Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57803 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ 1.4751 1.681 0.8775 [X:[1.3445], M:[0.9664, 0.6723], q:[0.5083, 0.5083], qb:[0.4917, 0.5253], phi:[0.3277]] [X:[[0, 2]], M:[[0, -6], [0, 1]], q:[[-1, 6], [-1, 6]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$ ${}M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ -1 t^2.02 + t^2.9 + t^2.95 + 2*t^3. + t^3.1 + t^3.98 + 2*t^4.03 + 2*t^4.08 + t^4.92 + 3*t^4.97 + 2*t^5.02 + 2*t^5.07 + t^5.12 + t^5.51 + 2*t^5.56 + t^5.61 + t^5.8 + t^5.85 + 2*t^5.9 + 2*t^5.95 - t^6. + 3*t^6.05 + 3*t^6.1 + t^6.2 + t^6.49 + 2*t^6.54 + t^6.59 + 3*t^6.93 + 3*t^6.98 + 6*t^7.03 + 6*t^7.08 + 2*t^7.13 + 2*t^7.18 + t^7.38 - t^7.47 + t^7.48 + 4*t^7.52 - t^7.53 + t^7.57 + t^7.58 + t^7.63 + t^7.68 + t^7.82 + 2*t^7.87 + 4*t^7.92 + 5*t^7.97 + 10*t^8.07 + 3*t^8.12 + 5*t^8.17 + t^8.22 - t^8.41 - t^8.46 + 2*t^8.51 + 3*t^8.56 + 2*t^8.61 + 2*t^8.66 + t^8.7 + t^8.71 + t^8.75 + 2*t^8.8 + 2*t^8.85 + 4*t^8.95 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6./y - t^6.88/y - t^6.93/y - (3*t^6.98)/y - t^7.08/y - t^7.87/y + t^8.02/y - t^8.07/y + t^8.12/y + t^8.85/y + t^8.9/y - t^3.98*y - t^4.97*y - t^6.*y - t^6.88*y - t^6.93*y - 3*t^6.98*y - t^7.08*y - t^7.87*y + t^8.02*y - t^8.07*y + t^8.12*y + t^8.85*y + t^8.9*y + t^8.95*y^2 g2*t^2.02 + t^2.9/g2^6 + t^2.95/g2^3 + 2*t^3. + g2^6*t^3.1 + t^3.98/g2 + 2*g2^2*t^4.03 + 2*g2^5*t^4.08 + t^4.92/g2^5 + (3*t^4.97)/g2^2 + 2*g2*t^5.02 + 2*g2^4*t^5.07 + g2^7*t^5.12 + (g1^3*t^5.51)/g2^13 + (2*g2^17*t^5.56)/g1^3 + (g1^3*t^5.61)/g2^7 + t^5.8/g2^12 + t^5.85/g2^9 + (2*t^5.9)/g2^6 + (2*t^5.95)/g2^3 - t^6. + 3*g2^3*t^6.05 + 3*g2^6*t^6.1 + g2^12*t^6.2 + (g1^3*t^6.49)/g2^14 + (2*g2^16*t^6.54)/g1^3 + (g1^3*t^6.59)/g2^8 + (3*t^6.93)/g2^4 + (3*t^6.98)/g2 + 6*g2^2*t^7.03 + 6*g2^5*t^7.08 + 2*g2^8*t^7.13 + 2*g2^11*t^7.18 + (g1^3*t^7.38)/g2^21 - (g2^12*t^7.47)/g1^3 + (g1^3*t^7.48)/g2^15 + (4*g2^15*t^7.52)/g1^3 - (g1^3*t^7.53)/g2^12 + (g2^18*t^7.57)/g1^3 + (g1^3*t^7.58)/g2^9 + (g1^3*t^7.63)/g2^6 + (g1^3*t^7.68)/g2^3 + t^7.82/g2^11 + (2*t^7.87)/g2^8 + (4*t^7.92)/g2^5 + (5*t^7.97)/g2^2 + 10*g2^4*t^8.07 + 3*g2^7*t^8.12 + 5*g2^10*t^8.17 + g2^13*t^8.22 - (g1^3*t^8.41)/g2^19 + (g1^3*t^8.46)/g2^16 - (2*g2^11*t^8.46)/g1^3 + (2*g2^14*t^8.51)/g1^3 + (g1^3*t^8.56)/g2^10 + (2*g2^17*t^8.56)/g1^3 + (2*g1^3*t^8.61)/g2^7 + (2*g2^23*t^8.66)/g1^3 + t^8.7/g2^18 + (g1^3*t^8.71)/g2 + t^8.75/g2^15 + (2*t^8.8)/g2^12 + (2*t^8.85)/g2^9 + (4*t^8.95)/g2^3 + t^8.95/(g2^3*y^2) - t^3.98/(g2*y) - t^4.97/(g2^2*y) - t^6./y - t^6.88/(g2^7*y) - t^6.93/(g2^4*y) - (3*t^6.98)/(g2*y) - (g2^5*t^7.08)/y - t^7.87/(g2^8*y) + (g2*t^8.02)/y - (g2^4*t^8.07)/y + (g2^7*t^8.12)/y + t^8.85/(g2^9*y) + t^8.9/(g2^6*y) - (t^3.98*y)/g2 - (t^4.97*y)/g2^2 - t^6.*y - (t^6.88*y)/g2^7 - (t^6.93*y)/g2^4 - (3*t^6.98*y)/g2 - g2^5*t^7.08*y - (t^7.87*y)/g2^8 + g2*t^8.02*y - g2^4*t^8.07*y + g2^7*t^8.12*y + (t^8.85*y)/g2^9 + (t^8.9*y)/g2^6 + (t^8.95*y^2)/g2^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57286 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4759 1.6818 0.8775 [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y detail