Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [-4, 0, 0, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_1$, $ M_3q_3\tilde{q}_1$, $ M_3q_2q_3$, $ M_2q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$ | . | -14 | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - 6*t^6.04 - 3*t^6.09 - 2*t^6.14 + 10*t^6.32 + t^6.59 + t^7.01 + 6*t^7.05 + 3*t^7.1 + 2*t^7.15 + t^7.42 + 9*t^7.46 + 6*t^7.47 + 43*t^7.51 + 15*t^7.55 + 18*t^7.56 + 6*t^7.6 + 9*t^7.61 - 4*t^7.65 - 7*t^7.69 + 3*t^7.7 - 2*t^7.79 + 6*t^7.92 + 30*t^7.97 + 10*t^8.01 - 9*t^8.06 - 45*t^8.11 - 22*t^8.15 - 5*t^8.2 - 3*t^8.25 + 3*t^8.29 - t^8.34 + 15*t^8.42 + 3*t^8.66 + 9*t^8.7 + 6*t^8.75 + 2*t^8.8 + 3*t^8.84 + t^8.94 - t^4.65/y - (3*t^6.75)/y + (3*t^7.21)/y + t^7.35/y - t^7.95/y + (3*t^8.4)/y + (3*t^8.54)/y + (3*t^8.82)/y + (12*t^8.86)/y + (9*t^8.91)/y + (6*t^8.96)/y - t^4.65*y - 3*t^6.75*y + 3*t^7.21*y + t^7.35*y - t^7.95*y + 3*t^8.4*y + 3*t^8.54*y + 3*t^8.82*y + 12*t^8.86*y + 9*t^8.91*y + 6*t^8.96*y | t^2.11/(g1^4*g2^4) + t^2.11/(g1^4*g3^4) + t^2.11/(g1^4*g4^4) + t^3.3/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g5^4*g6^4*t^3.71 + g2^4*g5^4*t^3.76 + g3^4*g5^4*t^3.76 + g4^4*g5^4*t^3.76 + g2^4*g6^4*t^3.76 + g3^4*g6^4*t^3.76 + g4^4*g6^4*t^3.76 + g2^4*g3^4*t^3.8 + g2^4*g4^4*t^3.8 + g3^4*g4^4*t^3.8 + g1^4*g5^4*t^3.85 + g1^4*g6^4*t^3.85 + t^4.21/(g1^8*g2^8) + t^4.21/(g1^8*g3^8) + t^4.21/(g1^8*g2^4*g3^4) + t^4.21/(g1^8*g4^8) + t^4.21/(g1^8*g2^4*g4^4) + t^4.21/(g1^8*g3^4*g4^4) + (g5^7*t^5.36)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.36)/(g1*g2*g3*g4) + (g6^7*t^5.36)/(g1*g2*g3*g4*g5) + t^5.4/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + t^5.4/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.4/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^3*g5^3*t^5.4)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.4)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.4)/(g1*g2*g3*g6) + (g2^3*g6^3*t^5.4)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.4)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.4)/(g1*g2*g3*g5) + (g2^7*t^5.45)/(g1*g3*g4*g5*g6) + (g2^3*g3^3*t^5.45)/(g1*g4*g5*g6) + (g3^7*t^5.45)/(g1*g2*g4*g5*g6) + (g2^3*g4^3*t^5.45)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.45)/(g1*g2*g5*g6) + (g4^7*t^5.45)/(g1*g2*g3*g5*g6) + (g1^3*g5^3*t^5.5)/(g2*g3*g4*g6) + (g1^3*g6^3*t^5.5)/(g2*g3*g4*g5) + (g1^3*g2^3*t^5.54)/(g3*g4*g5*g6) + (g1^3*g3^3*t^5.54)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.54)/(g2*g3*g5*g6) + (g1^7*t^5.64)/(g2*g3*g4*g5*g6) + (g5^4*g6^4*t^5.82)/(g1^4*g2^4) + (g5^4*g6^4*t^5.82)/(g1^4*g3^4) + (g5^4*g6^4*t^5.82)/(g1^4*g4^4) + (2*g5^4*t^5.86)/g1^4 + (g2^4*g5^4*t^5.86)/(g1^4*g3^4) + (g3^4*g5^4*t^5.86)/(g1^4*g2^4) + (g2^4*g5^4*t^5.86)/(g1^4*g4^4) + (g3^4*g5^4*t^5.86)/(g1^4*g4^4) + (g4^4*g5^4*t^5.86)/(g1^4*g2^4) + (g4^4*g5^4*t^5.86)/(g1^4*g3^4) + (2*g6^4*t^5.86)/g1^4 + (g2^4*g6^4*t^5.86)/(g1^4*g3^4) + (g3^4*g6^4*t^5.86)/(g1^4*g2^4) + (g2^4*g6^4*t^5.86)/(g1^4*g4^4) + (g3^4*g6^4*t^5.86)/(g1^4*g4^4) + (g4^4*g6^4*t^5.86)/(g1^4*g2^4) + (g4^4*g6^4*t^5.86)/(g1^4*g3^4) + (g2^4*t^5.91)/g1^4 + (g3^4*t^5.91)/g1^4 + (g2^4*g3^4*t^5.91)/(g1^4*g4^4) + (g4^4*t^5.91)/g1^4 + (g2^4*g4^4*t^5.91)/(g1^4*g3^4) + (g3^4*g4^4*t^5.91)/(g1^4*g2^4) - 6*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g2^4*t^6.04)/g5^4 - (g3^4*t^6.04)/g5^4 - (g4^4*t^6.04)/g5^4 - (g2^4*t^6.04)/g6^4 - (g3^4*t^6.04)/g6^4 - (g4^4*t^6.04)/g6^4 - (g1^4*t^6.09)/g2^4 - (g1^4*t^6.09)/g3^4 - (g1^4*t^6.09)/g4^4 - (g1^4*t^6.14)/g5^4 - (g1^4*t^6.14)/g6^4 + t^6.32/(g1^12*g2^12) + t^6.32/(g1^12*g3^12) + t^6.32/(g1^12*g2^4*g3^8) + t^6.32/(g1^12*g2^8*g3^4) + t^6.32/(g1^12*g4^12) + t^6.32/(g1^12*g2^4*g4^8) + t^6.32/(g1^12*g3^4*g4^8) + t^6.32/(g1^12*g2^8*g4^4) + t^6.32/(g1^12*g3^8*g4^4) + t^6.32/(g1^12*g2^4*g3^4*g4^4) + t^6.59/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g5^2*g6^2*t^7.01)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*g5^2*t^7.05)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.05)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.05)/(g1^2*g2^2*g3^2*g6^2) + (g2^2*g6^2*t^7.05)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.05)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.05)/(g1^2*g2^2*g3^2*g5^2) + (g2^2*g3^2*t^7.1)/(g1^2*g4^2*g5^2*g6^2) + (g2^2*g4^2*t^7.1)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g4^2*t^7.1)/(g1^2*g2^2*g5^2*g6^2) + (g1^2*g5^2*t^7.15)/(g2^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.15)/(g2^2*g3^2*g4^2*g5^2) + g5^8*g6^8*t^7.42 + (g5^7*t^7.46)/(g1^5*g2*g3*g4^5*g6) + (g5^7*t^7.46)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.46)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.46)/(g1^5*g2*g3*g4^5) + (g5^3*g6^3*t^7.46)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.46)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.46)/(g1^5*g2*g3*g4^5*g5) + (g6^7*t^7.46)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.46)/(g1^5*g2^5*g3*g4*g5) + g2^4*g5^8*g6^4*t^7.47 + g3^4*g5^8*g6^4*t^7.47 + g4^4*g5^8*g6^4*t^7.47 + g2^4*g5^4*g6^8*t^7.47 + g3^4*g5^4*g6^8*t^7.47 + g4^4*g5^4*g6^8*t^7.47 + g2^8*g5^8*t^7.51 + g2^4*g3^4*g5^8*t^7.51 + g3^8*g5^8*t^7.51 + g2^4*g4^4*g5^8*t^7.51 + g3^4*g4^4*g5^8*t^7.51 + g4^8*g5^8*t^7.51 + t^7.51/(g1^10*g2^2*g3^2*g4^10*g5^2*g6^2) + t^7.51/(g1^10*g2^2*g3^6*g4^6*g5^2*g6^2) + t^7.51/(g1^10*g2^6*g3^2*g4^6*g5^2*g6^2) + t^7.51/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + t^7.51/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + t^7.51/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^3*g5^3*t^7.51)/(g1^5*g3*g4^5*g6) + (g3^3*g5^3*t^7.51)/(g1^5*g2*g4^5*g6) + (g2^3*g5^3*t^7.51)/(g1^5*g3^5*g4*g6) + (2*g5^3*t^7.51)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.51)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2^5*g3*g6) + (g2^3*g6^3*t^7.51)/(g1^5*g3*g4^5*g5) + (g3^3*g6^3*t^7.51)/(g1^5*g2*g4^5*g5) + (g2^3*g6^3*t^7.51)/(g1^5*g3^5*g4*g5) + (2*g6^3*t^7.51)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.51)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.51)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.51)/(g1^5*g2^5*g3*g5) + g2^8*g5^4*g6^4*t^7.51 + 2*g2^4*g3^4*g5^4*g6^4*t^7.51 + g3^8*g5^4*g6^4*t^7.51 + 2*g2^4*g4^4*g5^4*g6^4*t^7.51 + 2*g3^4*g4^4*g5^4*g6^4*t^7.51 + g4^8*g5^4*g6^4*t^7.51 + g2^8*g6^8*t^7.51 + g2^4*g3^4*g6^8*t^7.51 + g3^8*g6^8*t^7.51 + g2^4*g4^4*g6^8*t^7.51 + g3^4*g4^4*g6^8*t^7.51 + g4^8*g6^8*t^7.51 + (g2^7*t^7.55)/(g1^5*g3*g4^5*g5*g6) + (g2^3*g3^3*t^7.55)/(g1^5*g4^5*g5*g6) + (g3^7*t^7.55)/(g1^5*g2*g4^5*g5*g6) + (g2^7*t^7.55)/(g1^5*g3^5*g4*g5*g6) + (2*g2^3*t^7.55)/(g1^5*g3*g4*g5*g6) + (2*g3^3*t^7.55)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.55)/(g1^5*g2^5*g4*g5*g6) + (g2^3*g4^3*t^7.55)/(g1^5*g3^5*g5*g6) + (2*g4^3*t^7.55)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.55)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.55)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.55)/(g1^5*g2^5*g3*g5*g6) + g2^8*g3^4*g5^4*t^7.56 + g2^4*g3^8*g5^4*t^7.56 + g2^8*g4^4*g5^4*t^7.56 + 2*g2^4*g3^4*g4^4*g5^4*t^7.56 + g3^8*g4^4*g5^4*t^7.56 + g2^4*g4^8*g5^4*t^7.56 + g3^4*g4^8*g5^4*t^7.56 + g2^8*g3^4*g6^4*t^7.56 + g2^4*g3^8*g6^4*t^7.56 + g2^8*g4^4*g6^4*t^7.56 + 2*g2^4*g3^4*g4^4*g6^4*t^7.56 + g3^8*g4^4*g6^4*t^7.56 + g2^4*g4^8*g6^4*t^7.56 + g3^4*g4^8*g6^4*t^7.56 + g1^4*g5^8*g6^4*t^7.56 + g1^4*g5^4*g6^8*t^7.56 + g2^8*g3^8*t^7.6 + g2^8*g3^4*g4^4*t^7.6 + g2^4*g3^8*g4^4*t^7.6 + g2^8*g4^8*t^7.6 + g2^4*g3^4*g4^8*t^7.6 + g3^8*g4^8*t^7.6 + g1^4*g2^4*g5^8*t^7.61 + g1^4*g3^4*g5^8*t^7.61 + g1^4*g4^4*g5^8*t^7.61 + g1^4*g2^4*g5^4*g6^4*t^7.61 + g1^4*g3^4*g5^4*g6^4*t^7.61 + g1^4*g4^4*g5^4*g6^4*t^7.61 + g1^4*g2^4*g6^8*t^7.61 + g1^4*g3^4*g6^8*t^7.61 + g1^4*g4^4*g6^8*t^7.61 - (g5^3*t^7.65)/(g1*g2*g3*g4*g6^5) - (2*t^7.65)/(g1*g2*g3*g4*g5*g6) - (g6^3*t^7.65)/(g1*g2*g3*g4*g5^5) - g1^4*g2^4*g3^4*g4^4*t^7.69 - (g2^3*t^7.69)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.69)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.69)/(g1*g2*g3*g5*g6^5) - (g2^3*t^7.69)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.69)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.69)/(g1*g2*g3*g5^5*g6) + g1^8*g5^8*t^7.7 + g1^8*g5^4*g6^4*t^7.7 + g1^8*g6^8*t^7.7 - (g1^3*t^7.79)/(g2*g3*g4*g5*g6^5) - (g1^3*t^7.79)/(g2*g3*g4*g5^5*g6) + (g5^4*g6^4*t^7.92)/(g1^8*g2^8) + (g5^4*g6^4*t^7.92)/(g1^8*g3^8) + (g5^4*g6^4*t^7.92)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.92)/(g1^8*g4^8) + (g5^4*g6^4*t^7.92)/(g1^8*g2^4*g4^4) + (g5^4*g6^4*t^7.92)/(g1^8*g3^4*g4^4) + (2*g5^4*t^7.97)/(g1^8*g2^4) + (g2^4*g5^4*t^7.97)/(g1^8*g3^8) + (2*g5^4*t^7.97)/(g1^8*g3^4) + (g3^4*g5^4*t^7.97)/(g1^8*g2^8) + (g2^4*g5^4*t^7.97)/(g1^8*g4^8) + (g3^4*g5^4*t^7.97)/(g1^8*g4^8) + (2*g5^4*t^7.97)/(g1^8*g4^4) + (g2^4*g5^4*t^7.97)/(g1^8*g3^4*g4^4) + (g3^4*g5^4*t^7.97)/(g1^8*g2^4*g4^4) + (g4^4*g5^4*t^7.97)/(g1^8*g2^8) + (g4^4*g5^4*t^7.97)/(g1^8*g3^8) + (g4^4*g5^4*t^7.97)/(g1^8*g2^4*g3^4) + (2*g6^4*t^7.97)/(g1^8*g2^4) + (g2^4*g6^4*t^7.97)/(g1^8*g3^8) + (2*g6^4*t^7.97)/(g1^8*g3^4) + (g3^4*g6^4*t^7.97)/(g1^8*g2^8) + (g2^4*g6^4*t^7.97)/(g1^8*g4^8) + (g3^4*g6^4*t^7.97)/(g1^8*g4^8) + (2*g6^4*t^7.97)/(g1^8*g4^4) + (g2^4*g6^4*t^7.97)/(g1^8*g3^4*g4^4) + (g3^4*g6^4*t^7.97)/(g1^8*g2^4*g4^4) + (g4^4*g6^4*t^7.97)/(g1^8*g2^8) + (g4^4*g6^4*t^7.97)/(g1^8*g3^8) + (g4^4*g6^4*t^7.97)/(g1^8*g2^4*g3^4) + t^8.01/g1^8 + (g2^4*t^8.01)/(g1^8*g3^4) + (g3^4*t^8.01)/(g1^8*g2^4) + (g2^4*g3^4*t^8.01)/(g1^8*g4^8) + (g2^4*t^8.01)/(g1^8*g4^4) + (g3^4*t^8.01)/(g1^8*g4^4) + (g4^4*t^8.01)/(g1^8*g2^4) + (g2^4*g4^4*t^8.01)/(g1^8*g3^8) + (g4^4*t^8.01)/(g1^8*g3^4) + (g3^4*g4^4*t^8.01)/(g1^8*g2^8) - (g5^4*t^8.06)/(g1^4*g2^4*g3^4) - (g5^4*t^8.06)/(g1^4*g2^4*g4^4) - (g5^4*t^8.06)/(g1^4*g3^4*g4^4) - g1*g2*g3*g4*g5^9*g6*t^8.06 - (g6^4*t^8.06)/(g1^4*g2^4*g3^4) - (g6^4*t^8.06)/(g1^4*g2^4*g4^4) - (g6^4*t^8.06)/(g1^4*g3^4*g4^4) - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 - (7*t^8.11)/(g1^4*g2^4) - (g2^4*t^8.11)/(g1^4*g3^8) - (7*t^8.11)/(g1^4*g3^4) - (g3^4*t^8.11)/(g1^4*g2^8) - (g2^4*t^8.11)/(g1^4*g4^8) - (g3^4*t^8.11)/(g1^4*g4^8) - (7*t^8.11)/(g1^4*g4^4) - (2*g2^4*t^8.11)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.11)/(g1^4*g2^4*g4^4) - (g4^4*t^8.11)/(g1^4*g2^8) - (g4^4*t^8.11)/(g1^4*g3^8) - (2*g4^4*t^8.11)/(g1^4*g2^4*g3^4) - (g5^4*t^8.11)/(g1^4*g2^4*g6^4) - (g5^4*t^8.11)/(g1^4*g3^4*g6^4) - (g5^4*t^8.11)/(g1^4*g4^4*g6^4) - g1*g2^5*g3*g4*g5^5*g6*t^8.11 - g1*g2*g3^5*g4*g5^5*g6*t^8.11 - g1*g2*g3*g4^5*g5^5*g6*t^8.11 - (g6^4*t^8.11)/(g1^4*g2^4*g5^4) - (g6^4*t^8.11)/(g1^4*g3^4*g5^4) - (g6^4*t^8.11)/(g1^4*g4^4*g5^4) - g1*g2^5*g3*g4*g5*g6^5*t^8.11 - g1*g2*g3^5*g4*g5*g6^5*t^8.11 - g1*g2*g3*g4^5*g5*g6^5*t^8.11 - (2*t^8.15)/(g1^4*g5^4) - (g2^4*t^8.15)/(g1^4*g3^4*g5^4) - (g3^4*t^8.15)/(g1^4*g2^4*g5^4) - (g2^4*t^8.15)/(g1^4*g4^4*g5^4) - (g3^4*t^8.15)/(g1^4*g4^4*g5^4) - (g4^4*t^8.15)/(g1^4*g2^4*g5^4) - (g4^4*t^8.15)/(g1^4*g3^4*g5^4) - (2*t^8.15)/(g1^4*g6^4) - (g2^4*t^8.15)/(g1^4*g3^4*g6^4) - (g3^4*t^8.15)/(g1^4*g2^4*g6^4) - (g2^4*t^8.15)/(g1^4*g4^4*g6^4) - (g3^4*t^8.15)/(g1^4*g4^4*g6^4) - (g4^4*t^8.15)/(g1^4*g2^4*g6^4) - (g4^4*t^8.15)/(g1^4*g3^4*g6^4) - g1*g2^9*g3*g4*g5*g6*t^8.15 - g1*g2^5*g3^5*g4*g5*g6*t^8.15 - g1*g2*g3^9*g4*g5*g6*t^8.15 - g1*g2^5*g3*g4^5*g5*g6*t^8.15 - g1*g2*g3^5*g4^5*g5*g6*t^8.15 - g1*g2*g3*g4^9*g5*g6*t^8.15 - t^8.2/(g2^4*g3^4) - t^8.2/(g2^4*g4^4) - t^8.2/(g3^4*g4^4) - g1^5*g2*g3*g4*g5^5*g6*t^8.2 - g1^5*g2*g3*g4*g5*g6^5*t^8.2 - g1^5*g2^5*g3*g4*g5*g6*t^8.25 - g1^5*g2*g3^5*g4*g5*g6*t^8.25 - g1^5*g2*g3*g4^5*g5*g6*t^8.25 + t^8.29/g5^8 + t^8.29/g6^8 + t^8.29/(g5^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.34 + t^8.42/(g1^16*g2^16) + t^8.42/(g1^16*g3^16) + t^8.42/(g1^16*g2^4*g3^12) + t^8.42/(g1^16*g2^8*g3^8) + t^8.42/(g1^16*g2^12*g3^4) + t^8.42/(g1^16*g4^16) + t^8.42/(g1^16*g2^4*g4^12) + t^8.42/(g1^16*g3^4*g4^12) + t^8.42/(g1^16*g2^8*g4^8) + t^8.42/(g1^16*g3^8*g4^8) + t^8.42/(g1^16*g2^4*g3^4*g4^8) + t^8.42/(g1^16*g2^12*g4^4) + t^8.42/(g1^16*g3^12*g4^4) + t^8.42/(g1^16*g2^4*g3^8*g4^4) + t^8.42/(g1^16*g2^8*g3^4*g4^4) + (g5^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g5*g6*t^8.66)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.66)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.7/(g1^8*g2^4*g3^4*g4^8*g5^4*g6^4) + t^8.7/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.7/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g2*g5*t^8.7)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.7)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.7)/(g1^3*g2^3*g3^3*g6^3) + (g2*g6*t^8.7)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.7)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.7)/(g1^3*g2^3*g3^3*g5^3) + (g2^5*t^8.75)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.75)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.75)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.75)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.75)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.75)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.8)/(g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.8)/(g2^3*g3^3*g4^3*g5^3) + (g1*g2*t^8.84)/(g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.84)/(g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.84)/(g2^3*g3^3*g5^3*g6^3) + (g1^5*t^8.94)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.65/(g1*g2*g3*g4*g5*g6*y) - t^6.75/(g1^5*g2*g3*g4^5*g5*g6*y) - t^6.75/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.75/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.21/(g1^8*g2^4*g3^4*y) + t^7.21/(g1^8*g2^4*g4^4*y) + t^7.21/(g1^8*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*g6*t^7.35)/y - t^7.95/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.4/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*y) + t^8.4/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.4/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.54)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.54)/(g2*g4*g5*g6*y) + (g1^3*g4^3*t^8.54)/(g2*g3*g5*g6*y) + (g5^4*g6^4*t^8.82)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.82)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.82)/(g1^4*g4^4*y) + (3*g5^4*t^8.86)/(g1^4*y) + (g2^4*g5^4*t^8.86)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.86)/(g1^4*g2^4*y) + (g2^4*g5^4*t^8.86)/(g1^4*g4^4*y) + (g3^4*g5^4*t^8.86)/(g1^4*g4^4*y) + (g4^4*g5^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.86)/(g1^4*g3^4*y) - t^8.86/(g1^9*g2*g3*g4^9*g5*g6*y) - t^8.86/(g1^9*g2*g3^5*g4^5*g5*g6*y) - t^8.86/(g1^9*g2^5*g3*g4^5*g5*g6*y) - t^8.86/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.86/(g1^9*g2^5*g3^5*g4*g5*g6*y) - t^8.86/(g1^9*g2^9*g3*g4*g5*g6*y) + (3*g6^4*t^8.86)/(g1^4*y) + (g2^4*g6^4*t^8.86)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g2^4*g6^4*t^8.86)/(g1^4*g4^4*y) + (g3^4*g6^4*t^8.86)/(g1^4*g4^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g3^4*y) + (2*g2^4*t^8.91)/(g1^4*y) + (2*g3^4*t^8.91)/(g1^4*y) + (g2^4*g3^4*t^8.91)/(g1^4*g4^4*y) + (2*g4^4*t^8.91)/(g1^4*y) + (g2^4*g4^4*t^8.91)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.91)/(g1^4*g2^4*y) + (g5^4*t^8.96)/(g2^4*y) + (g5^4*t^8.96)/(g3^4*y) + (g5^4*t^8.96)/(g4^4*y) + (g6^4*t^8.96)/(g2^4*y) + (g6^4*t^8.96)/(g3^4*y) + (g6^4*t^8.96)/(g4^4*y) - (t^4.65*y)/(g1*g2*g3*g4*g5*g6) - (t^6.75*y)/(g1^5*g2*g3*g4^5*g5*g6) - (t^6.75*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.75*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.21*y)/(g1^8*g2^4*g3^4) + (t^7.21*y)/(g1^8*g2^4*g4^4) + (t^7.21*y)/(g1^8*g3^4*g4^4) + g1*g2*g3*g4*g5*g6*t^7.35*y - (t^7.95*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.4*y)/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + (t^8.4*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.4*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.54*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.54*y)/(g2*g4*g5*g6) + (g1^3*g4^3*t^8.54*y)/(g2*g3*g5*g6) + (g5^4*g6^4*t^8.82*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.82*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.82*y)/(g1^4*g4^4) + (3*g5^4*t^8.86*y)/g1^4 + (g2^4*g5^4*t^8.86*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.86*y)/(g1^4*g2^4) + (g2^4*g5^4*t^8.86*y)/(g1^4*g4^4) + (g3^4*g5^4*t^8.86*y)/(g1^4*g4^4) + (g4^4*g5^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.86*y)/(g1^4*g3^4) - (t^8.86*y)/(g1^9*g2*g3*g4^9*g5*g6) - (t^8.86*y)/(g1^9*g2*g3^5*g4^5*g5*g6) - (t^8.86*y)/(g1^9*g2^5*g3*g4^5*g5*g6) - (t^8.86*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.86*y)/(g1^9*g2^5*g3^5*g4*g5*g6) - (t^8.86*y)/(g1^9*g2^9*g3*g4*g5*g6) + (3*g6^4*t^8.86*y)/g1^4 + (g2^4*g6^4*t^8.86*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g2^4*g6^4*t^8.86*y)/(g1^4*g4^4) + (g3^4*g6^4*t^8.86*y)/(g1^4*g4^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g3^4) + (2*g2^4*t^8.91*y)/g1^4 + (2*g3^4*t^8.91*y)/g1^4 + (g2^4*g3^4*t^8.91*y)/(g1^4*g4^4) + (2*g4^4*t^8.91*y)/g1^4 + (g2^4*g4^4*t^8.91*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.91*y)/(g1^4*g2^4) + (g5^4*t^8.96*y)/g2^4 + (g5^4*t^8.96*y)/g3^4 + (g5^4*t^8.96*y)/g4^4 + (g6^4*t^8.96*y)/g2^4 + (g6^4*t^8.96*y)/g3^4 + (g6^4*t^8.96*y)/g4^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55768 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_1q_3\tilde{q}_1$ | 0.9187 | 1.1454 | 0.8021 | [X:[], M:[0.7149, 0.7001, 0.7001], q:[0.6574, 0.6278, 0.6426], qb:[0.6426, 0.618, 0.618], phi:[0.5484]] | 2*t^2.1 + t^2.14 + t^3.29 + t^3.71 + 2*t^3.74 + 4*t^3.78 + 2*t^3.81 + 2*t^3.83 + t^3.86 + 3*t^4.2 + 2*t^4.24 + t^4.29 + 3*t^5.35 + 2*t^5.38 + 2*t^5.39 + t^5.41 + 4*t^5.43 + t^5.44 + 2*t^5.46 + 2*t^5.47 + 4*t^5.5 + 2*t^5.55 + t^5.59 + 2*t^5.81 + 4*t^5.84 + t^5.85 + 8*t^5.88 + 3*t^5.91 + 4*t^5.93 - 9*t^6. - t^4.65/y - t^4.65*y | detail | |
55720 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.9181 | 1.142 | 0.804 | [X:[], M:[0.7248, 0.7095, 0.7095], q:[0.6561, 0.6192, 0.6344], qb:[0.6344, 0.6376, 0.6376], phi:[0.5452]] | 2*t^2.13 + t^2.17 + t^3.27 + 2*t^3.76 + 2*t^3.77 + t^3.81 + 4*t^3.82 + t^3.83 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.35 + t^5.35 + 4*t^5.4 + 2*t^5.41 + 3*t^5.44 + 5*t^5.45 + 4*t^5.46 + 2*t^5.51 + 2*t^5.52 + t^5.57 + 3*t^5.89 + 4*t^5.9 + 8*t^5.94 + t^5.98 - 9*t^6. - t^4.64/y - t^4.64*y | detail | |
55762 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_2q_3\tilde{q}_2$ | 0.918 | 1.1415 | 0.8042 | [X:[], M:[0.7159, 0.7159, 0.7159], q:[0.6473, 0.6367, 0.6367], qb:[0.6367, 0.6473, 0.6164], phi:[0.5447]] | 3*t^2.15 + t^3.27 + 3*t^3.76 + 2*t^3.79 + 3*t^3.82 + 3*t^3.85 + t^3.88 + 6*t^4.3 + t^5.33 + 3*t^5.39 + 3*t^5.42 + 2*t^5.43 + 6*t^5.45 + 6*t^5.49 + 3*t^5.52 + 7*t^5.91 + 3*t^5.94 + 3*t^5.97 - 5*t^6. - t^4.63/y - t^4.63*y | detail | |
55743 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1^2$ | 0.9297 | 1.1699 | 0.7948 | [X:[], M:[0.7183, 0.7183, 0.7183, 0.8581], q:[0.663, 0.6188, 0.6188], qb:[0.6188, 0.5985, 0.5985], phi:[0.571]] | 3*t^2.15 + t^2.57 + t^3.59 + 6*t^3.65 + 3*t^3.71 + 2*t^3.78 + 6*t^4.31 + 3*t^4.73 + t^5.15 + 3*t^5.3 + 6*t^5.36 + 6*t^5.43 + 2*t^5.5 + 3*t^5.56 + t^5.69 + 3*t^5.75 + 16*t^5.81 + 6*t^5.87 - 14*t^6. - t^4.71/y - t^4.71*y | detail | |
55789 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ | 0.9393 | 1.186 | 0.792 | [X:[], M:[0.6973, 0.6973, 0.6973, 0.6973], q:[0.6723, 0.6304, 0.6304], qb:[0.6304, 0.6304, 0.6175], phi:[0.5472]] | 4*t^2.09 + t^3.28 + 4*t^3.74 + 6*t^3.78 + t^3.87 + 10*t^4.18 + t^5.35 + 4*t^5.37 + 4*t^5.39 + 10*t^5.42 + t^5.51 + 4*t^5.55 + t^5.68 + 15*t^5.84 + 20*t^5.87 - 18*t^6. - t^4.64/y - t^4.64*y | detail | |
55698 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_2$ | 0.9057 | 1.1374 | 0.7963 | [X:[], M:[0.6745, 0.6745, 0.6745], q:[0.7341, 0.5914, 0.5914], qb:[0.5914, 0.72, 0.5882], phi:[0.5459]] | 3*t^2.02 + t^3.28 + 3*t^3.54 + 3*t^3.55 + t^3.92 + 3*t^3.93 + t^3.97 + 6*t^4.05 + t^4.36 + t^5.17 + 3*t^5.18 + 6*t^5.19 + 3*t^5.3 + 9*t^5.56 + 9*t^5.57 + 3*t^5.95 + 9*t^5.96 - 11*t^6. - t^4.64/y - t^4.64*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55444 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ | 0.8986 | 1.1079 | 0.8111 | [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] | 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y | detail |