Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55789 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ | 0.9393 | 1.186 | 0.792 | [X:[], M:[0.6973, 0.6973, 0.6973, 0.6973], q:[0.6723, 0.6304, 0.6304], qb:[0.6304, 0.6304, 0.6175], phi:[0.5472]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [-4, 0, 0, -4, 0, 0], [-4, 0, 0, 0, -4, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ M_4^2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ \phi_1\tilde{q}_3^2$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_2q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_4q_2\tilde{q}_3$, $ M_4q_3\tilde{q}_3$, $ M_4\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_1$, $ M_4q_3\tilde{q}_2$, $ M_3q_2q_3$, $ M_2q_3\tilde{q}_1$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_4q_2q_3$, $ M_4q_2\tilde{q}_1$, $ M_4q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ | . | -18 | 4*t^2.09 + t^3.28 + 4*t^3.74 + 6*t^3.78 + t^3.87 + 10*t^4.18 + t^5.35 + 4*t^5.37 + 4*t^5.39 + 10*t^5.42 + t^5.51 + 4*t^5.55 + t^5.68 + 15*t^5.84 + 20*t^5.87 - 18*t^6. - 4*t^6.04 - 4*t^6.13 - t^6.16 + 20*t^6.28 + t^6.57 + 4*t^7.03 + 6*t^7.07 + t^7.15 + 4*t^7.44 + 10*t^7.47 + 15*t^7.48 + 10*t^7.49 + 36*t^7.52 + 20*t^7.53 + 20*t^7.56 + 4*t^7.61 - t^7.64 - 4*t^7.68 - 4*t^7.69 + t^7.74 - t^7.81 + 36*t^7.93 + 45*t^7.97 - 6*t^8.05 - t^8.06 - 68*t^8.09 - 4*t^8.1 - 15*t^8.13 - 10*t^8.14 - 6*t^8.22 - t^8.23 - 4*t^8.27 + t^8.3 + 35*t^8.37 - t^8.39 + t^8.63 + 4*t^8.66 + 4*t^8.67 + 10*t^8.71 + t^8.79 + 4*t^8.83 + t^8.96 - t^4.64/y - (4*t^6.73)/y + (6*t^7.18)/y + t^7.36/y - t^7.92/y + (4*t^8.37)/y + (4*t^8.55)/y - (10*t^8.83)/y + (16*t^8.84)/y + (24*t^8.87)/y + (4*t^8.96)/y - t^4.64*y - 4*t^6.73*y + 6*t^7.18*y + t^7.36*y - t^7.92*y + 4*t^8.37*y + 4*t^8.55*y - 10*t^8.83*y + 16*t^8.84*y + 24*t^8.87*y + 4*t^8.96*y | t^2.09/(g1^4*g2^4) + t^2.09/(g1^4*g3^4) + t^2.09/(g1^4*g4^4) + t^2.09/(g1^4*g5^4) + t^3.28/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g2^4*g6^4*t^3.74 + g3^4*g6^4*t^3.74 + g4^4*g6^4*t^3.74 + g5^4*g6^4*t^3.74 + g2^4*g3^4*t^3.78 + g2^4*g4^4*t^3.78 + g3^4*g4^4*t^3.78 + g2^4*g5^4*t^3.78 + g3^4*g5^4*t^3.78 + g4^4*g5^4*t^3.78 + g1^4*g6^4*t^3.87 + t^4.18/(g1^8*g2^8) + t^4.18/(g1^8*g3^8) + t^4.18/(g1^8*g2^4*g3^4) + t^4.18/(g1^8*g4^8) + t^4.18/(g1^8*g2^4*g4^4) + t^4.18/(g1^8*g3^4*g4^4) + t^4.18/(g1^8*g5^8) + t^4.18/(g1^8*g2^4*g5^4) + t^4.18/(g1^8*g3^4*g5^4) + t^4.18/(g1^8*g4^4*g5^4) + (g6^7*t^5.35)/(g1*g2*g3*g4*g5) + t^5.37/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + t^5.37/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + t^5.37/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.37/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g2^3*g6^3*t^5.39)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.39)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.39)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.39)/(g1*g2*g3*g4) + (g2^7*t^5.42)/(g1*g3*g4*g5*g6) + (g2^3*g3^3*t^5.42)/(g1*g4*g5*g6) + (g3^7*t^5.42)/(g1*g2*g4*g5*g6) + (g2^3*g4^3*t^5.42)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.42)/(g1*g2*g5*g6) + (g4^7*t^5.42)/(g1*g2*g3*g5*g6) + (g2^3*g5^3*t^5.42)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.42)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.42)/(g1*g2*g3*g6) + (g5^7*t^5.42)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.51)/(g2*g3*g4*g5) + (g1^3*g2^3*t^5.55)/(g3*g4*g5*g6) + (g1^3*g3^3*t^5.55)/(g2*g4*g5*g6) + (g1^3*g4^3*t^5.55)/(g2*g3*g5*g6) + (g1^3*g5^3*t^5.55)/(g2*g3*g4*g6) + (g1^7*t^5.68)/(g2*g3*g4*g5*g6) + (3*g6^4*t^5.84)/g1^4 + (g2^4*g6^4*t^5.84)/(g1^4*g3^4) + (g3^4*g6^4*t^5.84)/(g1^4*g2^4) + (g2^4*g6^4*t^5.84)/(g1^4*g4^4) + (g3^4*g6^4*t^5.84)/(g1^4*g4^4) + (g4^4*g6^4*t^5.84)/(g1^4*g2^4) + (g4^4*g6^4*t^5.84)/(g1^4*g3^4) + (g2^4*g6^4*t^5.84)/(g1^4*g5^4) + (g3^4*g6^4*t^5.84)/(g1^4*g5^4) + (g4^4*g6^4*t^5.84)/(g1^4*g5^4) + (g5^4*g6^4*t^5.84)/(g1^4*g2^4) + (g5^4*g6^4*t^5.84)/(g1^4*g3^4) + (g5^4*g6^4*t^5.84)/(g1^4*g4^4) + (2*g2^4*t^5.87)/g1^4 + (2*g3^4*t^5.87)/g1^4 + (g2^4*g3^4*t^5.87)/(g1^4*g4^4) + (2*g4^4*t^5.87)/g1^4 + (g2^4*g4^4*t^5.87)/(g1^4*g3^4) + (g3^4*g4^4*t^5.87)/(g1^4*g2^4) + (g2^4*g3^4*t^5.87)/(g1^4*g5^4) + (g2^4*g4^4*t^5.87)/(g1^4*g5^4) + (g3^4*g4^4*t^5.87)/(g1^4*g5^4) + (2*g5^4*t^5.87)/g1^4 + (g2^4*g5^4*t^5.87)/(g1^4*g3^4) + (g3^4*g5^4*t^5.87)/(g1^4*g2^4) + (g2^4*g5^4*t^5.87)/(g1^4*g4^4) + (g3^4*g5^4*t^5.87)/(g1^4*g4^4) + (g4^4*g5^4*t^5.87)/(g1^4*g2^4) + (g4^4*g5^4*t^5.87)/(g1^4*g3^4) - 6*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 - (g2^4*t^6.)/g5^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g2^4*t^6.04)/g6^4 - (g3^4*t^6.04)/g6^4 - (g4^4*t^6.04)/g6^4 - (g5^4*t^6.04)/g6^4 - (g1^4*t^6.13)/g2^4 - (g1^4*t^6.13)/g3^4 - (g1^4*t^6.13)/g4^4 - (g1^4*t^6.13)/g5^4 - (g1^4*t^6.16)/g6^4 + t^6.28/(g1^12*g2^12) + t^6.28/(g1^12*g3^12) + t^6.28/(g1^12*g2^4*g3^8) + t^6.28/(g1^12*g2^8*g3^4) + t^6.28/(g1^12*g4^12) + t^6.28/(g1^12*g2^4*g4^8) + t^6.28/(g1^12*g3^4*g4^8) + t^6.28/(g1^12*g2^8*g4^4) + t^6.28/(g1^12*g3^8*g4^4) + t^6.28/(g1^12*g2^4*g3^4*g4^4) + t^6.28/(g1^12*g5^12) + t^6.28/(g1^12*g2^4*g5^8) + t^6.28/(g1^12*g3^4*g5^8) + t^6.28/(g1^12*g4^4*g5^8) + t^6.28/(g1^12*g2^8*g5^4) + t^6.28/(g1^12*g3^8*g5^4) + t^6.28/(g1^12*g2^4*g3^4*g5^4) + t^6.28/(g1^12*g4^8*g5^4) + t^6.28/(g1^12*g2^4*g4^4*g5^4) + t^6.28/(g1^12*g3^4*g4^4*g5^4) + t^6.57/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g2^2*g6^2*t^7.03)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.03)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.03)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.03)/(g1^2*g2^2*g3^2*g4^2) + (g2^2*g3^2*t^7.07)/(g1^2*g4^2*g5^2*g6^2) + (g2^2*g4^2*t^7.07)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g4^2*t^7.07)/(g1^2*g2^2*g5^2*g6^2) + (g2^2*g5^2*t^7.07)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.07)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.07)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.15)/(g2^2*g3^2*g4^2*g5^2) + (g6^7*t^7.44)/(g1^5*g2*g3*g4*g5^5) + (g6^7*t^7.44)/(g1^5*g2*g3*g4^5*g5) + (g6^7*t^7.44)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.44)/(g1^5*g2^5*g3*g4*g5) + t^7.47/(g1^10*g2^2*g3^2*g4^2*g5^10*g6^2) + t^7.47/(g1^10*g2^2*g3^2*g4^6*g5^6*g6^2) + t^7.47/(g1^10*g2^2*g3^6*g4^2*g5^6*g6^2) + t^7.47/(g1^10*g2^6*g3^2*g4^2*g5^6*g6^2) + t^7.47/(g1^10*g2^2*g3^2*g4^10*g5^2*g6^2) + t^7.47/(g1^10*g2^2*g3^6*g4^6*g5^2*g6^2) + t^7.47/(g1^10*g2^6*g3^2*g4^6*g5^2*g6^2) + t^7.47/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + t^7.47/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + t^7.47/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g2^3*g6^3*t^7.48)/(g1^5*g3*g4*g5^5) + (g3^3*g6^3*t^7.48)/(g1^5*g2*g4*g5^5) + (g4^3*g6^3*t^7.48)/(g1^5*g2*g3*g5^5) + (g2^3*g6^3*t^7.48)/(g1^5*g3*g4^5*g5) + (g3^3*g6^3*t^7.48)/(g1^5*g2*g4^5*g5) + (g2^3*g6^3*t^7.48)/(g1^5*g3^5*g4*g5) + (3*g6^3*t^7.48)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.48)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.48)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.48)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.48)/(g1^5*g2*g3*g4^5) + (g5^3*g6^3*t^7.48)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.48)/(g1^5*g2^5*g3*g4) + g2^8*g6^8*t^7.49 + g2^4*g3^4*g6^8*t^7.49 + g3^8*g6^8*t^7.49 + g2^4*g4^4*g6^8*t^7.49 + g3^4*g4^4*g6^8*t^7.49 + g4^8*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g3^4*g5^4*g6^8*t^7.49 + g4^4*g5^4*g6^8*t^7.49 + g5^8*g6^8*t^7.49 + (g2^7*t^7.52)/(g1^5*g3*g4*g5^5*g6) + (g2^3*g3^3*t^7.52)/(g1^5*g4*g5^5*g6) + (g3^7*t^7.52)/(g1^5*g2*g4*g5^5*g6) + (g2^3*g4^3*t^7.52)/(g1^5*g3*g5^5*g6) + (g3^3*g4^3*t^7.52)/(g1^5*g2*g5^5*g6) + (g4^7*t^7.52)/(g1^5*g2*g3*g5^5*g6) + (g2^7*t^7.52)/(g1^5*g3*g4^5*g5*g6) + (g2^3*g3^3*t^7.52)/(g1^5*g4^5*g5*g6) + (g3^7*t^7.52)/(g1^5*g2*g4^5*g5*g6) + (g2^7*t^7.52)/(g1^5*g3^5*g4*g5*g6) + (3*g2^3*t^7.52)/(g1^5*g3*g4*g5*g6) + (3*g3^3*t^7.52)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.52)/(g1^5*g2^5*g4*g5*g6) + (g2^3*g4^3*t^7.52)/(g1^5*g3^5*g5*g6) + (3*g4^3*t^7.52)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.52)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.52)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.52)/(g1^5*g2^5*g3*g5*g6) + (g2^3*g5^3*t^7.52)/(g1^5*g3*g4^5*g6) + (g3^3*g5^3*t^7.52)/(g1^5*g2*g4^5*g6) + (g2^3*g5^3*t^7.52)/(g1^5*g3^5*g4*g6) + (3*g5^3*t^7.52)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.52)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.52)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.52)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.52)/(g1^5*g2*g3*g4^5*g6) + (g5^7*t^7.52)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.52)/(g1^5*g2^5*g3*g4*g6) + g2^8*g3^4*g6^4*t^7.53 + g2^4*g3^8*g6^4*t^7.53 + g2^8*g4^4*g6^4*t^7.53 + 2*g2^4*g3^4*g4^4*g6^4*t^7.53 + g3^8*g4^4*g6^4*t^7.53 + g2^4*g4^8*g6^4*t^7.53 + g3^4*g4^8*g6^4*t^7.53 + g2^8*g5^4*g6^4*t^7.53 + 2*g2^4*g3^4*g5^4*g6^4*t^7.53 + g3^8*g5^4*g6^4*t^7.53 + 2*g2^4*g4^4*g5^4*g6^4*t^7.53 + 2*g3^4*g4^4*g5^4*g6^4*t^7.53 + g4^8*g5^4*g6^4*t^7.53 + g2^4*g5^8*g6^4*t^7.53 + g3^4*g5^8*g6^4*t^7.53 + g4^4*g5^8*g6^4*t^7.53 + g2^8*g3^8*t^7.56 + g2^8*g3^4*g4^4*t^7.56 + g2^4*g3^8*g4^4*t^7.56 + g2^8*g4^8*t^7.56 + g2^4*g3^4*g4^8*t^7.56 + g3^8*g4^8*t^7.56 + g2^8*g3^4*g5^4*t^7.56 + g2^4*g3^8*g5^4*t^7.56 + g2^8*g4^4*g5^4*t^7.56 + 2*g2^4*g3^4*g4^4*g5^4*t^7.56 + g3^8*g4^4*g5^4*t^7.56 + g2^4*g4^8*g5^4*t^7.56 + g3^4*g4^8*g5^4*t^7.56 + g2^8*g5^8*t^7.56 + g2^4*g3^4*g5^8*t^7.56 + g3^8*g5^8*t^7.56 + g2^4*g4^4*g5^8*t^7.56 + g3^4*g4^4*g5^8*t^7.56 + g4^8*g5^8*t^7.56 + g1^4*g2^4*g6^8*t^7.61 + g1^4*g3^4*g6^8*t^7.61 + g1^4*g4^4*g6^8*t^7.61 + g1^4*g5^4*g6^8*t^7.61 - t^7.64/(g1*g2*g3*g4*g5*g6) - (g2^3*t^7.68)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.68)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.68)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.68)/(g1*g2*g3*g4*g6^5) - g1^4*g2^4*g3^4*g4^4*t^7.69 - g1^4*g2^4*g3^4*g5^4*t^7.69 - g1^4*g2^4*g4^4*g5^4*t^7.69 - g1^4*g3^4*g4^4*g5^4*t^7.69 + g1^8*g6^8*t^7.74 - (g1^3*t^7.81)/(g2*g3*g4*g5*g6^5) + (3*g6^4*t^7.93)/(g1^8*g2^4) + (g2^4*g6^4*t^7.93)/(g1^8*g3^8) + (3*g6^4*t^7.93)/(g1^8*g3^4) + (g3^4*g6^4*t^7.93)/(g1^8*g2^8) + (g2^4*g6^4*t^7.93)/(g1^8*g4^8) + (g3^4*g6^4*t^7.93)/(g1^8*g4^8) + (3*g6^4*t^7.93)/(g1^8*g4^4) + (g2^4*g6^4*t^7.93)/(g1^8*g3^4*g4^4) + (g3^4*g6^4*t^7.93)/(g1^8*g2^4*g4^4) + (g4^4*g6^4*t^7.93)/(g1^8*g2^8) + (g4^4*g6^4*t^7.93)/(g1^8*g3^8) + (g4^4*g6^4*t^7.93)/(g1^8*g2^4*g3^4) + (g2^4*g6^4*t^7.93)/(g1^8*g5^8) + (g3^4*g6^4*t^7.93)/(g1^8*g5^8) + (g4^4*g6^4*t^7.93)/(g1^8*g5^8) + (3*g6^4*t^7.93)/(g1^8*g5^4) + (g2^4*g6^4*t^7.93)/(g1^8*g3^4*g5^4) + (g3^4*g6^4*t^7.93)/(g1^8*g2^4*g5^4) + (g2^4*g6^4*t^7.93)/(g1^8*g4^4*g5^4) + (g3^4*g6^4*t^7.93)/(g1^8*g4^4*g5^4) + (g4^4*g6^4*t^7.93)/(g1^8*g2^4*g5^4) + (g4^4*g6^4*t^7.93)/(g1^8*g3^4*g5^4) + (g5^4*g6^4*t^7.93)/(g1^8*g2^8) + (g5^4*g6^4*t^7.93)/(g1^8*g3^8) + (g5^4*g6^4*t^7.93)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.93)/(g1^8*g4^8) + (g5^4*g6^4*t^7.93)/(g1^8*g2^4*g4^4) + (g5^4*g6^4*t^7.93)/(g1^8*g3^4*g4^4) + (3*t^7.97)/g1^8 + (2*g2^4*t^7.97)/(g1^8*g3^4) + (2*g3^4*t^7.97)/(g1^8*g2^4) + (g2^4*g3^4*t^7.97)/(g1^8*g4^8) + (2*g2^4*t^7.97)/(g1^8*g4^4) + (2*g3^4*t^7.97)/(g1^8*g4^4) + (2*g4^4*t^7.97)/(g1^8*g2^4) + (g2^4*g4^4*t^7.97)/(g1^8*g3^8) + (2*g4^4*t^7.97)/(g1^8*g3^4) + (g3^4*g4^4*t^7.97)/(g1^8*g2^8) + (g2^4*g3^4*t^7.97)/(g1^8*g5^8) + (g2^4*g4^4*t^7.97)/(g1^8*g5^8) + (g3^4*g4^4*t^7.97)/(g1^8*g5^8) + (2*g2^4*t^7.97)/(g1^8*g5^4) + (2*g3^4*t^7.97)/(g1^8*g5^4) + (g2^4*g3^4*t^7.97)/(g1^8*g4^4*g5^4) + (2*g4^4*t^7.97)/(g1^8*g5^4) + (g2^4*g4^4*t^7.97)/(g1^8*g3^4*g5^4) + (g3^4*g4^4*t^7.97)/(g1^8*g2^4*g5^4) + (2*g5^4*t^7.97)/(g1^8*g2^4) + (g2^4*g5^4*t^7.97)/(g1^8*g3^8) + (2*g5^4*t^7.97)/(g1^8*g3^4) + (g3^4*g5^4*t^7.97)/(g1^8*g2^8) + (g2^4*g5^4*t^7.97)/(g1^8*g4^8) + (g3^4*g5^4*t^7.97)/(g1^8*g4^8) + (2*g5^4*t^7.97)/(g1^8*g4^4) + (g2^4*g5^4*t^7.97)/(g1^8*g3^4*g4^4) + (g3^4*g5^4*t^7.97)/(g1^8*g2^4*g4^4) + (g4^4*g5^4*t^7.97)/(g1^8*g2^8) + (g4^4*g5^4*t^7.97)/(g1^8*g3^8) + (g4^4*g5^4*t^7.97)/(g1^8*g2^4*g3^4) - (g6^4*t^8.05)/(g1^4*g2^4*g3^4) - (g6^4*t^8.05)/(g1^4*g2^4*g4^4) - (g6^4*t^8.05)/(g1^4*g3^4*g4^4) - (g6^4*t^8.05)/(g1^4*g2^4*g5^4) - (g6^4*t^8.05)/(g1^4*g3^4*g5^4) - (g6^4*t^8.05)/(g1^4*g4^4*g5^4) - g1*g2*g3*g4*g5*g6^9*t^8.06 - (8*t^8.09)/(g1^4*g2^4) - (g2^4*t^8.09)/(g1^4*g3^8) - (8*t^8.09)/(g1^4*g3^4) - (g3^4*t^8.09)/(g1^4*g2^8) - (g2^4*t^8.09)/(g1^4*g4^8) - (g3^4*t^8.09)/(g1^4*g4^8) - (8*t^8.09)/(g1^4*g4^4) - (2*g2^4*t^8.09)/(g1^4*g3^4*g4^4) - (2*g3^4*t^8.09)/(g1^4*g2^4*g4^4) - (g4^4*t^8.09)/(g1^4*g2^8) - (g4^4*t^8.09)/(g1^4*g3^8) - (2*g4^4*t^8.09)/(g1^4*g2^4*g3^4) - (g2^4*t^8.09)/(g1^4*g5^8) - (g3^4*t^8.09)/(g1^4*g5^8) - (g4^4*t^8.09)/(g1^4*g5^8) - (8*t^8.09)/(g1^4*g5^4) - (2*g2^4*t^8.09)/(g1^4*g3^4*g5^4) - (2*g3^4*t^8.09)/(g1^4*g2^4*g5^4) - (2*g2^4*t^8.09)/(g1^4*g4^4*g5^4) - (2*g3^4*t^8.09)/(g1^4*g4^4*g5^4) - (2*g4^4*t^8.09)/(g1^4*g2^4*g5^4) - (2*g4^4*t^8.09)/(g1^4*g3^4*g5^4) - (g5^4*t^8.09)/(g1^4*g2^8) - (g5^4*t^8.09)/(g1^4*g3^8) - (2*g5^4*t^8.09)/(g1^4*g2^4*g3^4) - (g5^4*t^8.09)/(g1^4*g4^8) - (2*g5^4*t^8.09)/(g1^4*g2^4*g4^4) - (2*g5^4*t^8.09)/(g1^4*g3^4*g4^4) - g1*g2^5*g3*g4*g5*g6^5*t^8.1 - g1*g2*g3^5*g4*g5*g6^5*t^8.1 - g1*g2*g3*g4^5*g5*g6^5*t^8.1 - g1*g2*g3*g4*g5^5*g6^5*t^8.1 - (3*t^8.13)/(g1^4*g6^4) - (g2^4*t^8.13)/(g1^4*g3^4*g6^4) - (g3^4*t^8.13)/(g1^4*g2^4*g6^4) - (g2^4*t^8.13)/(g1^4*g4^4*g6^4) - (g3^4*t^8.13)/(g1^4*g4^4*g6^4) - (g4^4*t^8.13)/(g1^4*g2^4*g6^4) - (g4^4*t^8.13)/(g1^4*g3^4*g6^4) - (g2^4*t^8.13)/(g1^4*g5^4*g6^4) - (g3^4*t^8.13)/(g1^4*g5^4*g6^4) - (g4^4*t^8.13)/(g1^4*g5^4*g6^4) - (g5^4*t^8.13)/(g1^4*g2^4*g6^4) - (g5^4*t^8.13)/(g1^4*g3^4*g6^4) - (g5^4*t^8.13)/(g1^4*g4^4*g6^4) - g1*g2^9*g3*g4*g5*g6*t^8.14 - g1*g2^5*g3^5*g4*g5*g6*t^8.14 - g1*g2*g3^9*g4*g5*g6*t^8.14 - g1*g2^5*g3*g4^5*g5*g6*t^8.14 - g1*g2*g3^5*g4^5*g5*g6*t^8.14 - g1*g2*g3*g4^9*g5*g6*t^8.14 - g1*g2^5*g3*g4*g5^5*g6*t^8.14 - g1*g2*g3^5*g4*g5^5*g6*t^8.14 - g1*g2*g3*g4^5*g5^5*g6*t^8.14 - g1*g2*g3*g4*g5^9*g6*t^8.14 - t^8.22/(g2^4*g3^4) - t^8.22/(g2^4*g4^4) - t^8.22/(g3^4*g4^4) - t^8.22/(g2^4*g5^4) - t^8.22/(g3^4*g5^4) - t^8.22/(g4^4*g5^4) - g1^5*g2*g3*g4*g5*g6^5*t^8.23 - g1^5*g2^5*g3*g4*g5*g6*t^8.27 - g1^5*g2*g3^5*g4*g5*g6*t^8.27 - g1^5*g2*g3*g4^5*g5*g6*t^8.27 - g1^5*g2*g3*g4*g5^5*g6*t^8.27 + t^8.3/g6^8 + t^8.37/(g1^16*g2^16) + t^8.37/(g1^16*g3^16) + t^8.37/(g1^16*g2^4*g3^12) + t^8.37/(g1^16*g2^8*g3^8) + t^8.37/(g1^16*g2^12*g3^4) + t^8.37/(g1^16*g4^16) + t^8.37/(g1^16*g2^4*g4^12) + t^8.37/(g1^16*g3^4*g4^12) + t^8.37/(g1^16*g2^8*g4^8) + t^8.37/(g1^16*g3^8*g4^8) + t^8.37/(g1^16*g2^4*g3^4*g4^8) + t^8.37/(g1^16*g2^12*g4^4) + t^8.37/(g1^16*g3^12*g4^4) + t^8.37/(g1^16*g2^4*g3^8*g4^4) + t^8.37/(g1^16*g2^8*g3^4*g4^4) + t^8.37/(g1^16*g5^16) + t^8.37/(g1^16*g2^4*g5^12) + t^8.37/(g1^16*g3^4*g5^12) + t^8.37/(g1^16*g4^4*g5^12) + t^8.37/(g1^16*g2^8*g5^8) + t^8.37/(g1^16*g3^8*g5^8) + t^8.37/(g1^16*g2^4*g3^4*g5^8) + t^8.37/(g1^16*g4^8*g5^8) + t^8.37/(g1^16*g2^4*g4^4*g5^8) + t^8.37/(g1^16*g3^4*g4^4*g5^8) + t^8.37/(g1^16*g2^12*g5^4) + t^8.37/(g1^16*g3^12*g5^4) + t^8.37/(g1^16*g2^4*g3^8*g5^4) + t^8.37/(g1^16*g2^8*g3^4*g5^4) + t^8.37/(g1^16*g4^12*g5^4) + t^8.37/(g1^16*g2^4*g4^8*g5^4) + t^8.37/(g1^16*g3^4*g4^8*g5^4) + t^8.37/(g1^16*g2^8*g4^4*g5^4) + t^8.37/(g1^16*g3^8*g4^4*g5^4) + t^8.37/(g1^16*g2^4*g3^4*g4^4*g5^4) - g1^9*g2*g3*g4*g5*g6*t^8.39 + (g6^5*t^8.63)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.66/(g1^8*g2^4*g3^4*g4^4*g5^8*g6^4) + t^8.66/(g1^8*g2^4*g3^4*g4^8*g5^4*g6^4) + t^8.66/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.66/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g2*g6*t^8.67)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.67)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.67)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.67)/(g1^3*g2^3*g3^3*g4^3) + (g2^5*t^8.71)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.71)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.71)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.71)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.71)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.71)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g2*g5*t^8.71)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.71)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.71)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.71)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.79)/(g2^3*g3^3*g4^3*g5^3) + (g1*g2*t^8.83)/(g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.83)/(g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.83)/(g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.83)/(g2^3*g3^3*g4^3*g6^3) + (g1^5*t^8.96)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.64/(g1*g2*g3*g4*g5*g6*y) - t^6.73/(g1^5*g2*g3*g4*g5^5*g6*y) - t^6.73/(g1^5*g2*g3*g4^5*g5*g6*y) - t^6.73/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.73/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.18/(g1^8*g2^4*g3^4*y) + t^7.18/(g1^8*g2^4*g4^4*y) + t^7.18/(g1^8*g3^4*g4^4*y) + t^7.18/(g1^8*g2^4*g5^4*y) + t^7.18/(g1^8*g3^4*g5^4*y) + t^7.18/(g1^8*g4^4*g5^4*y) + (g1*g2*g3*g4*g5*g6*t^7.36)/y - t^7.92/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.37/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*y) + t^8.37/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*y) + t^8.37/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.37/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.55)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.55)/(g2*g4*g5*g6*y) + (g1^3*g4^3*t^8.55)/(g2*g3*g5*g6*y) + (g1^3*g5^3*t^8.55)/(g2*g3*g4*g6*y) - t^8.83/(g1^9*g2*g3*g4*g5^9*g6*y) - t^8.83/(g1^9*g2*g3*g4^5*g5^5*g6*y) - t^8.83/(g1^9*g2*g3^5*g4*g5^5*g6*y) - t^8.83/(g1^9*g2^5*g3*g4*g5^5*g6*y) - t^8.83/(g1^9*g2*g3*g4^9*g5*g6*y) - t^8.83/(g1^9*g2*g3^5*g4^5*g5*g6*y) - t^8.83/(g1^9*g2^5*g3*g4^5*g5*g6*y) - t^8.83/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.83/(g1^9*g2^5*g3^5*g4*g5*g6*y) - t^8.83/(g1^9*g2^9*g3*g4*g5*g6*y) + (4*g6^4*t^8.84)/(g1^4*y) + (g2^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g2^4*g6^4*t^8.84)/(g1^4*g4^4*y) + (g3^4*g6^4*t^8.84)/(g1^4*g4^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (g2^4*g6^4*t^8.84)/(g1^4*g5^4*y) + (g3^4*g6^4*t^8.84)/(g1^4*g5^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g5^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g4^4*y) + (3*g2^4*t^8.87)/(g1^4*y) + (3*g3^4*t^8.87)/(g1^4*y) + (g2^4*g3^4*t^8.87)/(g1^4*g4^4*y) + (3*g4^4*t^8.87)/(g1^4*y) + (g2^4*g4^4*t^8.87)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.87)/(g1^4*g2^4*y) + (g2^4*g3^4*t^8.87)/(g1^4*g5^4*y) + (g2^4*g4^4*t^8.87)/(g1^4*g5^4*y) + (g3^4*g4^4*t^8.87)/(g1^4*g5^4*y) + (3*g5^4*t^8.87)/(g1^4*y) + (g2^4*g5^4*t^8.87)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.87)/(g1^4*g2^4*y) + (g2^4*g5^4*t^8.87)/(g1^4*g4^4*y) + (g3^4*g5^4*t^8.87)/(g1^4*g4^4*y) + (g4^4*g5^4*t^8.87)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.87)/(g1^4*g3^4*y) + (g6^4*t^8.96)/(g2^4*y) + (g6^4*t^8.96)/(g3^4*y) + (g6^4*t^8.96)/(g4^4*y) + (g6^4*t^8.96)/(g5^4*y) - (t^4.64*y)/(g1*g2*g3*g4*g5*g6) - (t^6.73*y)/(g1^5*g2*g3*g4*g5^5*g6) - (t^6.73*y)/(g1^5*g2*g3*g4^5*g5*g6) - (t^6.73*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.73*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.18*y)/(g1^8*g2^4*g3^4) + (t^7.18*y)/(g1^8*g2^4*g4^4) + (t^7.18*y)/(g1^8*g3^4*g4^4) + (t^7.18*y)/(g1^8*g2^4*g5^4) + (t^7.18*y)/(g1^8*g3^4*g5^4) + (t^7.18*y)/(g1^8*g4^4*g5^4) + g1*g2*g3*g4*g5*g6*t^7.36*y - (t^7.92*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.37*y)/(g1^6*g2^2*g3^2*g4^2*g5^6*g6^2) + (t^8.37*y)/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + (t^8.37*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.37*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.55*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.55*y)/(g2*g4*g5*g6) + (g1^3*g4^3*t^8.55*y)/(g2*g3*g5*g6) + (g1^3*g5^3*t^8.55*y)/(g2*g3*g4*g6) - (t^8.83*y)/(g1^9*g2*g3*g4*g5^9*g6) - (t^8.83*y)/(g1^9*g2*g3*g4^5*g5^5*g6) - (t^8.83*y)/(g1^9*g2*g3^5*g4*g5^5*g6) - (t^8.83*y)/(g1^9*g2^5*g3*g4*g5^5*g6) - (t^8.83*y)/(g1^9*g2*g3*g4^9*g5*g6) - (t^8.83*y)/(g1^9*g2*g3^5*g4^5*g5*g6) - (t^8.83*y)/(g1^9*g2^5*g3*g4^5*g5*g6) - (t^8.83*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.83*y)/(g1^9*g2^5*g3^5*g4*g5*g6) - (t^8.83*y)/(g1^9*g2^9*g3*g4*g5*g6) + (4*g6^4*t^8.84*y)/g1^4 + (g2^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g2^4*g6^4*t^8.84*y)/(g1^4*g4^4) + (g3^4*g6^4*t^8.84*y)/(g1^4*g4^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (g2^4*g6^4*t^8.84*y)/(g1^4*g5^4) + (g3^4*g6^4*t^8.84*y)/(g1^4*g5^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g5^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g4^4) + (3*g2^4*t^8.87*y)/g1^4 + (3*g3^4*t^8.87*y)/g1^4 + (g2^4*g3^4*t^8.87*y)/(g1^4*g4^4) + (3*g4^4*t^8.87*y)/g1^4 + (g2^4*g4^4*t^8.87*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.87*y)/(g1^4*g2^4) + (g2^4*g3^4*t^8.87*y)/(g1^4*g5^4) + (g2^4*g4^4*t^8.87*y)/(g1^4*g5^4) + (g3^4*g4^4*t^8.87*y)/(g1^4*g5^4) + (3*g5^4*t^8.87*y)/g1^4 + (g2^4*g5^4*t^8.87*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.87*y)/(g1^4*g2^4) + (g2^4*g5^4*t^8.87*y)/(g1^4*g4^4) + (g3^4*g5^4*t^8.87*y)/(g1^4*g4^4) + (g4^4*g5^4*t^8.87*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.87*y)/(g1^4*g3^4) + (g6^4*t^8.96*y)/g2^4 + (g6^4*t^8.96*y)/g3^4 + (g6^4*t^8.96*y)/g4^4 + (g6^4*t^8.96*y)/g5^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y | detail |