Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55720 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ | 0.9181 | 1.142 | 0.804 | [X:[], M:[0.7248, 0.7095, 0.7095], q:[0.6561, 0.6192, 0.6344], qb:[0.6344, 0.6376, 0.6376], phi:[0.5452]] | [X:[], M:[[0, 0, 0, -2, -2], [1, -4, 0, -2, -2], [1, 0, -4, -2, -2]], q:[[-1, 0, 0, 2, 2], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 4, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 2]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ M_1M_2$, $ M_1M_3$, $ M_1^2$, $ \phi_1q_2^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_1\phi_1^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_1$, $ M_3q_2q_3$, $ M_2q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_3$, $ M_3q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_3q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$ | . | -9 | 2*t^2.13 + t^2.17 + t^3.27 + 2*t^3.76 + 2*t^3.77 + t^3.81 + 4*t^3.82 + t^3.83 + 2*t^3.88 + 3*t^4.26 + 2*t^4.3 + t^4.35 + t^5.35 + 4*t^5.4 + 2*t^5.41 + 3*t^5.44 + 5*t^5.45 + 4*t^5.46 + 2*t^5.51 + 2*t^5.52 + t^5.57 + 3*t^5.89 + 4*t^5.9 + 8*t^5.94 + t^5.98 - 9*t^6. - 2*t^6.05 - 4*t^6.06 - t^6.11 + 4*t^6.39 + 3*t^6.43 + 2*t^6.48 + t^6.52 + t^6.54 + 2*t^7.03 + 2*t^7.04 + t^7.08 + 4*t^7.09 + t^7.1 + 2*t^7.15 + 2*t^7.48 + 7*t^7.52 + 11*t^7.53 + 3*t^7.54 + 10*t^7.57 + 14*t^7.58 + 14*t^7.59 + 2*t^7.6 + t^7.61 + 8*t^7.62 + 9*t^7.63 + 3*t^7.64 + 4*t^7.65 - 2*t^7.69 + 6*t^7.7 + 2*t^7.71 + 3*t^7.76 + 4*t^8.02 + 6*t^8.03 + 3*t^8.06 + 8*t^8.07 - 2*t^8.08 + 2*t^8.11 - 22*t^8.13 - 2*t^8.14 + t^8.16 - 12*t^8.17 - 8*t^8.18 - 5*t^8.19 - 2*t^8.22 - 4*t^8.24 - 2*t^8.25 - t^8.3 + 5*t^8.51 + 4*t^8.56 + 3*t^8.61 + t^8.62 + 2*t^8.65 + 4*t^8.67 + 2*t^8.68 + t^8.7 + 3*t^8.71 + 5*t^8.72 + 4*t^8.73 + 2*t^8.78 + 2*t^8.79 + t^8.84 - t^4.64/y - (2*t^6.76)/y - t^6.81/y + t^7.26/y + (2*t^7.3)/y + t^7.36/y - t^7.91/y + (2*t^8.4)/y + t^8.45/y + t^8.46/y + (2*t^8.51)/y + t^8.89/y + (4*t^8.9)/y + (12*t^8.94)/y + (2*t^8.95)/y + (4*t^8.99)/y - t^4.64*y - 2*t^6.76*y - t^6.81*y + t^7.26*y + 2*t^7.3*y + t^7.36*y - t^7.91*y + 2*t^8.4*y + t^8.45*y + t^8.46*y + 2*t^8.51*y + t^8.89*y + 4*t^8.9*y + 12*t^8.94*y + 2*t^8.95*y + 4*t^8.99*y | (g1*t^2.13)/(g2^4*g4^2*g5^2) + (g1*t^2.13)/(g3^4*g4^2*g5^2) + t^2.17/(g4^2*g5^2) + t^3.27/(g2^2*g3^2*g4^2*g5^2) + g1*g2^4*t^3.76 + g1*g3^4*t^3.76 + g1*g4^2*t^3.77 + g1*g5^2*t^3.77 + g2^4*g3^4*t^3.81 + g2^4*g4^2*t^3.82 + g3^4*g4^2*t^3.82 + g2^4*g5^2*t^3.82 + g3^4*g5^2*t^3.82 + g4^2*g5^2*t^3.83 + (g4^4*g5^2*t^3.88)/g1 + (g4^2*g5^4*t^3.88)/g1 + (g1^2*t^4.26)/(g2^8*g4^4*g5^4) + (g1^2*t^4.26)/(g3^8*g4^4*g5^4) + (g1^2*t^4.26)/(g2^4*g3^4*g4^4*g5^4) + (g1*t^4.3)/(g2^4*g4^4*g5^4) + (g1*t^4.3)/(g3^4*g4^4*g5^4) + t^4.35/(g4^4*g5^4) + (g1^2*t^5.35)/(g2*g3*g4*g5) + (g1*t^5.4)/(g2^2*g3^6*g4^4*g5^4) + (g1*t^5.4)/(g2^6*g3^2*g4^4*g5^4) + (g1*g2^3*t^5.4)/(g3*g4*g5) + (g1*g3^3*t^5.4)/(g2*g4*g5) + (g1*g4*t^5.41)/(g2*g3*g5) + (g1*g5*t^5.41)/(g2*g3*g4) + (g2^7*t^5.44)/(g3*g4*g5) + (g2^3*g3^3*t^5.44)/(g4*g5) + (g3^7*t^5.44)/(g2*g4*g5) + t^5.45/(g2^2*g3^2*g4^4*g5^4) + (g2^3*g4*t^5.45)/(g3*g5) + (g3^3*g4*t^5.45)/(g2*g5) + (g2^3*g5*t^5.45)/(g3*g4) + (g3^3*g5*t^5.45)/(g2*g4) + (g4^3*t^5.46)/(g2*g3*g5) + (2*g4*g5*t^5.46)/(g2*g3) + (g5^3*t^5.46)/(g2*g3*g4) + (g2^3*g4*g5*t^5.51)/(g1*g3) + (g3^3*g4*g5*t^5.51)/(g1*g2) + (g4^3*g5*t^5.52)/(g1*g2*g3) + (g4*g5^3*t^5.52)/(g1*g2*g3) + (g4^3*g5^3*t^5.57)/(g1^2*g2*g3) + (g1^2*t^5.89)/(g4^2*g5^2) + (g1^2*g2^4*t^5.89)/(g3^4*g4^2*g5^2) + (g1^2*g3^4*t^5.89)/(g2^4*g4^2*g5^2) + (g1^2*t^5.9)/(g2^4*g4^2) + (g1^2*t^5.9)/(g3^4*g4^2) + (g1^2*t^5.9)/(g2^4*g5^2) + (g1^2*t^5.9)/(g3^4*g5^2) + (g1*t^5.94)/g4^2 + (g1*g2^4*t^5.94)/(g3^4*g4^2) + (g1*g3^4*t^5.94)/(g2^4*g4^2) + (g1*t^5.94)/g5^2 + (g1*g2^4*t^5.94)/(g3^4*g5^2) + (g1*g3^4*t^5.94)/(g2^4*g5^2) + (g1*g2^4*t^5.94)/(g4^2*g5^2) + (g1*g3^4*t^5.94)/(g4^2*g5^2) + (g2^4*g3^4*t^5.98)/(g4^2*g5^2) - 5*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g4^2*t^6.)/g5^2 - (g5^2*t^6.)/g4^2 - (g2^4*t^6.05)/g1 - (g3^4*t^6.05)/g1 - (g4^2*t^6.06)/g1 - (g5^2*t^6.06)/g1 - (g4^2*g5^2*t^6.06)/(g1*g2^4) - (g4^2*g5^2*t^6.06)/(g1*g3^4) - (g4^2*g5^2*t^6.11)/g1^2 + (g1^3*t^6.39)/(g2^12*g4^6*g5^6) + (g1^3*t^6.39)/(g3^12*g4^6*g5^6) + (g1^3*t^6.39)/(g2^4*g3^8*g4^6*g5^6) + (g1^3*t^6.39)/(g2^8*g3^4*g4^6*g5^6) + (g1^2*t^6.43)/(g2^8*g4^6*g5^6) + (g1^2*t^6.43)/(g3^8*g4^6*g5^6) + (g1^2*t^6.43)/(g2^4*g3^4*g4^6*g5^6) + (g1*t^6.48)/(g2^4*g4^6*g5^6) + (g1*t^6.48)/(g3^4*g4^6*g5^6) + t^6.52/(g4^6*g5^6) + t^6.54/(g2^4*g3^4*g4^4*g5^4) + (g1*g2^2*t^7.03)/(g3^2*g4^2*g5^2) + (g1*g3^2*t^7.03)/(g2^2*g4^2*g5^2) + (g1*t^7.04)/(g2^2*g3^2*g4^2) + (g1*t^7.04)/(g2^2*g3^2*g5^2) + (g2^2*g3^2*t^7.08)/(g4^2*g5^2) + (g2^2*t^7.09)/(g3^2*g4^2) + (g3^2*t^7.09)/(g2^2*g4^2) + (g2^2*t^7.09)/(g3^2*g5^2) + (g3^2*t^7.09)/(g2^2*g5^2) + t^7.1/(g2^2*g3^2) + (g4^2*t^7.15)/(g1*g2^2*g3^2) + (g5^2*t^7.15)/(g1*g2^2*g3^2) + (g1^3*t^7.48)/(g2*g3^5*g4^3*g5^3) + (g1^3*t^7.48)/(g2^5*g3*g4^3*g5^3) + g1^2*g2^8*t^7.52 + g1^2*g2^4*g3^4*t^7.52 + g1^2*g3^8*t^7.52 + (g1^2*g2^3*t^7.52)/(g3^5*g4^3*g5^3) + (2*g1^2*t^7.52)/(g2*g3*g4^3*g5^3) + (g1^2*g3^3*t^7.52)/(g2^5*g4^3*g5^3) + g1^2*g2^4*g4^2*t^7.53 + g1^2*g3^4*g4^2*t^7.53 + (g1^2*t^7.53)/(g2^2*g3^10*g4^6*g5^6) + (g1^2*t^7.53)/(g2^6*g3^6*g4^6*g5^6) + (g1^2*t^7.53)/(g2^10*g3^2*g4^6*g5^6) + (g1^2*t^7.53)/(g2*g3^5*g4*g5^3) + (g1^2*t^7.53)/(g2^5*g3*g4*g5^3) + (g1^2*t^7.53)/(g2*g3^5*g4^3*g5) + (g1^2*t^7.53)/(g2^5*g3*g4^3*g5) + g1^2*g2^4*g5^2*t^7.53 + g1^2*g3^4*g5^2*t^7.53 + g1^2*g4^4*t^7.54 + g1^2*g4^2*g5^2*t^7.54 + g1^2*g5^4*t^7.54 + g1*g2^8*g3^4*t^7.57 + g1*g2^4*g3^8*t^7.57 + (g1*t^7.57)/(g2^2*g3^6*g4^6*g5^6) + (g1*t^7.57)/(g2^6*g3^2*g4^6*g5^6) + (g1*g2^7*t^7.57)/(g3^5*g4^3*g5^3) + (2*g1*g2^3*t^7.57)/(g3*g4^3*g5^3) + (2*g1*g3^3*t^7.57)/(g2*g4^3*g5^3) + (g1*g3^7*t^7.57)/(g2^5*g4^3*g5^3) + g1*g2^8*g4^2*t^7.58 + 2*g1*g2^4*g3^4*g4^2*t^7.58 + g1*g3^8*g4^2*t^7.58 + (g1*g2^3*t^7.58)/(g3^5*g4*g5^3) + (g1*t^7.58)/(g2*g3*g4*g5^3) + (g1*g3^3*t^7.58)/(g2^5*g4*g5^3) + (g1*g2^3*t^7.58)/(g3^5*g4^3*g5) + (g1*t^7.58)/(g2*g3*g4^3*g5) + (g1*g3^3*t^7.58)/(g2^5*g4^3*g5) + g1*g2^8*g5^2*t^7.58 + 2*g1*g2^4*g3^4*g5^2*t^7.58 + g1*g3^8*g5^2*t^7.58 + g1*g2^4*g4^4*t^7.59 + g1*g3^4*g4^4*t^7.59 + (g1*g4*t^7.59)/(g2*g3^5*g5^3) + (g1*g4*t^7.59)/(g2^5*g3*g5^3) + (g1*t^7.59)/(g2*g3^5*g4*g5) + (g1*t^7.59)/(g2^5*g3*g4*g5) + (g1*g5*t^7.59)/(g2*g3^5*g4^3) + (g1*g5*t^7.59)/(g2^5*g3*g4^3) + 2*g1*g2^4*g4^2*g5^2*t^7.59 + 2*g1*g3^4*g4^2*g5^2*t^7.59 + g1*g2^4*g5^4*t^7.59 + g1*g3^4*g5^4*t^7.59 + g1*g4^4*g5^2*t^7.6 + g1*g4^2*g5^4*t^7.6 + g2^8*g3^8*t^7.61 + g2^8*g3^4*g4^2*t^7.62 + g2^4*g3^8*g4^2*t^7.62 + t^7.62/(g2^2*g3^2*g4^6*g5^6) + (g2^7*t^7.62)/(g3*g4^3*g5^3) + (g2^3*g3^3*t^7.62)/(g4^3*g5^3) + (g3^7*t^7.62)/(g2*g4^3*g5^3) + g2^8*g3^4*g5^2*t^7.62 + g2^4*g3^8*g5^2*t^7.62 + g2^8*g4^4*t^7.63 + g2^4*g3^4*g4^4*t^7.63 + g3^8*g4^4*t^7.63 + g2^8*g4^2*g5^2*t^7.63 + g2^4*g3^4*g4^2*g5^2*t^7.63 + g3^8*g4^2*g5^2*t^7.63 + g2^8*g5^4*t^7.63 + g2^4*g3^4*g5^4*t^7.63 + g3^8*g5^4*t^7.63 - t^7.64/(g2*g3*g4*g5) + g2^4*g4^4*g5^2*t^7.64 + g3^4*g4^4*g5^2*t^7.64 + g2^4*g4^2*g5^4*t^7.64 + g3^4*g4^2*g5^4*t^7.64 + g4^6*g5^2*t^7.65 + 2*g4^4*g5^4*t^7.65 + g4^2*g5^6*t^7.65 - (g4*t^7.69)/(g1*g2*g3*g5) - (g5*t^7.69)/(g1*g2*g3*g4) + (g2^4*g4^6*g5^2*t^7.7)/g1 + (g3^4*g4^6*g5^2*t^7.7)/g1 + (g2^4*g4^4*g5^4*t^7.7)/g1 + (g3^4*g4^4*g5^4*t^7.7)/g1 + (g2^4*g4^2*g5^6*t^7.7)/g1 + (g3^4*g4^2*g5^6*t^7.7)/g1 + (g4^6*g5^4*t^7.71)/g1 + (g4^4*g5^6*t^7.71)/g1 + (g4^8*g5^4*t^7.76)/g1^2 + (g4^6*g5^6*t^7.76)/g1^2 + (g4^4*g5^8*t^7.76)/g1^2 + (g1^3*t^8.02)/(g2^4*g4^4*g5^4) + (g1^3*g2^4*t^8.02)/(g3^8*g4^4*g5^4) + (g1^3*t^8.02)/(g3^4*g4^4*g5^4) + (g1^3*g3^4*t^8.02)/(g2^8*g4^4*g5^4) + (g1^3*t^8.03)/(g2^8*g4^2*g5^4) + (g1^3*t^8.03)/(g3^8*g4^2*g5^4) + (g1^3*t^8.03)/(g2^4*g3^4*g4^2*g5^4) + (g1^3*t^8.03)/(g2^8*g4^4*g5^2) + (g1^3*t^8.03)/(g3^8*g4^4*g5^2) + (g1^3*t^8.03)/(g2^4*g3^4*g4^4*g5^2) + (g1^2*t^8.06)/(g4^4*g5^4) + (g1^2*g2^4*t^8.06)/(g3^4*g4^4*g5^4) + (g1^2*g3^4*t^8.06)/(g2^4*g4^4*g5^4) + (g1^2*t^8.07)/(g2^4*g4^2*g5^4) + (g1^2*g2^4*t^8.07)/(g3^8*g4^2*g5^4) + (g1^2*t^8.07)/(g3^4*g4^2*g5^4) + (g1^2*g3^4*t^8.07)/(g2^8*g4^2*g5^4) + (g1^2*t^8.07)/(g2^4*g4^4*g5^2) + (g1^2*g2^4*t^8.07)/(g3^8*g4^4*g5^2) + (g1^2*t^8.07)/(g3^4*g4^4*g5^2) + (g1^2*g3^4*t^8.07)/(g2^8*g4^4*g5^2) - (g1^2*t^8.08)/(g2^4*g3^4*g4^2*g5^2) - g1^2*g2*g3*g4*g5*t^8.08 + (g1*g2^4*t^8.11)/(g4^4*g5^4) + (g1*g3^4*t^8.11)/(g4^4*g5^4) - (g1*t^8.13)/(g2^4*g4^4) - (g1*t^8.13)/(g3^4*g4^4) - (g1*t^8.13)/(g2^4*g5^4) - (g1*t^8.13)/(g3^4*g5^4) - (6*g1*t^8.13)/(g2^4*g4^2*g5^2) - (g1*g2^4*t^8.13)/(g3^8*g4^2*g5^2) - (6*g1*t^8.13)/(g3^4*g4^2*g5^2) - (g1*g3^4*t^8.13)/(g2^8*g4^2*g5^2) - g1*g2^5*g3*g4*g5*t^8.13 - g1*g2*g3^5*g4*g5*t^8.13 - g1*g2*g3*g4^3*g5*t^8.13 - g1*g2*g3*g4*g5^3*t^8.13 - (g1*t^8.14)/(g2^4*g3^4*g4^2) - (g1*t^8.14)/(g2^4*g3^4*g5^2) + (g2^4*g3^4*t^8.16)/(g4^4*g5^4) - (5*t^8.17)/(g4^2*g5^2) - (2*g2^4*t^8.17)/(g3^4*g4^2*g5^2) - (2*g3^4*t^8.17)/(g2^4*g4^2*g5^2) - g2^9*g3*g4*g5*t^8.17 - g2^5*g3^5*g4*g5*t^8.17 - g2*g3^9*g4*g5*t^8.17 - t^8.18/(g2^4*g4^2) - t^8.18/(g3^4*g4^2) - t^8.18/(g2^4*g5^2) - t^8.18/(g3^4*g5^2) - g2^5*g3*g4^3*g5*t^8.18 - g2*g3^5*g4^3*g5*t^8.18 - g2^5*g3*g4*g5^3*t^8.18 - g2*g3^5*g4*g5^3*t^8.18 - t^8.19/(g2^4*g3^4) - g2*g3*g4^5*g5*t^8.19 - 2*g2*g3*g4^3*g5^3*t^8.19 - g2*g3*g4*g5^5*t^8.19 - (g2^4*t^8.22)/(g1*g4^2*g5^2) - (g3^4*t^8.22)/(g1*g4^2*g5^2) - t^8.24/(g1*g2^4) - t^8.24/(g1*g3^4) - (g2^5*g3*g4^3*g5^3*t^8.24)/g1 - (g2*g3^5*g4^3*g5^3*t^8.24)/g1 - (g2*g3*g4^5*g5^3*t^8.25)/g1 - (g2*g3*g4^3*g5^5*t^8.25)/g1 - (g2*g3*g4^5*g5^5*t^8.3)/g1^2 + (g1^4*t^8.51)/(g2^16*g4^8*g5^8) + (g1^4*t^8.51)/(g3^16*g4^8*g5^8) + (g1^4*t^8.51)/(g2^4*g3^12*g4^8*g5^8) + (g1^4*t^8.51)/(g2^8*g3^8*g4^8*g5^8) + (g1^4*t^8.51)/(g2^12*g3^4*g4^8*g5^8) + (g1^3*t^8.56)/(g2^12*g4^8*g5^8) + (g1^3*t^8.56)/(g3^12*g4^8*g5^8) + (g1^3*t^8.56)/(g2^4*g3^8*g4^8*g5^8) + (g1^3*t^8.56)/(g2^8*g3^4*g4^8*g5^8) + (g1^2*t^8.61)/(g2^8*g4^8*g5^8) + (g1^2*t^8.61)/(g3^8*g4^8*g5^8) + (g1^2*t^8.61)/(g2^4*g3^4*g4^8*g5^8) + (g1^2*t^8.62)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.65)/(g2^4*g4^8*g5^8) + (g1*t^8.65)/(g3^4*g4^8*g5^8) + (g1*t^8.67)/(g2^4*g3^8*g4^6*g5^6) + (g1*t^8.67)/(g2^8*g3^4*g4^6*g5^6) + (g1*g2*t^8.67)/(g3^3*g4^3*g5^3) + (g1*g3*t^8.67)/(g2^3*g4^3*g5^3) + (g1*t^8.68)/(g2^3*g3^3*g4*g5^3) + (g1*t^8.68)/(g2^3*g3^3*g4^3*g5) + t^8.7/(g4^8*g5^8) + (g2^5*t^8.71)/(g3^3*g4^3*g5^3) + (g2*g3*t^8.71)/(g4^3*g5^3) + (g3^5*t^8.71)/(g2^3*g4^3*g5^3) + t^8.72/(g2^4*g3^4*g4^6*g5^6) + (g2*t^8.72)/(g3^3*g4*g5^3) + (g3*t^8.72)/(g2^3*g4*g5^3) + (g2*t^8.72)/(g3^3*g4^3*g5) + (g3*t^8.72)/(g2^3*g4^3*g5) + (g4*t^8.73)/(g2^3*g3^3*g5^3) + (2*t^8.73)/(g2^3*g3^3*g4*g5) + (g5*t^8.73)/(g2^3*g3^3*g4^3) + (g2*t^8.78)/(g1*g3^3*g4*g5) + (g3*t^8.78)/(g1*g2^3*g4*g5) + (g4*t^8.79)/(g1*g2^3*g3^3*g5) + (g5*t^8.79)/(g1*g2^3*g3^3*g4) + (g4*g5*t^8.84)/(g1^2*g2^3*g3^3) - t^4.64/(g2*g3*g4*g5*y) - (g1*t^6.76)/(g2*g3^5*g4^3*g5^3*y) - (g1*t^6.76)/(g2^5*g3*g4^3*g5^3*y) - t^6.81/(g2*g3*g4^3*g5^3*y) + (g1^2*t^7.26)/(g2^4*g3^4*g4^4*g5^4*y) + (g1*t^7.3)/(g2^4*g4^4*g5^4*y) + (g1*t^7.3)/(g3^4*g4^4*g5^4*y) + (g2*g3*g4*g5*t^7.36)/y - t^7.91/(g2^3*g3^3*g4^3*g5^3*y) + (g1*t^8.4)/(g2^2*g3^6*g4^4*g5^4*y) + (g1*t^8.4)/(g2^6*g3^2*g4^4*g5^4*y) + t^8.45/(g2^2*g3^2*g4^4*g5^4*y) + (g4*g5*t^8.46)/(g2*g3*y) + (g2^3*g4*g5*t^8.51)/(g1*g3*y) + (g3^3*g4*g5*t^8.51)/(g1*g2*y) - (g1^2*t^8.89)/(g2*g3^9*g4^5*g5^5*y) - (g1^2*t^8.89)/(g2^5*g3^5*g4^5*g5^5*y) - (g1^2*t^8.89)/(g2^9*g3*g4^5*g5^5*y) + (2*g1^2*t^8.89)/(g4^2*g5^2*y) + (g1^2*g2^4*t^8.89)/(g3^4*g4^2*g5^2*y) + (g1^2*g3^4*t^8.89)/(g2^4*g4^2*g5^2*y) + (g1^2*t^8.9)/(g2^4*g4^2*y) + (g1^2*t^8.9)/(g3^4*g4^2*y) + (g1^2*t^8.9)/(g2^4*g5^2*y) + (g1^2*t^8.9)/(g3^4*g5^2*y) + (3*g1*t^8.94)/(g4^2*y) + (g1*g2^4*t^8.94)/(g3^4*g4^2*y) + (g1*g3^4*t^8.94)/(g2^4*g4^2*y) - (g1*t^8.94)/(g2*g3^5*g4^5*g5^5*y) - (g1*t^8.94)/(g2^5*g3*g4^5*g5^5*y) + (3*g1*t^8.94)/(g5^2*y) + (g1*g2^4*t^8.94)/(g3^4*g5^2*y) + (g1*g3^4*t^8.94)/(g2^4*g5^2*y) + (2*g1*g2^4*t^8.94)/(g4^2*g5^2*y) + (2*g1*g3^4*t^8.94)/(g4^2*g5^2*y) + (g1*t^8.95)/(g2^4*y) + (g1*t^8.95)/(g3^4*y) - t^8.98/(g2*g3*g4^5*g5^5*y) + (g2^4*g3^4*t^8.98)/(g4^2*g5^2*y) + (g2^4*t^8.99)/(g4^2*y) + (g3^4*t^8.99)/(g4^2*y) + (g2^4*t^8.99)/(g5^2*y) + (g3^4*t^8.99)/(g5^2*y) - (t^4.64*y)/(g2*g3*g4*g5) - (g1*t^6.76*y)/(g2*g3^5*g4^3*g5^3) - (g1*t^6.76*y)/(g2^5*g3*g4^3*g5^3) - (t^6.81*y)/(g2*g3*g4^3*g5^3) + (g1^2*t^7.26*y)/(g2^4*g3^4*g4^4*g5^4) + (g1*t^7.3*y)/(g2^4*g4^4*g5^4) + (g1*t^7.3*y)/(g3^4*g4^4*g5^4) + g2*g3*g4*g5*t^7.36*y - (t^7.91*y)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.4*y)/(g2^2*g3^6*g4^4*g5^4) + (g1*t^8.4*y)/(g2^6*g3^2*g4^4*g5^4) + (t^8.45*y)/(g2^2*g3^2*g4^4*g5^4) + (g4*g5*t^8.46*y)/(g2*g3) + (g2^3*g4*g5*t^8.51*y)/(g1*g3) + (g3^3*g4*g5*t^8.51*y)/(g1*g2) - (g1^2*t^8.89*y)/(g2*g3^9*g4^5*g5^5) - (g1^2*t^8.89*y)/(g2^5*g3^5*g4^5*g5^5) - (g1^2*t^8.89*y)/(g2^9*g3*g4^5*g5^5) + (2*g1^2*t^8.89*y)/(g4^2*g5^2) + (g1^2*g2^4*t^8.89*y)/(g3^4*g4^2*g5^2) + (g1^2*g3^4*t^8.89*y)/(g2^4*g4^2*g5^2) + (g1^2*t^8.9*y)/(g2^4*g4^2) + (g1^2*t^8.9*y)/(g3^4*g4^2) + (g1^2*t^8.9*y)/(g2^4*g5^2) + (g1^2*t^8.9*y)/(g3^4*g5^2) + (3*g1*t^8.94*y)/g4^2 + (g1*g2^4*t^8.94*y)/(g3^4*g4^2) + (g1*g3^4*t^8.94*y)/(g2^4*g4^2) - (g1*t^8.94*y)/(g2*g3^5*g4^5*g5^5) - (g1*t^8.94*y)/(g2^5*g3*g4^5*g5^5) + (3*g1*t^8.94*y)/g5^2 + (g1*g2^4*t^8.94*y)/(g3^4*g5^2) + (g1*g3^4*t^8.94*y)/(g2^4*g5^2) + (2*g1*g2^4*t^8.94*y)/(g4^2*g5^2) + (2*g1*g3^4*t^8.94*y)/(g4^2*g5^2) + (g1*t^8.95*y)/g2^4 + (g1*t^8.95*y)/g3^4 - (t^8.98*y)/(g2*g3*g4^5*g5^5) + (g2^4*g3^4*t^8.98*y)/(g4^2*g5^2) + (g2^4*t^8.99*y)/g4^2 + (g3^4*t^8.99*y)/g4^2 + (g2^4*t^8.99*y)/g5^2 + (g3^4*t^8.99*y)/g5^2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y | detail |