Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57805 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4749 1.6821 0.8768 [X:[1.3368], M:[0.9731, 0.6849, 1.0052], q:[0.4862, 0.5192], qb:[0.4973, 0.5077], phi:[0.3316]] [X:[[0, 0, 2]], M:[[-1, -1, 0], [1, 1, -5], [0, 0, 3]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$ ${}M_{3}q_{1}\tilde{q}_{2}$ -2 t^2.05 + t^2.92 + t^2.95 + t^2.98 + t^3.02 + t^3.05 + t^3.98 + t^4.01 + t^4.04 + t^4.08 + t^4.11 + t^4.94 + 2*t^4.97 + t^5.01 + 2*t^5.04 + 2*t^5.07 + t^5.1 + t^5.47 + t^5.5 + t^5.53 + t^5.57 + t^5.84 + t^5.87 + t^5.9 + 2*t^5.93 + t^5.96 + t^5.97 - 2*t^6. + 2*t^6.03 + 2*t^6.07 + t^6.1 + t^6.13 + t^6.16 + t^6.46 + t^6.5 + t^6.53 + t^6.56 + 2*t^6.93 + 2*t^6.96 + 2*t^6.99 + 5*t^7.03 + 4*t^7.06 + 3*t^7.09 + 3*t^7.13 + t^7.16 + t^7.36 + t^7.46 + t^7.52 + t^7.55 + t^7.56 + t^7.59 + t^7.62 + t^7.66 + t^7.86 + 2*t^7.89 + 3*t^7.92 + 2*t^7.95 + t^7.96 + 4*t^7.99 + 5*t^8.02 + t^8.05 + 4*t^8.09 + 4*t^8.12 + 2*t^8.15 + t^8.18 + t^8.22 + t^8.45 + t^8.48 + t^8.51 + t^8.52 + 2*t^8.55 + 2*t^8.58 - t^8.59 + t^8.62 + t^8.76 + t^8.79 + t^8.82 + 2*t^8.85 + t^8.88 + t^8.89 + t^8.91 - t^8.92 + t^8.94 - t^8.95 + 2*t^8.98 + t^8.98/y^2 - t^3.99/y - t^4.99/y - t^6.05/y - t^6.91/y - t^6.95/y - t^6.98/y - t^7.01/y - (2*t^7.04)/y - t^7.91/y + t^8.07/y + t^8.87/y + t^8.9/y + (2*t^8.93)/y - t^3.99*y - t^4.99*y - t^6.05*y - t^6.91*y - t^6.95*y - t^6.98*y - t^7.01*y - 2*t^7.04*y - t^7.91*y + t^8.07*y + t^8.87*y + t^8.9*y + 2*t^8.93*y + t^8.98*y^2 (g1*g2*t^2.05)/g3^5 + t^2.92/(g1*g2) + (g3^6*t^2.95)/(g1*g2) + (g3^12*t^2.98)/(g1*g2) + g3^3*t^3.02 + (g1*g2*t^3.05)/g3^6 + (g3^11*t^3.98)/(g1*g2) + g3^2*t^4.01 + (g1*g2*t^4.04)/g3^7 + (g1*g2*t^4.08)/g3 + (g1^2*g2^2*t^4.11)/g3^10 + (g3^4*t^4.94)/(g1*g2) + t^4.97/g3^5 + (g3^10*t^4.97)/(g1*g2) + g3*t^5.01 + (g1*g2*t^5.04)/g3^8 + g3^7*t^5.04 + (2*g1*g2*t^5.07)/g3^2 + (g1^2*g2^2*t^5.1)/g3^11 + (g3^23*t^5.47)/(g1*g2^4) + (g2^3*t^5.5)/g3^13 + (g2^3*t^5.53)/g3^7 + (g1*g3^11*t^5.57)/g2^2 + t^5.84/(g1^2*g2^2) + (g3^6*t^5.87)/(g1^2*g2^2) + (g3^12*t^5.9)/(g1^2*g2^2) + (g3^3*t^5.93)/(g1*g2) + (g3^18*t^5.93)/(g1^2*g2^2) + (g3^24*t^5.96)/(g1^2*g2^2) + (g3^9*t^5.97)/(g1*g2) - 3*t^6. + (g3^15*t^6.)/(g1*g2) + 2*g3^6*t^6.03 + (2*g1*g2*t^6.07)/g3^3 + (g1^2*g2^2*t^6.1)/g3^12 + (g1^2*g2^2*t^6.13)/g3^6 + (g1^3*g2^3*t^6.16)/g3^15 + (g3^22*t^6.46)/(g1*g2^4) + (g2^3*t^6.5)/g3^14 + (g2^3*t^6.53)/g3^8 + (g1*g3^10*t^6.56)/g2^2 + (g3^2*t^6.93)/(g1*g2) + (g3^17*t^6.93)/(g1^2*g2^2) + (g3^8*t^6.96)/(g1*g2) + (g3^23*t^6.96)/(g1^2*g2^2) + (2*g3^14*t^6.99)/(g1*g2) + (g1*g2*t^7.03)/g3^10 + 4*g3^5*t^7.03 + (3*g1*g2*t^7.06)/g3^4 + g3^11*t^7.06 + (g1^2*g2^2*t^7.09)/g3^13 + 2*g1*g2*g3^2*t^7.09 + (3*g1^2*g2^2*t^7.13)/g3^7 + (g1^3*g2^3*t^7.16)/g3^16 + (g3^33*t^7.36)/(g1^3*g2^6) + (g2^3*t^7.46)/g3^21 - (g2^2*t^7.46)/(g1*g3^6) + (g3^21*t^7.46)/(g1*g2^4) + (g2^3*t^7.49)/g3^15 - (g3^12*t^7.49)/g2^3 + (g2^3*t^7.52)/g3^9 + (g2^3*t^7.55)/g3^3 + (g1*g3^9*t^7.56)/g2^2 + (g1*g2^4*t^7.59)/g3^12 + (g1^2*g3^6*t^7.62)/g2 + (g1^3*t^7.66)/g3^3 + (g3^4*t^7.86)/(g1^2*g2^2) + t^7.89/(g1*g2*g3^5) + (g3^10*t^7.89)/(g1^2*g2^2) + (g3*t^7.92)/(g1*g2) + (2*g3^16*t^7.92)/(g1^2*g2^2) + (2*g3^22*t^7.95)/(g1^2*g2^2) + (g3^7*t^7.96)/(g1*g2) + (2*t^7.99)/g3^2 + (2*g3^13*t^7.99)/(g1*g2) + 4*g3^4*t^8.02 + (g3^19*t^8.02)/(g1*g2) - (2*g1*g2*t^8.05)/g3^5 + 3*g3^10*t^8.05 + (g1^2*g2^2*t^8.09)/g3^14 + 3*g1*g2*g3*t^8.09 + (4*g1^2*g2^2*t^8.12)/g3^8 + (g1^3*g2^3*t^8.15)/g3^17 + (g1^2*g2^2*t^8.15)/g3^2 + (g1^3*g2^3*t^8.18)/g3^11 + (g1^4*g2^4*t^8.22)/g3^20 + (g3^35*t^8.45)/(g1^2*g2^5) + (g2^2*t^8.48)/(g1*g3) - (g3^11*t^8.49)/g2^3 + (g3^26*t^8.49)/(g1*g2^4) + (g2^2*g3^5*t^8.51)/g1 - (g1*g2^4*t^8.52)/g3^25 + (g2^3*t^8.52)/g3^10 + (g3^17*t^8.52)/g2^3 + (g2^3*t^8.55)/g3^4 + (g3^23*t^8.55)/g2^3 + (g1*g2^4*t^8.58)/g3^13 + (g1*g3^14*t^8.58)/g2^2 - (g1^2*t^8.59)/(g2*g3) + (g1^2*g3^5*t^8.62)/g2 + t^8.76/(g1^3*g2^3) + (g3^6*t^8.79)/(g1^3*g2^3) + (g3^12*t^8.82)/(g1^3*g2^3) + (g3^3*t^8.85)/(g1^2*g2^2) + (g3^18*t^8.85)/(g1^3*g2^3) + (g3^24*t^8.88)/(g1^3*g2^3) + (g3^9*t^8.89)/(g1^2*g2^2) + (g3^30*t^8.91)/(g1^3*g2^3) - (3*t^8.92)/(g1*g2) + (2*g3^15*t^8.92)/(g1^2*g2^2) + (g3^36*t^8.94)/(g1^3*g2^3) - (3*g3^6*t^8.95)/(g1*g2) + (2*g3^21*t^8.95)/(g1^2*g2^2) + (3*t^8.98)/g3^3 - (2*g3^12*t^8.98)/(g1*g2) + (g3^27*t^8.98)/(g1^2*g2^2) + t^8.98/(g3^3*y^2) - t^3.99/(g3*y) - t^4.99/(g3^2*y) - (g1*g2*t^6.05)/(g3^6*y) - t^6.91/(g1*g2*g3*y) - (g3^5*t^6.95)/(g1*g2*y) - (g3^11*t^6.98)/(g1*g2*y) - (g3^2*t^7.01)/y - (2*g1*g2*t^7.04)/(g3^7*y) - t^7.91/(g1*g2*g3^2*y) + t^7.97/(g3^5*y) - (g3^10*t^7.97)/(g1*g2*y) - (g1*g2*t^8.04)/(g3^8*y) + (g3^7*t^8.04)/y + (g1*g2*t^8.07)/(g3^2*y) + (g3^6*t^8.87)/(g1^2*g2^2*y) + (g3^12*t^8.9)/(g1^2*g2^2*y) + (g3^3*t^8.93)/(g1*g2*y) + (g3^18*t^8.93)/(g1^2*g2^2*y) - (t^3.99*y)/g3 - (t^4.99*y)/g3^2 - (g1*g2*t^6.05*y)/g3^6 - (t^6.91*y)/(g1*g2*g3) - (g3^5*t^6.95*y)/(g1*g2) - (g3^11*t^6.98*y)/(g1*g2) - g3^2*t^7.01*y - (2*g1*g2*t^7.04*y)/g3^7 - (t^7.91*y)/(g1*g2*g3^2) + (t^7.97*y)/g3^5 - (g3^10*t^7.97*y)/(g1*g2) - (g1*g2*t^8.04*y)/g3^8 + g3^7*t^8.04*y + (g1*g2*t^8.07*y)/g3^2 + (g3^6*t^8.87*y)/(g1^2*g2^2) + (g3^12*t^8.9*y)/(g1^2*g2^2) + (g3^3*t^8.93*y)/(g1*g2) + (g3^18*t^8.93*y)/(g1^2*g2^2) + (t^8.98*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57286 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4759 1.6818 0.8775 [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y detail