + (2*g1^3*t^6.89)/g2^21 + (3*g2^33*t^6.91)/g1^6 + (2*t^6.97)/g2 + (g2^53*t^6.99)/g1^9 + (3*g2^19*t^7.04)/g1^3 + (3*g1^3*t^7.1)/g2^15 + (2*g2^39*t^7.12)/g1^6 + 3*g2^5*t^7.17 + (g2^25*t^7.25)/g1^3 + (2*g1^3*t^7.3)/g2^9 + 2*g2^11*t^7.38 + (g1^6*t^7.44)/g2^23 + (g1^3*t^7.51)/g2^3 + (g1^3*t^7.64)/g2^28 + t^7.72/g2^8 + (g1^6*t^7.78)/g2^42 + (g2^12*t^7.8)/g1^3 + (g2^66*t^7.82)/g1^12 + (2*g1^3*t^7.85)/g2^22 + (3*g2^32*t^7.88)/g1^6 + (2*t^7.93)/g2^2 + (2*g2^52*t^7.95)/g1^9 + (2*g1^6*t^7.98)/g2^36 - (2*g2^18*t^8.01)/g1^3 + (g2^72*t^8.03)/g1^12 + (2*g1^3*t^8.06)/g2^16 + (3*g2^38*t^8.09)/g1^6 + 4*g2^4*t^8.14 + (g2^58*t^8.16)/g1^9 + (2*g1^6*t^8.19)/g2^30 + (g2^24*t^8.22)/g1^3 + (2*g1^3*t^8.27)/g2^10 + (g2^44*t^8.29)/g1^6 + 3*g2^10*t^8.35 + (3*g1^6*t^8.4)/g2^24 + (g1^9*t^8.46)/g2^69 + (g1^3*t^8.48)/g2^4 + (g1^6*t^8.53)/g2^49 + (g1^3*t^8.61)/g2^29 + (g1^6*t^8.61)/g2^18 + (g1^9*t^8.66)/g2^63 + t^8.69/g2^9 - (g2^45*t^8.71)/g1^9 + (g1^6*t^8.74)/g2^43 - (2*g1^3*t^8.82)/g2^23 + (4*g2^31*t^8.84)/g1^6 + (g1^9*t^8.87)/g2^57 + t^8.9/g2^3 + (3*g2^51*t^8.92)/g1^9 + (g1^6*t^8.95)/g2^37 - (3*g2^17*t^8.97)/g1^3 + t^8.9/(g2^3*y^2) - (g2^17*t^8.97)/(g1^3*y^2) - t^3.97/(g2*y) - t^4.93/(g2^2*y) - (g2^17*t^5.97)/(g1^3*y) - (g1^3*t^6.78)/(g2^24*y) - t^6.86/(g2^4*y) - (2*g2^16*t^6.94)/(g1^3*y) - (g1^3*t^6.99)/(g2^18*y) - (g1^3*t^7.2)/(g2^12*y) - (g1^3*t^7.75)/(g2^25*y) + (g2*t^8.03)/y - (g1^3*t^8.17)/(g2^13*y) + (g2^7*t^8.24)/y + (g1^3*t^8.71)/(g2^26*y) + (g1^6*t^8.85)/(g2^40*y) - (g2^14*t^8.87)/(g1^3*y) + (g1^3*t^8.92)/(g2^20*y) - (g2^34*t^8.95)/(g1^6*y) - (t^3.97*y)/g2 - (t^4.93*y)/g2^2 - (g2^17*t^5.97*y)/g1^3 - (g1^3*t^6.78*y)/g2^24 - (t^6.86*y)/g2^4 - (2*g2^16*t^6.94*y)/g1^3 - (g1^3*t^6.99*y)/g2^18 - (g1^3*t^7.2*y)/g2^12 - (g1^3*t^7.75*y)/g2^25 + g2*t^8.03*y - (g1^3*t^8.17*y)/g2^13 + g2^7*t^8.24*y + (g1^3*t^8.71*y)/g2^26 + (g1^6*t^8.85*y)/g2^40 - (g2^14*t^8.87*y)/g1^3 + (g1^3*t^8.92*y)/g2^20 - (g2^34*t^8.95*y)/g1^6 + (t^8.9*y^2)/g2^3 - (g2^17*t^8.97*y^2)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57286 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4759 1.6818 0.8775 [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y detail