Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57793 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{1}\tilde{q}_{2}X_{2}$ | 1.2212 | 1.4138 | 0.8638 | [X:[1.2791, 1.4417], M:[0.8834, 0.9187], q:[0.2132, 0.7715], qb:[0.5077, 0.3451], phi:[0.3604]] | [X:[[0, -2], [0, 4]], M:[[0, 8], [0, -3]], q:[[-1, -4], [-1, -8]], qb:[[1, 6], [1, 0]], phi:[[0, 1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }X_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{3}$ | ${}\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}X_{1}$ | 2 | t^2.16 + t^2.65 + 2*t^2.76 + t^3.24 + 3*t^3.84 + 2*t^4.33 + t^4.43 + 2*t^4.67 + t^4.81 + 3*t^4.92 + 2*t^5.16 + t^5.3 + 2*t^5.41 + 3*t^5.51 + 2*t^5.76 + t^5.89 + 2*t^6. + 2*t^6.35 + 4*t^6.49 + 5*t^6.59 + 2*t^6.84 + 2*t^6.98 + 5*t^7.08 + 2*t^7.19 + 2*t^7.33 + 4*t^7.43 + t^7.46 + 3*t^7.57 + 8*t^7.67 + 2*t^7.81 + 2*t^7.92 + t^7.95 + 2*t^8.06 + 5*t^8.16 + 6*t^8.27 + 2*t^8.41 + 6*t^8.51 + t^8.54 + 3*t^8.65 + 2*t^8.76 + t^8.86 - t^4.08/y - t^5.16/y - t^6.24/y - t^6.73/y - t^6.84/y - t^7.33/y - t^7.92/y + t^8.41/y + t^8.51/y - t^4.08*y - t^5.16*y - t^6.24*y - t^6.73*y - t^6.84*y - t^7.33*y - t^7.92*y + t^8.41*y + t^8.51*y | g2^2*t^2.16 + g2^8*t^2.65 + (2*t^2.76)/g2^3 + g2^3*t^3.24 + (3*t^3.84)/g2^2 + 2*g2^4*t^4.33 + t^4.43/g2^7 + t^4.67/(g1^3*g2^15) + g1^3*g2^7*t^4.67 + g2^10*t^4.81 + (3*t^4.92)/g2 + t^5.16/(g1^3*g2^9) + g1^3*g2^13*t^5.16 + g2^16*t^5.3 + 2*g2^5*t^5.41 + (3*t^5.51)/g2^6 + t^5.76/(g1^3*g2^14) + g1^3*g2^8*t^5.76 + g2^11*t^5.89 + 2*t^6. + t^6.35/(g1^3*g2^19) + g1^3*g2^3*t^6.35 + 4*g2^6*t^6.49 + (5*t^6.59)/g2^5 + t^6.84/(g1^3*g2^13) + g1^3*g2^9*t^6.84 + 2*g2^12*t^6.98 + 5*g2*t^7.08 + (2*t^7.19)/g2^10 + t^7.33/(g1^3*g2^7) + g1^3*g2^15*t^7.33 + (2*t^7.43)/(g1^3*g2^18) + 2*g1^3*g2^4*t^7.43 + g2^18*t^7.46 + 3*g2^7*t^7.57 + (8*t^7.67)/g2^4 + t^7.81/(g1^3*g2) + g1^3*g2^21*t^7.81 + t^7.92/(g1^3*g2^12) + g1^3*g2^10*t^7.92 + g2^24*t^7.95 + 2*g2^13*t^8.06 + 5*g2^2*t^8.16 + (6*t^8.27)/g2^9 + t^8.41/(g1^3*g2^6) + g1^3*g2^16*t^8.41 + (3*t^8.51)/(g1^3*g2^17) + 3*g1^3*g2^5*t^8.51 + g2^19*t^8.54 + 3*g2^8*t^8.65 + (2*t^8.76)/g2^3 + t^8.86/g2^14 - (g2*t^4.08)/y - (g2^2*t^5.16)/y - (g2^3*t^6.24)/y - (g2^9*t^6.73)/y - t^6.84/(g2^2*y) - (g2^4*t^7.33)/y - t^7.92/(g2*y) + (g2^5*t^8.41)/y + t^8.51/(g2^6*y) - g2*t^4.08*y - g2^2*t^5.16*y - g2^3*t^6.24*y - g2^9*t^6.73*y - (t^6.84*y)/g2^2 - g2^4*t^7.33*y - (t^7.92*y)/g2 + g2^5*t^8.41*y + (t^8.51*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57286 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4759 | 1.6818 | 0.8775 | [X:[1.3442], M:[0.9514, 0.6882], q:[0.4921, 0.5242], qb:[0.4919, 0.5244], phi:[0.3279]] | t^2.064 + t^2.854 + t^2.951 + t^2.952 + t^3.048 + t^3.049 + t^4.032 + 2*t^4.033 + t^4.129 + t^4.13 + 2*t^4.919 + 3*t^5.016 + t^5.017 + 2*t^5.113 + t^5.114 + t^5.508 + t^5.509 + t^5.605 + t^5.606 + t^5.708 + t^5.805 + t^5.806 + t^5.902 + t^5.903 + t^5.904 + t^5.999 - 3*t^6. - t^3.984/y - t^4.967/y - t^3.984*y - t^4.967*y | detail |