Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55698 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_2$ | 0.9057 | 1.1374 | 0.7963 | [X:[], M:[0.6745, 0.6745, 0.6745], q:[0.7341, 0.5914, 0.5914], qb:[0.5914, 0.72, 0.5882], phi:[0.5459]] | [X:[], M:[[-4, -1, -1, 1, -1], [-1, -4, -1, 1, -1], [-1, -1, -4, 1, -1]], q:[[1, 1, 1, -1, 1], [3, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 3, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 3]], phi:[[-1, -1, -1, 0, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_3q_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3q_2q_3$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_1$, $ \phi_1q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1q_3\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$ | . | -11 | 3*t^2.02 + t^3.28 + 3*t^3.54 + 3*t^3.55 + t^3.92 + 3*t^3.93 + t^3.97 + 6*t^4.05 + t^4.36 + t^5.17 + 3*t^5.18 + 6*t^5.19 + 3*t^5.3 + 9*t^5.56 + 9*t^5.57 + 3*t^5.95 + 9*t^5.96 - 11*t^6. - 3*t^6.01 + 10*t^6.07 - t^6.4 - 3*t^6.43 - t^6.44 + t^6.55 + 3*t^6.81 + 3*t^6.82 + 6*t^7.08 + 8*t^7.09 + 6*t^7.1 + 3*t^7.19 + 9*t^7.2 + 18*t^7.21 - 3*t^7.25 + 6*t^7.32 + 3*t^7.46 + 9*t^7.47 + 8*t^7.48 + 3*t^7.51 - t^7.52 + 18*t^7.59 + 18*t^7.6 - 3*t^7.63 - 9*t^7.64 - 3*t^7.65 + t^7.85 + 3*t^7.86 + 6*t^7.87 - 6*t^7.91 + t^7.93 + 6*t^7.97 + 18*t^7.98 - 3*t^8.01 - 33*t^8.02 - 9*t^8.03 + 15*t^8.09 - 3*t^8.34 - 3*t^8.41 - 3*t^8.42 + t^8.44 + 6*t^8.46 + t^8.47 + 3*t^8.57 - t^8.68 + 3*t^8.71 + 27*t^8.72 + 15*t^8.73 - t^8.77 + 9*t^8.84 + 9*t^8.85 - t^4.64/y - (3*t^6.66)/y + (3*t^7.05)/y + t^7.36/y - t^7.91/y + (3*t^8.3)/y + (9*t^8.56)/y + (9*t^8.57)/y + (3*t^8.61)/y - (6*t^8.68)/y + (3*t^8.95)/y + (9*t^8.96)/y + (3*t^8.99)/y - t^4.64*y - 3*t^6.66*y + 3*t^7.05*y + t^7.36*y - t^7.91*y + 3*t^8.3*y + 9*t^8.56*y + 9*t^8.57*y + 3*t^8.61*y - 6*t^8.68*y + 3*t^8.95*y + 9*t^8.96*y + 3*t^8.99*y | (g4*t^2.02)/(g1*g2*g3^4*g5) + (g4*t^2.02)/(g1*g2^4*g3*g5) + (g4*t^2.02)/(g1^4*g2*g3*g5) + t^3.28/(g1^2*g2^2*g3^2*g5^2) + g1^3*g5^3*t^3.54 + g2^3*g5^3*t^3.54 + g3^3*g5^3*t^3.54 + g1^3*g2^3*t^3.55 + g1^3*g3^3*t^3.55 + g2^3*g3^3*t^3.55 + g4*g5^3*t^3.92 + g1^3*g4*t^3.93 + g2^3*g4*t^3.93 + g3^3*g4*t^3.93 + (g1*g2*g3*g5^4*t^3.97)/g4 + (g4^2*t^4.05)/(g1^2*g2^2*g3^8*g5^2) + (g4^2*t^4.05)/(g1^2*g2^5*g3^5*g5^2) + (g4^2*t^4.05)/(g1^5*g2^2*g3^5*g5^2) + (g4^2*t^4.05)/(g1^2*g2^8*g3^2*g5^2) + (g4^2*t^4.05)/(g1^5*g2^5*g3^2*g5^2) + (g4^2*t^4.05)/(g1^8*g2^2*g3^2*g5^2) + g1*g2*g3*g5*t^4.36 + (g5^5*t^5.17)/(g1*g2*g3) + (g1^2*g5^2*t^5.18)/(g2*g3) + (g2^2*g5^2*t^5.18)/(g1*g3) + (g3^2*g5^2*t^5.18)/(g1*g2) + (g1^5*t^5.19)/(g2*g3*g5) + (g1^2*g2^2*t^5.19)/(g3*g5) + (g2^5*t^5.19)/(g1*g3*g5) + (g1^2*g3^2*t^5.19)/(g2*g5) + (g2^2*g3^2*t^5.19)/(g1*g5) + (g3^5*t^5.19)/(g1*g2*g5) + (g4*t^5.3)/(g1^3*g2^3*g3^6*g5^3) + (g4*t^5.3)/(g1^3*g2^6*g3^3*g5^3) + (g4*t^5.3)/(g1^6*g2^3*g3^3*g5^3) + (g1^2*g4*g5^2*t^5.56)/(g2*g3^4) + (g2^2*g4*g5^2*t^5.56)/(g1*g3^4) + (g1^2*g4*g5^2*t^5.56)/(g2^4*g3) + (3*g4*g5^2*t^5.56)/(g1*g2*g3) + (g2^2*g4*g5^2*t^5.56)/(g1^4*g3) + (g3^2*g4*g5^2*t^5.56)/(g1*g2^4) + (g3^2*g4*g5^2*t^5.56)/(g1^4*g2) + (g1^2*g2^2*g4*t^5.57)/(g3^4*g5) + (2*g1^2*g4*t^5.57)/(g2*g3*g5) + (2*g2^2*g4*t^5.57)/(g1*g3*g5) + (g1^2*g3^2*g4*t^5.57)/(g2^4*g5) + (2*g3^2*g4*t^5.57)/(g1*g2*g5) + (g2^2*g3^2*g4*t^5.57)/(g1^4*g5) + (g4^2*g5^2*t^5.95)/(g1*g2*g3^4) + (g4^2*g5^2*t^5.95)/(g1*g2^4*g3) + (g4^2*g5^2*t^5.95)/(g1^4*g2*g3) + (g1^2*g4^2*t^5.96)/(g2*g3^4*g5) + (g2^2*g4^2*t^5.96)/(g1*g3^4*g5) + (g1^2*g4^2*t^5.96)/(g2^4*g3*g5) + (3*g4^2*t^5.96)/(g1*g2*g3*g5) + (g2^2*g4^2*t^5.96)/(g1^4*g3*g5) + (g3^2*g4^2*t^5.96)/(g1*g2^4*g5) + (g3^2*g4^2*t^5.96)/(g1^4*g2*g5) - 5*t^6. - (g1^3*t^6.)/g2^3 - (g2^3*t^6.)/g1^3 - (g1^3*t^6.)/g3^3 - (g2^3*t^6.)/g3^3 - (g3^3*t^6.)/g1^3 - (g3^3*t^6.)/g2^3 - (g1^3*t^6.01)/g5^3 - (g2^3*t^6.01)/g5^3 - (g3^3*t^6.01)/g5^3 + (g4^3*t^6.07)/(g1^3*g2^3*g3^12*g5^3) + (g4^3*t^6.07)/(g1^3*g2^6*g3^9*g5^3) + (g4^3*t^6.07)/(g1^6*g2^3*g3^9*g5^3) + (g4^3*t^6.07)/(g1^3*g2^9*g3^6*g5^3) + (g4^3*t^6.07)/(g1^6*g2^6*g3^6*g5^3) + (g4^3*t^6.07)/(g1^9*g2^3*g3^6*g5^3) + (g4^3*t^6.07)/(g1^3*g2^12*g3^3*g5^3) + (g4^3*t^6.07)/(g1^6*g2^9*g3^3*g5^3) + (g4^3*t^6.07)/(g1^9*g2^6*g3^3*g5^3) + (g4^3*t^6.07)/(g1^12*g2^3*g3^3*g5^3) - (g4*t^6.4)/g5^3 - (g1*g2*g5*t^6.43)/(g3^2*g4) - (g1*g3*g5*t^6.43)/(g2^2*g4) - (g2*g3*g5*t^6.43)/(g1^2*g4) - (g1*g2*g3*t^6.44)/(g4*g5^2) + t^6.55/(g1^4*g2^4*g3^4*g5^4) + (g1*g5*t^6.81)/(g2^2*g3^2) + (g2*g5*t^6.81)/(g1^2*g3^2) + (g3*g5*t^6.81)/(g1^2*g2^2) + (g1*g2*t^6.82)/(g3^2*g5^2) + (g1*g3*t^6.82)/(g2^2*g5^2) + (g2*g3*t^6.82)/(g1^2*g5^2) + g1^6*g5^6*t^7.08 + g1^3*g2^3*g5^6*t^7.08 + g2^6*g5^6*t^7.08 + g1^3*g3^3*g5^6*t^7.08 + g2^3*g3^3*g5^6*t^7.08 + g3^6*g5^6*t^7.08 + g1^6*g2^3*g5^3*t^7.09 + g1^3*g2^6*g5^3*t^7.09 + g1^6*g3^3*g5^3*t^7.09 + 2*g1^3*g2^3*g3^3*g5^3*t^7.09 + g2^6*g3^3*g5^3*t^7.09 + g1^3*g3^6*g5^3*t^7.09 + g2^3*g3^6*g5^3*t^7.09 + g1^6*g2^6*t^7.1 + g1^6*g2^3*g3^3*t^7.1 + g1^3*g2^6*g3^3*t^7.1 + g1^6*g3^6*t^7.1 + g1^3*g2^3*g3^6*t^7.1 + g2^6*g3^6*t^7.1 + (g4*g5^4*t^7.19)/(g1^2*g2^2*g3^5) + (g4*g5^4*t^7.19)/(g1^2*g2^5*g3^2) + (g4*g5^4*t^7.19)/(g1^5*g2^2*g3^2) + (g1*g4*g5*t^7.2)/(g2^2*g3^5) + (g2*g4*g5*t^7.2)/(g1^2*g3^5) + (g1*g4*g5*t^7.2)/(g2^5*g3^2) + (3*g4*g5*t^7.2)/(g1^2*g2^2*g3^2) + (g2*g4*g5*t^7.2)/(g1^5*g3^2) + (g3*g4*g5*t^7.2)/(g1^2*g2^5) + (g3*g4*g5*t^7.2)/(g1^5*g2^2) + (g1^4*g4*t^7.21)/(g2^2*g3^5*g5^2) + (g1*g2*g4*t^7.21)/(g3^5*g5^2) + (g2^4*g4*t^7.21)/(g1^2*g3^5*g5^2) + (g1^4*g4*t^7.21)/(g2^5*g3^2*g5^2) + (3*g1*g4*t^7.21)/(g2^2*g3^2*g5^2) + (3*g2*g4*t^7.21)/(g1^2*g3^2*g5^2) + (g2^4*g4*t^7.21)/(g1^5*g3^2*g5^2) + (g1*g3*g4*t^7.21)/(g2^5*g5^2) + (3*g3*g4*t^7.21)/(g1^2*g2^2*g5^2) + (g2*g3*g4*t^7.21)/(g1^5*g5^2) + (g3^4*g4*t^7.21)/(g1^2*g2^5*g5^2) + (g3^4*g4*t^7.21)/(g1^5*g2^2*g5^2) - (g1^2*t^7.25)/(g2*g3*g4*g5) - (g2^2*t^7.25)/(g1*g3*g4*g5) - (g3^2*t^7.25)/(g1*g2*g4*g5) + (g4^2*t^7.32)/(g1^4*g2^4*g3^10*g5^4) + (g4^2*t^7.32)/(g1^4*g2^7*g3^7*g5^4) + (g4^2*t^7.32)/(g1^7*g2^4*g3^7*g5^4) + (g4^2*t^7.32)/(g1^4*g2^10*g3^4*g5^4) + (g4^2*t^7.32)/(g1^7*g2^7*g3^4*g5^4) + (g4^2*t^7.32)/(g1^10*g2^4*g3^4*g5^4) + g1^3*g4*g5^6*t^7.46 + g2^3*g4*g5^6*t^7.46 + g3^3*g4*g5^6*t^7.46 + g1^6*g4*g5^3*t^7.47 + 2*g1^3*g2^3*g4*g5^3*t^7.47 + g2^6*g4*g5^3*t^7.47 + 2*g1^3*g3^3*g4*g5^3*t^7.47 + 2*g2^3*g3^3*g4*g5^3*t^7.47 + g3^6*g4*g5^3*t^7.47 + g1^6*g2^3*g4*t^7.48 + g1^3*g2^6*g4*t^7.48 + g1^6*g3^3*g4*t^7.48 + 2*g1^3*g2^3*g3^3*g4*t^7.48 + g2^6*g3^3*g4*t^7.48 + g1^3*g3^6*g4*t^7.48 + g2^3*g3^6*g4*t^7.48 + (g1^4*g2*g3*g5^7*t^7.51)/g4 + (g1*g2^4*g3*g5^7*t^7.51)/g4 + (g1*g2*g3^4*g5^7*t^7.51)/g4 - (g1^4*g2^4*g3^4*g5*t^7.52)/g4 + (g1*g4^2*g5*t^7.59)/(g2^2*g3^8) + (g2*g4^2*g5*t^7.59)/(g1^2*g3^8) + (g1*g4^2*g5*t^7.59)/(g2^5*g3^5) + (3*g4^2*g5*t^7.59)/(g1^2*g2^2*g3^5) + (g2*g4^2*g5*t^7.59)/(g1^5*g3^5) + (g1*g4^2*g5*t^7.59)/(g2^8*g3^2) + (3*g4^2*g5*t^7.59)/(g1^2*g2^5*g3^2) + (3*g4^2*g5*t^7.59)/(g1^5*g2^2*g3^2) + (g2*g4^2*g5*t^7.59)/(g1^8*g3^2) + (g3*g4^2*g5*t^7.59)/(g1^2*g2^8) + (g3*g4^2*g5*t^7.59)/(g1^5*g2^5) + (g3*g4^2*g5*t^7.59)/(g1^8*g2^2) + (g1*g2*g4^2*t^7.6)/(g3^8*g5^2) + (2*g1*g4^2*t^7.6)/(g2^2*g3^5*g5^2) + (2*g2*g4^2*t^7.6)/(g1^2*g3^5*g5^2) + (2*g1*g4^2*t^7.6)/(g2^5*g3^2*g5^2) + (3*g4^2*t^7.6)/(g1^2*g2^2*g3^2*g5^2) + (2*g2*g4^2*t^7.6)/(g1^5*g3^2*g5^2) + (g1*g3*g4^2*t^7.6)/(g2^8*g5^2) + (2*g3*g4^2*t^7.6)/(g1^2*g2^5*g5^2) + (2*g3*g4^2*t^7.6)/(g1^5*g2^2*g5^2) + (g2*g3*g4^2*t^7.6)/(g1^8*g5^2) - (g5^2*t^7.63)/(g1*g2*g3^4) - (g5^2*t^7.63)/(g1*g2^4*g3) - (g5^2*t^7.63)/(g1^4*g2*g3) - (g1^2*t^7.64)/(g2*g3^4*g5) - (g2^2*t^7.64)/(g1*g3^4*g5) - (g1^2*t^7.64)/(g2^4*g3*g5) - (3*t^7.64)/(g1*g2*g3*g5) - (g2^2*t^7.64)/(g1^4*g3*g5) - (g3^2*t^7.64)/(g1*g2^4*g5) - (g3^2*t^7.64)/(g1^4*g2*g5) - (g1^2*t^7.65)/(g2*g3*g5^4) - (g2^2*t^7.65)/(g1*g3*g5^4) - (g3^2*t^7.65)/(g1*g2*g5^4) + g4^2*g5^6*t^7.85 + g1^3*g4^2*g5^3*t^7.86 + g2^3*g4^2*g5^3*t^7.86 + g3^3*g4^2*g5^3*t^7.86 + g1^6*g4^2*t^7.87 + g1^3*g2^3*g4^2*t^7.87 + g2^6*g4^2*t^7.87 + g1^3*g3^3*g4^2*t^7.87 + g2^3*g3^3*g4^2*t^7.87 + g3^6*g4^2*t^7.87 - g1^7*g2*g3*g5*t^7.91 - g1^4*g2^4*g3*g5*t^7.91 - g1*g2^7*g3*g5*t^7.91 - g1^4*g2*g3^4*g5*t^7.91 - g1*g2^4*g3^4*g5*t^7.91 - g1*g2*g3^7*g5*t^7.91 + (g1^2*g2^2*g3^2*g5^8*t^7.93)/g4^2 + (g4^3*g5*t^7.97)/(g1^2*g2^2*g3^8) + (g4^3*g5*t^7.97)/(g1^2*g2^5*g3^5) + (g4^3*g5*t^7.97)/(g1^5*g2^2*g3^5) + (g4^3*g5*t^7.97)/(g1^2*g2^8*g3^2) + (g4^3*g5*t^7.97)/(g1^5*g2^5*g3^2) + (g4^3*g5*t^7.97)/(g1^8*g2^2*g3^2) + (g1*g4^3*t^7.98)/(g2^2*g3^8*g5^2) + (g2*g4^3*t^7.98)/(g1^2*g3^8*g5^2) + (g1*g4^3*t^7.98)/(g2^5*g3^5*g5^2) + (3*g4^3*t^7.98)/(g1^2*g2^2*g3^5*g5^2) + (g2*g4^3*t^7.98)/(g1^5*g3^5*g5^2) + (g1*g4^3*t^7.98)/(g2^8*g3^2*g5^2) + (3*g4^3*t^7.98)/(g1^2*g2^5*g3^2*g5^2) + (3*g4^3*t^7.98)/(g1^5*g2^2*g3^2*g5^2) + (g2*g4^3*t^7.98)/(g1^8*g3^2*g5^2) + (g3*g4^3*t^7.98)/(g1^2*g2^8*g5^2) + (g3*g4^3*t^7.98)/(g1^5*g2^5*g5^2) + (g3*g4^3*t^7.98)/(g1^8*g2^2*g5^2) - (g4*g5^2*t^8.01)/(g1*g2^4*g3^4) - (g4*g5^2*t^8.01)/(g1^4*g2*g3^4) - (g4*g5^2*t^8.01)/(g1^4*g2^4*g3) - (g1^2*g4*t^8.02)/(g2*g3^7*g5) - (g2^2*g4*t^8.02)/(g1*g3^7*g5) - (2*g1^2*g4*t^8.02)/(g2^4*g3^4*g5) - (7*g4*t^8.02)/(g1*g2*g3^4*g5) - (2*g2^2*g4*t^8.02)/(g1^4*g3^4*g5) - (g1^2*g4*t^8.02)/(g2^7*g3*g5) - (7*g4*t^8.02)/(g1*g2^4*g3*g5) - (7*g4*t^8.02)/(g1^4*g2*g3*g5) - (g2^2*g4*t^8.02)/(g1^7*g3*g5) - (g3^2*g4*t^8.02)/(g1*g2^7*g5) - (2*g3^2*g4*t^8.02)/(g1^4*g2^4*g5) - (g3^2*g4*t^8.02)/(g1^7*g2*g5) - (g1^2*g4*t^8.03)/(g2*g3^4*g5^4) - (g2^2*g4*t^8.03)/(g1*g3^4*g5^4) - (g1^2*g4*t^8.03)/(g2^4*g3*g5^4) - (3*g4*t^8.03)/(g1*g2*g3*g5^4) - (g2^2*g4*t^8.03)/(g1^4*g3*g5^4) - (g3^2*g4*t^8.03)/(g1*g2^4*g5^4) - (g3^2*g4*t^8.03)/(g1^4*g2*g5^4) + (g4^4*t^8.09)/(g1^4*g2^4*g3^16*g5^4) + (g4^4*t^8.09)/(g1^4*g2^7*g3^13*g5^4) + (g4^4*t^8.09)/(g1^7*g2^4*g3^13*g5^4) + (g4^4*t^8.09)/(g1^4*g2^10*g3^10*g5^4) + (g4^4*t^8.09)/(g1^7*g2^7*g3^10*g5^4) + (g4^4*t^8.09)/(g1^10*g2^4*g3^10*g5^4) + (g4^4*t^8.09)/(g1^4*g2^13*g3^7*g5^4) + (g4^4*t^8.09)/(g1^7*g2^10*g3^7*g5^4) + (g4^4*t^8.09)/(g1^10*g2^7*g3^7*g5^4) + (g4^4*t^8.09)/(g1^13*g2^4*g3^7*g5^4) + (g4^4*t^8.09)/(g1^4*g2^16*g3^4*g5^4) + (g4^4*t^8.09)/(g1^7*g2^13*g3^4*g5^4) + (g4^4*t^8.09)/(g1^10*g2^10*g3^4*g5^4) + (g4^4*t^8.09)/(g1^13*g2^7*g3^4*g5^4) + (g4^4*t^8.09)/(g1^16*g2^4*g3^4*g5^4) - (g1^5*g2^2*g3^2*g5^2*t^8.34)/g4 - (g1^2*g2^5*g3^2*g5^2*t^8.34)/g4 - (g1^2*g2^2*g3^5*g5^2*t^8.34)/g4 - (g4^2*t^8.41)/(g1*g2^4*g3^4*g5) - (g4^2*t^8.41)/(g1^4*g2*g3^4*g5) - (g4^2*t^8.41)/(g1^4*g2^4*g3*g5) - (g4^2*t^8.42)/(g1*g2*g3^4*g5^4) - (g4^2*t^8.42)/(g1*g2^4*g3*g5^4) - (g4^2*t^8.42)/(g1^4*g2*g3*g5^4) + (g5^3*t^8.44)/(g1^3*g2^3*g3^3) + t^8.46/(g1^3*g5^3) + t^8.46/(g2^3*g5^3) + t^8.46/(g3^3*g5^3) + (g1^3*t^8.46)/(g2^3*g3^3*g5^3) + (g2^3*t^8.46)/(g1^3*g3^3*g5^3) + (g3^3*t^8.46)/(g1^3*g2^3*g5^3) + t^8.47/g5^6 + (g4*t^8.57)/(g1^5*g2^5*g3^8*g5^5) + (g4*t^8.57)/(g1^5*g2^8*g3^5*g5^5) + (g4*t^8.57)/(g1^8*g2^5*g3^5*g5^5) - g1*g2*g3*g4^2*g5*t^8.68 + (g1^2*g5^8*t^8.71)/(g2*g3) + (g2^2*g5^8*t^8.71)/(g1*g3) + (g3^2*g5^8*t^8.71)/(g1*g2) + (g1^8*g5^2*t^8.72)/(g2*g3) + (2*g1^5*g2^2*g5^2*t^8.72)/g3 + (2*g1^2*g2^5*g5^2*t^8.72)/g3 + (g2^8*g5^2*t^8.72)/(g1*g3) + (2*g1^5*g3^2*g5^2*t^8.72)/g2 + 3*g1^2*g2^2*g3^2*g5^2*t^8.72 + (2*g2^5*g3^2*g5^2*t^8.72)/g1 + (2*g1^2*g3^5*g5^2*t^8.72)/g2 + (2*g2^2*g3^5*g5^2*t^8.72)/g1 + (g3^8*g5^2*t^8.72)/(g1*g2) + (g1^5*g5^5*t^8.72)/(g2*g3) + (2*g1^2*g2^2*g5^5*t^8.72)/g3 + (g2^5*g5^5*t^8.72)/(g1*g3) + (2*g1^2*g3^2*g5^5*t^8.72)/g2 + (2*g2^2*g3^2*g5^5*t^8.72)/g1 + (g3^5*g5^5*t^8.72)/(g1*g2) + (g1^8*g2^2*t^8.73)/(g3*g5) + (g1^5*g2^5*t^8.73)/(g3*g5) + (g1^2*g2^8*t^8.73)/(g3*g5) + (g1^8*g3^2*t^8.73)/(g2*g5) + (2*g1^5*g2^2*g3^2*t^8.73)/g5 + (2*g1^2*g2^5*g3^2*t^8.73)/g5 + (g2^8*g3^2*t^8.73)/(g1*g5) + (g1^5*g3^5*t^8.73)/(g2*g5) + (2*g1^2*g2^2*g3^5*t^8.73)/g5 + (g2^5*g3^5*t^8.73)/(g1*g5) + (g1^2*g3^8*t^8.73)/(g2*g5) + (g2^2*g3^8*t^8.73)/(g1*g5) - (g1^3*g2^3*g3^3*g5^3*t^8.77)/g4^2 + (g4*t^8.84)/(g1^3*g2^6) + (g4*t^8.84)/(g1^6*g2^3) + (g4*t^8.84)/(g1^3*g3^6) + (g4*t^8.84)/(g2^3*g3^6) + (g4*t^8.84)/(g1^6*g3^3) + (g4*t^8.84)/(g2^6*g3^3) + (3*g4*t^8.84)/(g1^3*g2^3*g3^3) + (g4*t^8.85)/(g1^6*g5^3) + (g4*t^8.85)/(g2^6*g5^3) + (2*g4*t^8.85)/(g1^3*g2^3*g5^3) + (g4*t^8.85)/(g3^6*g5^3) + (2*g4*t^8.85)/(g1^3*g3^3*g5^3) + (2*g4*t^8.85)/(g2^3*g3^3*g5^3) - t^4.64/(g1*g2*g3*g5*y) - (g4*t^6.66)/(g1^2*g2^2*g3^5*g5^2*y) - (g4*t^6.66)/(g1^2*g2^5*g3^2*g5^2*y) - (g4*t^6.66)/(g1^5*g2^2*g3^2*g5^2*y) + (g4^2*t^7.05)/(g1^2*g2^5*g3^5*g5^2*y) + (g4^2*t^7.05)/(g1^5*g2^2*g3^5*g5^2*y) + (g4^2*t^7.05)/(g1^5*g2^5*g3^2*g5^2*y) + (g1*g2*g3*g5*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g5^3*y) + (g4*t^8.3)/(g1^3*g2^3*g3^6*g5^3*y) + (g4*t^8.3)/(g1^3*g2^6*g3^3*g5^3*y) + (g4*t^8.3)/(g1^6*g2^3*g3^3*g5^3*y) + (g1^2*g4*g5^2*t^8.56)/(g2*g3^4*y) + (g2^2*g4*g5^2*t^8.56)/(g1*g3^4*y) + (g1^2*g4*g5^2*t^8.56)/(g2^4*g3*y) + (3*g4*g5^2*t^8.56)/(g1*g2*g3*y) + (g2^2*g4*g5^2*t^8.56)/(g1^4*g3*y) + (g3^2*g4*g5^2*t^8.56)/(g1*g2^4*y) + (g3^2*g4*g5^2*t^8.56)/(g1^4*g2*y) + (g1^2*g2^2*g4*t^8.57)/(g3^4*g5*y) + (2*g1^2*g4*t^8.57)/(g2*g3*g5*y) + (2*g2^2*g4*t^8.57)/(g1*g3*g5*y) + (g1^2*g3^2*g4*t^8.57)/(g2^4*g5*y) + (2*g3^2*g4*t^8.57)/(g1*g2*g5*y) + (g2^2*g3^2*g4*t^8.57)/(g1^4*g5*y) + (g1^3*t^8.61)/(g4*y) + (g2^3*t^8.61)/(g4*y) + (g3^3*t^8.61)/(g4*y) - (g4^2*t^8.68)/(g1^3*g2^3*g3^9*g5^3*y) - (g4^2*t^8.68)/(g1^3*g2^6*g3^6*g5^3*y) - (g4^2*t^8.68)/(g1^6*g2^3*g3^6*g5^3*y) - (g4^2*t^8.68)/(g1^3*g2^9*g3^3*g5^3*y) - (g4^2*t^8.68)/(g1^6*g2^6*g3^3*g5^3*y) - (g4^2*t^8.68)/(g1^9*g2^3*g3^3*g5^3*y) + (g4^2*g5^2*t^8.95)/(g1*g2*g3^4*y) + (g4^2*g5^2*t^8.95)/(g1*g2^4*g3*y) + (g4^2*g5^2*t^8.95)/(g1^4*g2*g3*y) + (g1^2*g4^2*t^8.96)/(g2*g3^4*g5*y) + (g2^2*g4^2*t^8.96)/(g1*g3^4*g5*y) + (g1^2*g4^2*t^8.96)/(g2^4*g3*g5*y) + (3*g4^2*t^8.96)/(g1*g2*g3*g5*y) + (g2^2*g4^2*t^8.96)/(g1^4*g3*g5*y) + (g3^2*g4^2*t^8.96)/(g1*g2^4*g5*y) + (g3^2*g4^2*t^8.96)/(g1^4*g2*g5*y) + (g5^3*t^8.99)/(g1^3*y) + (g5^3*t^8.99)/(g2^3*y) + (g5^3*t^8.99)/(g3^3*y) - (t^4.64*y)/(g1*g2*g3*g5) - (g4*t^6.66*y)/(g1^2*g2^2*g3^5*g5^2) - (g4*t^6.66*y)/(g1^2*g2^5*g3^2*g5^2) - (g4*t^6.66*y)/(g1^5*g2^2*g3^2*g5^2) + (g4^2*t^7.05*y)/(g1^2*g2^5*g3^5*g5^2) + (g4^2*t^7.05*y)/(g1^5*g2^2*g3^5*g5^2) + (g4^2*t^7.05*y)/(g1^5*g2^5*g3^2*g5^2) + g1*g2*g3*g5*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g5^3) + (g4*t^8.3*y)/(g1^3*g2^3*g3^6*g5^3) + (g4*t^8.3*y)/(g1^3*g2^6*g3^3*g5^3) + (g4*t^8.3*y)/(g1^6*g2^3*g3^3*g5^3) + (g1^2*g4*g5^2*t^8.56*y)/(g2*g3^4) + (g2^2*g4*g5^2*t^8.56*y)/(g1*g3^4) + (g1^2*g4*g5^2*t^8.56*y)/(g2^4*g3) + (3*g4*g5^2*t^8.56*y)/(g1*g2*g3) + (g2^2*g4*g5^2*t^8.56*y)/(g1^4*g3) + (g3^2*g4*g5^2*t^8.56*y)/(g1*g2^4) + (g3^2*g4*g5^2*t^8.56*y)/(g1^4*g2) + (g1^2*g2^2*g4*t^8.57*y)/(g3^4*g5) + (2*g1^2*g4*t^8.57*y)/(g2*g3*g5) + (2*g2^2*g4*t^8.57*y)/(g1*g3*g5) + (g1^2*g3^2*g4*t^8.57*y)/(g2^4*g5) + (2*g3^2*g4*t^8.57*y)/(g1*g2*g5) + (g2^2*g3^2*g4*t^8.57*y)/(g1^4*g5) + (g1^3*t^8.61*y)/g4 + (g2^3*t^8.61*y)/g4 + (g3^3*t^8.61*y)/g4 - (g4^2*t^8.68*y)/(g1^3*g2^3*g3^9*g5^3) - (g4^2*t^8.68*y)/(g1^3*g2^6*g3^6*g5^3) - (g4^2*t^8.68*y)/(g1^6*g2^3*g3^6*g5^3) - (g4^2*t^8.68*y)/(g1^3*g2^9*g3^3*g5^3) - (g4^2*t^8.68*y)/(g1^6*g2^6*g3^3*g5^3) - (g4^2*t^8.68*y)/(g1^9*g2^3*g3^3*g5^3) + (g4^2*g5^2*t^8.95*y)/(g1*g2*g3^4) + (g4^2*g5^2*t^8.95*y)/(g1*g2^4*g3) + (g4^2*g5^2*t^8.95*y)/(g1^4*g2*g3) + (g1^2*g4^2*t^8.96*y)/(g2*g3^4*g5) + (g2^2*g4^2*t^8.96*y)/(g1*g3^4*g5) + (g1^2*g4^2*t^8.96*y)/(g2^4*g3*g5) + (3*g4^2*t^8.96*y)/(g1*g2*g3*g5) + (g2^2*g4^2*t^8.96*y)/(g1^4*g3*g5) + (g3^2*g4^2*t^8.96*y)/(g1*g2^4*g5) + (g3^2*g4^2*t^8.96*y)/(g1^4*g2*g5) + (g5^3*t^8.99*y)/g1^3 + (g5^3*t^8.99*y)/g2^3 + (g5^3*t^8.99*y)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y | detail |