Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55762 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_2q_3\tilde{q}_2$ | 0.918 | 1.1415 | 0.8042 | [X:[], M:[0.7159, 0.7159, 0.7159], q:[0.6473, 0.6367, 0.6367], qb:[0.6367, 0.6473, 0.6164], phi:[0.5447]] | [X:[], M:[[-4, 0, 0, -2, 0], [0, -4, 0, -2, 0], [0, 0, -4, -2, 0]], q:[[0, 0, 0, 2, 0], [4, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 4, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_1M_3$, $ M_2M_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_2q_3$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$ | $M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$ | -5 | 3*t^2.15 + t^3.27 + 3*t^3.76 + 2*t^3.79 + 3*t^3.82 + 3*t^3.85 + t^3.88 + 6*t^4.3 + t^5.33 + 3*t^5.39 + 3*t^5.42 + 2*t^5.43 + 6*t^5.45 + 6*t^5.49 + 3*t^5.52 + 7*t^5.91 + 3*t^5.94 + 3*t^5.97 - 5*t^6. - 3*t^6.03 - 3*t^6.06 - 2*t^6.09 + 10*t^6.44 + t^6.54 + 3*t^7.03 + 2*t^7.06 + 3*t^7.09 + 3*t^7.12 + t^7.15 + 3*t^7.48 + 6*t^7.52 + 7*t^7.54 + 6*t^7.55 + 6*t^7.56 + 3*t^7.57 + 11*t^7.58 + 12*t^7.6 + 9*t^7.61 + 5*t^7.63 + 12*t^7.64 + 10*t^7.67 + 2*t^7.68 + 3*t^7.7 - 2*t^7.73 + 3*t^7.74 + t^7.77 + 12*t^8.05 - t^8.06 + 3*t^8.09 + 3*t^8.12 - 3*t^8.13 - 18*t^8.15 - 2*t^8.16 - 6*t^8.18 - 6*t^8.19 - 7*t^8.21 - 6*t^8.22 - 3*t^8.24 - 3*t^8.25 + t^8.3 + 15*t^8.59 + t^8.6 + 3*t^8.66 + 3*t^8.68 + 2*t^8.69 + 6*t^8.72 + 6*t^8.75 + 3*t^8.79 - t^4.63/y - (3*t^6.78)/y + (3*t^7.3)/y + t^7.37/y - t^7.9/y + (3*t^8.42)/y + (3*t^8.49)/y + (9*t^8.91)/y - (6*t^8.93)/y + (6*t^8.94)/y + (9*t^8.97)/y - t^4.63*y - 3*t^6.78*y + 3*t^7.3*y + t^7.37*y - t^7.9*y + 3*t^8.42*y + 3*t^8.49*y + 9*t^8.91*y - 6*t^8.93*y + 6*t^8.94*y + 9*t^8.97*y | t^2.15/(g1^4*g4^2) + t^2.15/(g2^4*g4^2) + t^2.15/(g3^4*g4^2) + t^3.27/(g1^2*g2^2*g3^2*g4^2*g5^2) + g1^4*g5^4*t^3.76 + g2^4*g5^4*t^3.76 + g3^4*g5^4*t^3.76 + 2*g4^2*g5^4*t^3.79 + g1^4*g2^4*t^3.82 + g1^4*g3^4*t^3.82 + g2^4*g3^4*t^3.82 + g1^4*g4^2*t^3.85 + g2^4*g4^2*t^3.85 + g3^4*g4^2*t^3.85 + g4^4*t^3.88 + t^4.3/(g1^8*g4^4) + t^4.3/(g2^8*g4^4) + t^4.3/(g1^4*g2^4*g4^4) + t^4.3/(g3^8*g4^4) + t^4.3/(g1^4*g3^4*g4^4) + t^4.3/(g2^4*g3^4*g4^4) + (g5^7*t^5.33)/(g1*g2*g3*g4) + (g1^3*g5^3*t^5.39)/(g2*g3*g4) + (g2^3*g5^3*t^5.39)/(g1*g3*g4) + (g3^3*g5^3*t^5.39)/(g1*g2*g4) + t^5.42/(g1^2*g2^2*g3^6*g4^4*g5^2) + t^5.42/(g1^2*g2^6*g3^2*g4^4*g5^2) + t^5.42/(g1^6*g2^2*g3^2*g4^4*g5^2) + (2*g4*g5^3*t^5.43)/(g1*g2*g3) + (g1^7*t^5.45)/(g2*g3*g4*g5) + (g1^3*g2^3*t^5.45)/(g3*g4*g5) + (g2^7*t^5.45)/(g1*g3*g4*g5) + (g1^3*g3^3*t^5.45)/(g2*g4*g5) + (g2^3*g3^3*t^5.45)/(g1*g4*g5) + (g3^7*t^5.45)/(g1*g2*g4*g5) + (2*g1^3*g4*t^5.49)/(g2*g3*g5) + (2*g2^3*g4*t^5.49)/(g1*g3*g5) + (2*g3^3*g4*t^5.49)/(g1*g2*g5) + (3*g4^3*t^5.52)/(g1*g2*g3*g5) + (g5^4*t^5.91)/g4^2 + (g1^4*g5^4*t^5.91)/(g2^4*g4^2) + (g2^4*g5^4*t^5.91)/(g1^4*g4^2) + (g1^4*g5^4*t^5.91)/(g3^4*g4^2) + (g2^4*g5^4*t^5.91)/(g3^4*g4^2) + (g3^4*g5^4*t^5.91)/(g1^4*g4^2) + (g3^4*g5^4*t^5.91)/(g2^4*g4^2) + (g5^4*t^5.94)/g1^4 + (g5^4*t^5.94)/g2^4 + (g5^4*t^5.94)/g3^4 + (g1^4*g2^4*t^5.97)/(g3^4*g4^2) + (g1^4*g3^4*t^5.97)/(g2^4*g4^2) + (g2^4*g3^4*t^5.97)/(g1^4*g4^2) - 5*t^6. - (g4^2*t^6.03)/g1^4 - (g4^2*t^6.03)/g2^4 - (g4^2*t^6.03)/g3^4 - (g1^4*t^6.06)/g5^4 - (g2^4*t^6.06)/g5^4 - (g3^4*t^6.06)/g5^4 - (2*g4^2*t^6.09)/g5^4 + t^6.44/(g1^12*g4^6) + t^6.44/(g2^12*g4^6) + t^6.44/(g1^4*g2^8*g4^6) + t^6.44/(g1^8*g2^4*g4^6) + t^6.44/(g3^12*g4^6) + t^6.44/(g1^4*g3^8*g4^6) + t^6.44/(g2^4*g3^8*g4^6) + t^6.44/(g1^8*g3^4*g4^6) + t^6.44/(g2^8*g3^4*g4^6) + t^6.44/(g1^4*g2^4*g3^4*g4^6) + t^6.54/(g1^4*g2^4*g3^4*g4^4*g5^4) + (g1^2*g5^2*t^7.03)/(g2^2*g3^2*g4^2) + (g2^2*g5^2*t^7.03)/(g1^2*g3^2*g4^2) + (g3^2*g5^2*t^7.03)/(g1^2*g2^2*g4^2) + (2*g5^2*t^7.06)/(g1^2*g2^2*g3^2) + (g1^2*g2^2*t^7.09)/(g3^2*g4^2*g5^2) + (g1^2*g3^2*t^7.09)/(g2^2*g4^2*g5^2) + (g2^2*g3^2*t^7.09)/(g1^2*g4^2*g5^2) + (g1^2*t^7.12)/(g2^2*g3^2*g5^2) + (g2^2*t^7.12)/(g1^2*g3^2*g5^2) + (g3^2*t^7.12)/(g1^2*g2^2*g5^2) + (g4^2*t^7.15)/(g1^2*g2^2*g3^2*g5^2) + (g5^7*t^7.48)/(g1*g2*g3^5*g4^3) + (g5^7*t^7.48)/(g1*g2^5*g3*g4^3) + (g5^7*t^7.48)/(g1^5*g2*g3*g4^3) + g1^8*g5^8*t^7.52 + g1^4*g2^4*g5^8*t^7.52 + g2^8*g5^8*t^7.52 + g1^4*g3^4*g5^8*t^7.52 + g2^4*g3^4*g5^8*t^7.52 + g3^8*g5^8*t^7.52 + (g1^3*g5^3*t^7.54)/(g2*g3^5*g4^3) + (g2^3*g5^3*t^7.54)/(g1*g3^5*g4^3) + (g1^3*g5^3*t^7.54)/(g2^5*g3*g4^3) + (g5^3*t^7.54)/(g1*g2*g3*g4^3) + (g2^3*g5^3*t^7.54)/(g1^5*g3*g4^3) + (g3^3*g5^3*t^7.54)/(g1*g2^5*g4^3) + (g3^3*g5^3*t^7.54)/(g1^5*g2*g4^3) + 2*g1^4*g4^2*g5^8*t^7.55 + 2*g2^4*g4^2*g5^8*t^7.55 + 2*g3^4*g4^2*g5^8*t^7.55 + t^7.56/(g1^2*g2^2*g3^10*g4^6*g5^2) + t^7.56/(g1^2*g2^6*g3^6*g4^6*g5^2) + t^7.56/(g1^6*g2^2*g3^6*g4^6*g5^2) + t^7.56/(g1^2*g2^10*g3^2*g4^6*g5^2) + t^7.56/(g1^6*g2^6*g3^2*g4^6*g5^2) + t^7.56/(g1^10*g2^2*g3^2*g4^6*g5^2) + (g5^3*t^7.57)/(g1*g2*g3^5*g4) + (g5^3*t^7.57)/(g1*g2^5*g3*g4) + (g5^3*t^7.57)/(g1^5*g2*g3*g4) + g1^8*g2^4*g5^4*t^7.58 + g1^4*g2^8*g5^4*t^7.58 + g1^8*g3^4*g5^4*t^7.58 + 2*g1^4*g2^4*g3^4*g5^4*t^7.58 + g2^8*g3^4*g5^4*t^7.58 + g1^4*g3^8*g5^4*t^7.58 + g2^4*g3^8*g5^4*t^7.58 + 3*g4^4*g5^8*t^7.58 + (g1^7*t^7.6)/(g2*g3^5*g4^3*g5) + (g1^3*g2^3*t^7.6)/(g3^5*g4^3*g5) + (g2^7*t^7.6)/(g1*g3^5*g4^3*g5) + (g1^7*t^7.6)/(g2^5*g3*g4^3*g5) + (g1^3*t^7.6)/(g2*g3*g4^3*g5) + (g2^3*t^7.6)/(g1*g3*g4^3*g5) + (g2^7*t^7.6)/(g1^5*g3*g4^3*g5) + (g1^3*g3^3*t^7.6)/(g2^5*g4^3*g5) + (g3^3*t^7.6)/(g1*g2*g4^3*g5) + (g2^3*g3^3*t^7.6)/(g1^5*g4^3*g5) + (g3^7*t^7.6)/(g1*g2^5*g4^3*g5) + (g3^7*t^7.6)/(g1^5*g2*g4^3*g5) + g1^8*g4^2*g5^4*t^7.61 + 2*g1^4*g2^4*g4^2*g5^4*t^7.61 + g2^8*g4^2*g5^4*t^7.61 + 2*g1^4*g3^4*g4^2*g5^4*t^7.61 + 2*g2^4*g3^4*g4^2*g5^4*t^7.61 + g3^8*g4^2*g5^4*t^7.61 + (g1^3*t^7.63)/(g2*g3^5*g4*g5) + (g2^3*t^7.63)/(g1*g3^5*g4*g5) + (g1^3*t^7.63)/(g2^5*g3*g4*g5) - t^7.63/(g1*g2*g3*g4*g5) + (g2^3*t^7.63)/(g1^5*g3*g4*g5) + (g3^3*t^7.63)/(g1*g2^5*g4*g5) + (g3^3*t^7.63)/(g1^5*g2*g4*g5) + g1^8*g2^8*t^7.64 + g1^8*g2^4*g3^4*t^7.64 + g1^4*g2^8*g3^4*t^7.64 + g1^8*g3^8*t^7.64 + g1^4*g2^4*g3^8*t^7.64 + g2^8*g3^8*t^7.64 + 2*g1^4*g4^4*g5^4*t^7.64 + 2*g2^4*g4^4*g5^4*t^7.64 + 2*g3^4*g4^4*g5^4*t^7.64 + g1^8*g2^4*g4^2*t^7.67 + g1^4*g2^8*g4^2*t^7.67 + g1^8*g3^4*g4^2*t^7.67 + g1^4*g2^4*g3^4*g4^2*t^7.67 + g2^8*g3^4*g4^2*t^7.67 + g1^4*g3^8*g4^2*t^7.67 + g2^4*g3^8*g4^2*t^7.67 + (g4*t^7.67)/(g1*g2*g3^5*g5) + (g4*t^7.67)/(g1*g2^5*g3*g5) + (g4*t^7.67)/(g1^5*g2*g3*g5) + 2*g4^6*g5^4*t^7.68 + g1^8*g4^4*t^7.7 + g1^4*g2^4*g4^4*t^7.7 + g2^8*g4^4*t^7.7 + g1^4*g3^4*g4^4*t^7.7 + g2^4*g3^4*g4^4*t^7.7 + g3^8*g4^4*t^7.7 - (g1^3*t^7.7)/(g2*g3*g4*g5^5) - (g2^3*t^7.7)/(g1*g3*g4*g5^5) - (g3^3*t^7.7)/(g1*g2*g4*g5^5) - (2*g4*t^7.73)/(g1*g2*g3*g5^5) + g1^4*g4^6*t^7.74 + g2^4*g4^6*t^7.74 + g3^4*g4^6*t^7.74 + g4^8*t^7.77 + (g5^4*t^8.05)/(g1^4*g4^4) + (g1^4*g5^4*t^8.05)/(g2^8*g4^4) + (g5^4*t^8.05)/(g2^4*g4^4) + (g2^4*g5^4*t^8.05)/(g1^8*g4^4) + (g1^4*g5^4*t^8.05)/(g3^8*g4^4) + (g2^4*g5^4*t^8.05)/(g3^8*g4^4) + (g5^4*t^8.05)/(g3^4*g4^4) + (g1^4*g5^4*t^8.05)/(g2^4*g3^4*g4^4) + (g2^4*g5^4*t^8.05)/(g1^4*g3^4*g4^4) + (g3^4*g5^4*t^8.05)/(g1^8*g4^4) + (g3^4*g5^4*t^8.05)/(g2^8*g4^4) + (g3^4*g5^4*t^8.05)/(g1^4*g2^4*g4^4) - g1*g2*g3*g4*g5^9*t^8.06 + (g5^4*t^8.09)/(g1^8*g4^2) + (g5^4*t^8.09)/(g2^8*g4^2) + (g5^4*t^8.09)/(g3^8*g4^2) + (g1^4*g2^4*t^8.12)/(g3^8*g4^4) + (g1^4*g3^4*t^8.12)/(g2^8*g4^4) + (g2^4*g3^4*t^8.12)/(g1^8*g4^4) - g1^5*g2*g3*g4*g5^5*t^8.13 - g1*g2^5*g3*g4*g5^5*t^8.13 - g1*g2*g3^5*g4*g5^5*t^8.13 - (5*t^8.15)/(g1^4*g4^2) - (5*t^8.15)/(g2^4*g4^2) - (5*t^8.15)/(g3^4*g4^2) - (g1^4*t^8.15)/(g2^4*g3^4*g4^2) - (g2^4*t^8.15)/(g1^4*g3^4*g4^2) - (g3^4*t^8.15)/(g1^4*g2^4*g4^2) - 2*g1*g2*g3*g4^3*g5^5*t^8.16 - (2*t^8.18)/(g1^4*g2^4) - (2*t^8.18)/(g1^4*g3^4) - (2*t^8.18)/(g2^4*g3^4) - g1^9*g2*g3*g4*g5*t^8.19 - g1^5*g2^5*g3*g4*g5*t^8.19 - g1*g2^9*g3*g4*g5*t^8.19 - g1^5*g2*g3^5*g4*g5*t^8.19 - g1*g2^5*g3^5*g4*g5*t^8.19 - g1*g2*g3^9*g4*g5*t^8.19 - t^8.21/(g4^2*g5^4) - (g1^4*t^8.21)/(g2^4*g4^2*g5^4) - (g2^4*t^8.21)/(g1^4*g4^2*g5^4) - (g1^4*t^8.21)/(g3^4*g4^2*g5^4) - (g2^4*t^8.21)/(g3^4*g4^2*g5^4) - (g3^4*t^8.21)/(g1^4*g4^2*g5^4) - (g3^4*t^8.21)/(g2^4*g4^2*g5^4) - 2*g1^5*g2*g3*g4^3*g5*t^8.22 - 2*g1*g2^5*g3*g4^3*g5*t^8.22 - 2*g1*g2*g3^5*g4^3*g5*t^8.22 - t^8.24/(g1^4*g5^4) - t^8.24/(g2^4*g5^4) - t^8.24/(g3^4*g5^4) - 3*g1*g2*g3*g4^5*g5*t^8.25 + t^8.3/g5^8 + t^8.59/(g1^16*g4^8) + t^8.59/(g2^16*g4^8) + t^8.59/(g1^4*g2^12*g4^8) + t^8.59/(g1^8*g2^8*g4^8) + t^8.59/(g1^12*g2^4*g4^8) + t^8.59/(g3^16*g4^8) + t^8.59/(g1^4*g3^12*g4^8) + t^8.59/(g2^4*g3^12*g4^8) + t^8.59/(g1^8*g3^8*g4^8) + t^8.59/(g2^8*g3^8*g4^8) + t^8.59/(g1^4*g2^4*g3^8*g4^8) + t^8.59/(g1^12*g3^4*g4^8) + t^8.59/(g2^12*g3^4*g4^8) + t^8.59/(g1^4*g2^8*g3^4*g4^8) + t^8.59/(g1^8*g2^4*g3^4*g4^8) + (g5^5*t^8.6)/(g1^3*g2^3*g3^3*g4^3) + (g1*g5*t^8.66)/(g2^3*g3^3*g4^3) + (g2*g5*t^8.66)/(g1^3*g3^3*g4^3) + (g3*g5*t^8.66)/(g1^3*g2^3*g4^3) + t^8.68/(g1^4*g2^4*g3^8*g4^6*g5^4) + t^8.68/(g1^4*g2^8*g3^4*g4^6*g5^4) + t^8.68/(g1^8*g2^4*g3^4*g4^6*g5^4) + (2*g5*t^8.69)/(g1^3*g2^3*g3^3*g4) + (g1^5*t^8.72)/(g2^3*g3^3*g4^3*g5^3) + (g1*g2*t^8.72)/(g3^3*g4^3*g5^3) + (g2^5*t^8.72)/(g1^3*g3^3*g4^3*g5^3) + (g1*g3*t^8.72)/(g2^3*g4^3*g5^3) + (g2*g3*t^8.72)/(g1^3*g4^3*g5^3) + (g3^5*t^8.72)/(g1^3*g2^3*g4^3*g5^3) + (2*g1*t^8.75)/(g2^3*g3^3*g4*g5^3) + (2*g2*t^8.75)/(g1^3*g3^3*g4*g5^3) + (2*g3*t^8.75)/(g1^3*g2^3*g4*g5^3) + (3*g4*t^8.79)/(g1^3*g2^3*g3^3*g5^3) - t^4.63/(g1*g2*g3*g4*g5*y) - t^6.78/(g1*g2*g3^5*g4^3*g5*y) - t^6.78/(g1*g2^5*g3*g4^3*g5*y) - t^6.78/(g1^5*g2*g3*g4^3*g5*y) + t^7.3/(g1^4*g2^4*g4^4*y) + t^7.3/(g1^4*g3^4*g4^4*y) + t^7.3/(g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*t^7.37)/y - t^7.9/(g1^3*g2^3*g3^3*g4^3*g5^3*y) + t^8.42/(g1^2*g2^2*g3^6*g4^4*g5^2*y) + t^8.42/(g1^2*g2^6*g3^2*g4^4*g5^2*y) + t^8.42/(g1^6*g2^2*g3^2*g4^4*g5^2*y) + (g1^3*g4*t^8.49)/(g2*g3*g5*y) + (g2^3*g4*t^8.49)/(g1*g3*g5*y) + (g3^3*g4*t^8.49)/(g1*g2*g5*y) + (3*g5^4*t^8.91)/(g4^2*y) + (g1^4*g5^4*t^8.91)/(g2^4*g4^2*y) + (g2^4*g5^4*t^8.91)/(g1^4*g4^2*y) + (g1^4*g5^4*t^8.91)/(g3^4*g4^2*y) + (g2^4*g5^4*t^8.91)/(g3^4*g4^2*y) + (g3^4*g5^4*t^8.91)/(g1^4*g4^2*y) + (g3^4*g5^4*t^8.91)/(g2^4*g4^2*y) - t^8.93/(g1*g2*g3^9*g4^5*g5*y) - t^8.93/(g1*g2^5*g3^5*g4^5*g5*y) - t^8.93/(g1^5*g2*g3^5*g4^5*g5*y) - t^8.93/(g1*g2^9*g3*g4^5*g5*y) - t^8.93/(g1^5*g2^5*g3*g4^5*g5*y) - t^8.93/(g1^9*g2*g3*g4^5*g5*y) + (2*g5^4*t^8.94)/(g1^4*y) + (2*g5^4*t^8.94)/(g2^4*y) + (2*g5^4*t^8.94)/(g3^4*y) + (2*g1^4*t^8.97)/(g4^2*y) + (2*g2^4*t^8.97)/(g4^2*y) + (g1^4*g2^4*t^8.97)/(g3^4*g4^2*y) + (2*g3^4*t^8.97)/(g4^2*y) + (g1^4*g3^4*t^8.97)/(g2^4*g4^2*y) + (g2^4*g3^4*t^8.97)/(g1^4*g4^2*y) - (t^4.63*y)/(g1*g2*g3*g4*g5) - (t^6.78*y)/(g1*g2*g3^5*g4^3*g5) - (t^6.78*y)/(g1*g2^5*g3*g4^3*g5) - (t^6.78*y)/(g1^5*g2*g3*g4^3*g5) + (t^7.3*y)/(g1^4*g2^4*g4^4) + (t^7.3*y)/(g1^4*g3^4*g4^4) + (t^7.3*y)/(g2^4*g3^4*g4^4) + g1*g2*g3*g4*g5*t^7.37*y - (t^7.9*y)/(g1^3*g2^3*g3^3*g4^3*g5^3) + (t^8.42*y)/(g1^2*g2^2*g3^6*g4^4*g5^2) + (t^8.42*y)/(g1^2*g2^6*g3^2*g4^4*g5^2) + (t^8.42*y)/(g1^6*g2^2*g3^2*g4^4*g5^2) + (g1^3*g4*t^8.49*y)/(g2*g3*g5) + (g2^3*g4*t^8.49*y)/(g1*g3*g5) + (g3^3*g4*t^8.49*y)/(g1*g2*g5) + (3*g5^4*t^8.91*y)/g4^2 + (g1^4*g5^4*t^8.91*y)/(g2^4*g4^2) + (g2^4*g5^4*t^8.91*y)/(g1^4*g4^2) + (g1^4*g5^4*t^8.91*y)/(g3^4*g4^2) + (g2^4*g5^4*t^8.91*y)/(g3^4*g4^2) + (g3^4*g5^4*t^8.91*y)/(g1^4*g4^2) + (g3^4*g5^4*t^8.91*y)/(g2^4*g4^2) - (t^8.93*y)/(g1*g2*g3^9*g4^5*g5) - (t^8.93*y)/(g1*g2^5*g3^5*g4^5*g5) - (t^8.93*y)/(g1^5*g2*g3^5*g4^5*g5) - (t^8.93*y)/(g1*g2^9*g3*g4^5*g5) - (t^8.93*y)/(g1^5*g2^5*g3*g4^5*g5) - (t^8.93*y)/(g1^9*g2*g3*g4^5*g5) + (2*g5^4*t^8.94*y)/g1^4 + (2*g5^4*t^8.94*y)/g2^4 + (2*g5^4*t^8.94*y)/g3^4 + (2*g1^4*t^8.97*y)/g4^2 + (2*g2^4*t^8.97*y)/g4^2 + (g1^4*g2^4*t^8.97*y)/(g3^4*g4^2) + (2*g3^4*t^8.97*y)/g4^2 + (g1^4*g3^4*t^8.97*y)/(g2^4*g4^2) + (g2^4*g3^4*t^8.97*y)/(g1^4*g4^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y | detail |