Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55768 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ + $ M_1q_3\tilde{q}_1$ | 0.9187 | 1.1454 | 0.8021 | [X:[], M:[0.7149, 0.7001, 0.7001], q:[0.6574, 0.6278, 0.6426], qb:[0.6426, 0.618, 0.618], phi:[0.5484]] | [X:[], M:[[0, -2, -2, 0, 0], [1, -4, -2, 0, 0], [1, -2, -4, 0, 0]], q:[[-1, 2, 2, 0, 0], [1, 0, 0, 0, 0], [0, 2, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 4, 0], [0, 0, 0, 0, 4]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_3^2$, $ M_2M_3$, $ M_2^2$, $ M_1M_3$, $ M_1M_2$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_1q_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2q_3$, $ M_2q_2q_3$, $ M_3q_2\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ | . | -9 | 2*t^2.1 + t^2.14 + t^3.29 + t^3.71 + 2*t^3.74 + 4*t^3.78 + 2*t^3.81 + 2*t^3.83 + t^3.86 + 3*t^4.2 + 2*t^4.24 + t^4.29 + 3*t^5.35 + 2*t^5.38 + 2*t^5.39 + t^5.41 + 4*t^5.43 + t^5.44 + 2*t^5.46 + 2*t^5.47 + 4*t^5.5 + 2*t^5.55 + t^5.59 + 2*t^5.81 + 4*t^5.84 + t^5.85 + 8*t^5.88 + 3*t^5.91 + 4*t^5.93 - 9*t^6. - 2*t^6.03 - 4*t^6.04 - 4*t^6.07 - t^6.09 - 2*t^6.12 + 4*t^6.3 + 3*t^6.35 + 2*t^6.39 + t^6.43 + t^6.58 + t^7. + 2*t^7.03 + 4*t^7.07 + 2*t^7.1 + 2*t^7.12 + t^7.15 + t^7.42 + 8*t^7.45 + 3*t^7.47 + 4*t^7.48 + 7*t^7.49 + 3*t^7.5 + 2*t^7.51 + 8*t^7.52 + 10*t^7.53 + 2*t^7.54 + 4*t^7.55 + 17*t^7.56 + 4*t^7.57 + t^7.58 + 8*t^7.59 + 6*t^7.6 + 6*t^7.61 + 3*t^7.62 + 4*t^7.64 + 2*t^7.65 - 4*t^7.72 - 2*t^7.76 + 3*t^7.91 + 6*t^7.94 + 2*t^7.95 + 12*t^7.98 + t^8. + 4*t^8.01 + 6*t^8.03 - 4*t^8.06 - 2*t^8.09 - 18*t^8.1 - t^8.12 - 4*t^8.13 - 17*t^8.14 - 10*t^8.17 - 2*t^8.18 - 4*t^8.19 - 4*t^8.21 - 4*t^8.22 - 2*t^8.25 + 3*t^8.29 - t^8.3 + 5*t^8.4 + 4*t^8.45 + 3*t^8.49 + 2*t^8.53 + t^8.58 + 3*t^8.64 + 2*t^8.67 + 2*t^8.68 + t^8.7 + 4*t^8.72 + t^8.73 + 2*t^8.75 + 2*t^8.76 + 4*t^8.79 + 2*t^8.84 + t^8.88 - t^4.65/y - (2*t^6.75)/y - t^6.79/y + t^7.2/y + (2*t^7.24)/y + t^7.35/y - t^7.94/y + (2*t^8.39)/y + t^8.44/y + t^8.5/y + (2*t^8.55)/y + (2*t^8.81)/y + (4*t^8.84)/y - (2*t^8.85)/y + (10*t^8.88)/y - (2*t^8.89)/y + (4*t^8.91)/y + (7*t^8.93)/y + (4*t^8.96)/y + (2*t^8.97)/y - t^4.65*y - 2*t^6.75*y - t^6.79*y + t^7.2*y + 2*t^7.24*y + t^7.35*y - t^7.94*y + 2*t^8.39*y + t^8.44*y + t^8.5*y + 2*t^8.55*y + 2*t^8.81*y + 4*t^8.84*y - 2*t^8.85*y + 10*t^8.88*y - 2*t^8.89*y + 4*t^8.91*y + 7*t^8.93*y + 4*t^8.96*y + 2*t^8.97*y | (g1*t^2.1)/(g2^2*g3^4) + (g1*t^2.1)/(g2^4*g3^2) + t^2.14/(g2^2*g3^2) + t^3.29/(g2^2*g3^2*g4^2*g5^2) + g4^4*g5^4*t^3.71 + g1*g4^4*t^3.74 + g1*g5^4*t^3.74 + g2^2*g4^4*t^3.78 + g3^2*g4^4*t^3.78 + g2^2*g5^4*t^3.78 + g3^2*g5^4*t^3.78 + g1*g2^2*t^3.81 + g1*g3^2*t^3.81 + (g2^2*g3^2*g4^4*t^3.83)/g1 + (g2^2*g3^2*g5^4*t^3.83)/g1 + g2^2*g3^2*t^3.86 + (g1^2*t^4.2)/(g2^4*g3^8) + (g1^2*t^4.2)/(g2^6*g3^6) + (g1^2*t^4.2)/(g2^8*g3^4) + (g1*t^4.24)/(g2^4*g3^6) + (g1*t^4.24)/(g2^6*g3^4) + t^4.29/(g2^4*g3^4) + (g4^7*t^5.35)/(g2*g3*g5) + (g4^3*g5^3*t^5.35)/(g2*g3) + (g5^7*t^5.35)/(g2*g3*g4) + (g1*g4^3*t^5.38)/(g2*g3*g5) + (g1*g5^3*t^5.38)/(g2*g3*g4) + (g1*t^5.39)/(g2^4*g3^6*g4^2*g5^2) + (g1*t^5.39)/(g2^6*g3^4*g4^2*g5^2) + (g1^2*t^5.41)/(g2*g3*g4*g5) + (g2*g4^3*t^5.43)/(g3*g5) + (g3*g4^3*t^5.43)/(g2*g5) + (g2*g5^3*t^5.43)/(g3*g4) + (g3*g5^3*t^5.43)/(g2*g4) + t^5.44/(g2^4*g3^4*g4^2*g5^2) + (g1*g2*t^5.46)/(g3*g4*g5) + (g1*g3*t^5.46)/(g2*g4*g5) + (g2*g3*g4^3*t^5.47)/(g1*g5) + (g2*g3*g5^3*t^5.47)/(g1*g4) + (g2^3*t^5.5)/(g3*g4*g5) + (2*g2*g3*t^5.5)/(g4*g5) + (g3^3*t^5.5)/(g2*g4*g5) + (g2^3*g3*t^5.55)/(g1*g4*g5) + (g2*g3^3*t^5.55)/(g1*g4*g5) + (g2^3*g3^3*t^5.59)/(g1^2*g4*g5) + (g1*g4^4*g5^4*t^5.81)/(g2^2*g3^4) + (g1*g4^4*g5^4*t^5.81)/(g2^4*g3^2) + (g1^2*g4^4*t^5.84)/(g2^2*g3^4) + (g1^2*g4^4*t^5.84)/(g2^4*g3^2) + (g1^2*g5^4*t^5.84)/(g2^2*g3^4) + (g1^2*g5^4*t^5.84)/(g2^4*g3^2) + (g4^4*g5^4*t^5.85)/(g2^2*g3^2) + (g1*g4^4*t^5.88)/g2^4 + (g1*g4^4*t^5.88)/g3^4 + (2*g1*g4^4*t^5.88)/(g2^2*g3^2) + (g1*g5^4*t^5.88)/g2^4 + (g1*g5^4*t^5.88)/g3^4 + (2*g1*g5^4*t^5.88)/(g2^2*g3^2) + (g1^2*t^5.91)/g2^4 + (g1^2*t^5.91)/g3^4 + (g1^2*t^5.91)/(g2^2*g3^2) + (g4^4*t^5.93)/g2^2 + (g4^4*t^5.93)/g3^2 + (g5^4*t^5.93)/g2^2 + (g5^4*t^5.93)/g3^2 - 5*t^6. - (g2^2*t^6.)/g3^2 - (g3^2*t^6.)/g2^2 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g4^4 - (g1*t^6.03)/g4^4 - (g1*t^6.03)/g5^4 - (2*g2^2*t^6.04)/g1 - (2*g3^2*t^6.04)/g1 - (g2^2*t^6.07)/g4^4 - (g3^2*t^6.07)/g4^4 - (g2^2*t^6.07)/g5^4 - (g3^2*t^6.07)/g5^4 - (g2^2*g3^2*t^6.09)/g1^2 - (g2^2*g3^2*t^6.12)/(g1*g4^4) - (g2^2*g3^2*t^6.12)/(g1*g5^4) + (g1^3*t^6.3)/(g2^6*g3^12) + (g1^3*t^6.3)/(g2^8*g3^10) + (g1^3*t^6.3)/(g2^10*g3^8) + (g1^3*t^6.3)/(g2^12*g3^6) + (g1^2*t^6.35)/(g2^6*g3^10) + (g1^2*t^6.35)/(g2^8*g3^8) + (g1^2*t^6.35)/(g2^10*g3^6) + (g1*t^6.39)/(g2^6*g3^8) + (g1*t^6.39)/(g2^8*g3^6) + t^6.43/(g2^6*g3^6) + t^6.58/(g2^4*g3^4*g4^4*g5^4) + (g4^2*g5^2*t^7.)/(g2^2*g3^2) + (g1*g4^2*t^7.03)/(g2^2*g3^2*g5^2) + (g1*g5^2*t^7.03)/(g2^2*g3^2*g4^2) + (g4^2*t^7.07)/(g2^2*g5^2) + (g4^2*t^7.07)/(g3^2*g5^2) + (g5^2*t^7.07)/(g2^2*g4^2) + (g5^2*t^7.07)/(g3^2*g4^2) + (g1*t^7.1)/(g2^2*g4^2*g5^2) + (g1*t^7.1)/(g3^2*g4^2*g5^2) + (g4^2*t^7.12)/(g1*g5^2) + (g5^2*t^7.12)/(g1*g4^2) + t^7.15/(g4^2*g5^2) + g4^8*g5^8*t^7.42 + (g1*g4^7*t^7.45)/(g2^3*g3^5*g5) + (g1*g4^7*t^7.45)/(g2^5*g3^3*g5) + (g1*g4^3*g5^3*t^7.45)/(g2^3*g3^5) + (g1*g4^3*g5^3*t^7.45)/(g2^5*g3^3) + g1*g4^8*g5^4*t^7.45 + (g1*g5^7*t^7.45)/(g2^3*g3^5*g4) + (g1*g5^7*t^7.45)/(g2^5*g3^3*g4) + g1*g4^4*g5^8*t^7.45 + g1^2*g4^8*t^7.47 + g1^2*g4^4*g5^4*t^7.47 + g1^2*g5^8*t^7.47 + (g1^2*g4^3*t^7.48)/(g2^3*g3^5*g5) + (g1^2*g4^3*t^7.48)/(g2^5*g3^3*g5) + (g1^2*g5^3*t^7.48)/(g2^3*g3^5*g4) + (g1^2*g5^3*t^7.48)/(g2^5*g3^3*g4) + (g1^2*t^7.49)/(g2^6*g3^10*g4^2*g5^2) + (g1^2*t^7.49)/(g2^8*g3^8*g4^2*g5^2) + (g1^2*t^7.49)/(g2^10*g3^6*g4^2*g5^2) + g2^2*g4^8*g5^4*t^7.49 + g3^2*g4^8*g5^4*t^7.49 + g2^2*g4^4*g5^8*t^7.49 + g3^2*g4^4*g5^8*t^7.49 + (g4^7*t^7.5)/(g2^3*g3^3*g5) + (g4^3*g5^3*t^7.5)/(g2^3*g3^3) + (g5^7*t^7.5)/(g2^3*g3^3*g4) + (g1^3*t^7.51)/(g2^3*g3^5*g4*g5) + (g1^3*t^7.51)/(g2^5*g3^3*g4*g5) + g1*g2^2*g4^8*t^7.52 + g1*g3^2*g4^8*t^7.52 + 2*g1*g2^2*g4^4*g5^4*t^7.52 + 2*g1*g3^2*g4^4*g5^4*t^7.52 + g1*g2^2*g5^8*t^7.52 + g1*g3^2*g5^8*t^7.52 + (g1*g4^3*t^7.53)/(g2*g3^5*g5) + (2*g1*g4^3*t^7.53)/(g2^3*g3^3*g5) + (g1*g4^3*t^7.53)/(g2^5*g3*g5) + (g1*g5^3*t^7.53)/(g2*g3^5*g4) + (2*g1*g5^3*t^7.53)/(g2^3*g3^3*g4) + (g1*g5^3*t^7.53)/(g2^5*g3*g4) + (g2^2*g3^2*g4^8*g5^4*t^7.53)/g1 + (g2^2*g3^2*g4^4*g5^8*t^7.53)/g1 + (g1*t^7.54)/(g2^6*g3^8*g4^2*g5^2) + (g1*t^7.54)/(g2^8*g3^6*g4^2*g5^2) + g1^2*g2^2*g4^4*t^7.55 + g1^2*g3^2*g4^4*t^7.55 + g1^2*g2^2*g5^4*t^7.55 + g1^2*g3^2*g5^4*t^7.55 + g2^4*g4^8*t^7.56 + 2*g2^2*g3^2*g4^8*t^7.56 + g3^4*g4^8*t^7.56 + (g1^2*t^7.56)/(g2*g3^5*g4*g5) + (2*g1^2*t^7.56)/(g2^3*g3^3*g4*g5) + (g1^2*t^7.56)/(g2^5*g3*g4*g5) + g2^4*g4^4*g5^4*t^7.56 + 3*g2^2*g3^2*g4^4*g5^4*t^7.56 + g3^4*g4^4*g5^4*t^7.56 + g2^4*g5^8*t^7.56 + 2*g2^2*g3^2*g5^8*t^7.56 + g3^4*g5^8*t^7.56 + (g4^3*t^7.57)/(g2*g3^3*g5) + (g4^3*t^7.57)/(g2^3*g3*g5) + (g5^3*t^7.57)/(g2*g3^3*g4) + (g5^3*t^7.57)/(g2^3*g3*g4) + t^7.58/(g2^6*g3^6*g4^2*g5^2) + g1*g2^4*g4^4*t^7.59 + 2*g1*g2^2*g3^2*g4^4*t^7.59 + g1*g3^4*g4^4*t^7.59 + g1*g2^4*g5^4*t^7.59 + 2*g1*g2^2*g3^2*g5^4*t^7.59 + g1*g3^4*g5^4*t^7.59 + (g1*g2*t^7.6)/(g3^5*g4*g5) + (2*g1*t^7.6)/(g2*g3^3*g4*g5) + (2*g1*t^7.6)/(g2^3*g3*g4*g5) + (g1*g3*t^7.6)/(g2^5*g4*g5) + (g2^4*g3^2*g4^8*t^7.61)/g1 + (g2^2*g3^4*g4^8*t^7.61)/g1 + (g2^4*g3^2*g4^4*g5^4*t^7.61)/g1 + (g2^2*g3^4*g4^4*g5^4*t^7.61)/g1 + (g2^4*g3^2*g5^8*t^7.61)/g1 + (g2^2*g3^4*g5^8*t^7.61)/g1 + g1^2*g2^4*t^7.62 + g1^2*g2^2*g3^2*t^7.62 + g1^2*g3^4*t^7.62 + g2^4*g3^2*g4^4*t^7.64 + g2^2*g3^4*g4^4*t^7.64 + g2^4*g3^2*g5^4*t^7.64 + g2^2*g3^4*g5^4*t^7.64 + (g2^4*g3^4*g4^8*t^7.65)/g1^2 - (g4^3*t^7.65)/(g2*g3*g5^5) + (g2*t^7.65)/(g3^3*g4*g5) - t^7.65/(g2*g3*g4*g5) + (g3*t^7.65)/(g2^3*g4*g5) - (g5^3*t^7.65)/(g2*g3*g4^5) + (g2^4*g3^4*g4^4*g5^4*t^7.65)/g1^2 + (g2^4*g3^4*g5^8*t^7.65)/g1^2 + g1*g2^4*g3^2*t^7.67 + g1*g2^2*g3^4*t^7.67 - (g1*t^7.67)/(g2*g3*g4*g5^5) - (g1*t^7.67)/(g2*g3*g4^5*g5) - (g2*t^7.72)/(g3*g4*g5^5) - (g3*t^7.72)/(g2*g4*g5^5) - (g2*t^7.72)/(g3*g4^5*g5) - (g3*t^7.72)/(g2*g4^5*g5) - (g2*g3*t^7.76)/(g1*g4*g5^5) - (g2*g3*t^7.76)/(g1*g4^5*g5) + (g1^2*g4^4*g5^4*t^7.91)/(g2^4*g3^8) + (g1^2*g4^4*g5^4*t^7.91)/(g2^6*g3^6) + (g1^2*g4^4*g5^4*t^7.91)/(g2^8*g3^4) + (g1^3*g4^4*t^7.94)/(g2^4*g3^8) + (g1^3*g4^4*t^7.94)/(g2^6*g3^6) + (g1^3*g4^4*t^7.94)/(g2^8*g3^4) + (g1^3*g5^4*t^7.94)/(g2^4*g3^8) + (g1^3*g5^4*t^7.94)/(g2^6*g3^6) + (g1^3*g5^4*t^7.94)/(g2^8*g3^4) + (g1*g4^4*g5^4*t^7.95)/(g2^4*g3^6) + (g1*g4^4*g5^4*t^7.95)/(g2^6*g3^4) + (g1^2*g4^4*t^7.98)/(g2^2*g3^8) + (2*g1^2*g4^4*t^7.98)/(g2^4*g3^6) + (2*g1^2*g4^4*t^7.98)/(g2^6*g3^4) + (g1^2*g4^4*t^7.98)/(g2^8*g3^2) + (g1^2*g5^4*t^7.98)/(g2^2*g3^8) + (2*g1^2*g5^4*t^7.98)/(g2^4*g3^6) + (2*g1^2*g5^4*t^7.98)/(g2^6*g3^4) + (g1^2*g5^4*t^7.98)/(g2^8*g3^2) + (g4^4*g5^4*t^8.)/(g2^4*g3^4) + (g1^3*t^8.01)/(g2^2*g3^8) + (g1^3*t^8.01)/(g2^4*g3^6) + (g1^3*t^8.01)/(g2^6*g3^4) + (g1^3*t^8.01)/(g2^8*g3^2) + (g1*g4^4*t^8.03)/(g2^2*g3^6) + (g1*g4^4*t^8.03)/(g2^4*g3^4) + (g1*g4^4*t^8.03)/(g2^6*g3^2) + (g1*g5^4*t^8.03)/(g2^2*g3^6) + (g1*g5^4*t^8.03)/(g2^4*g3^4) + (g1*g5^4*t^8.03)/(g2^6*g3^2) - (g1^2*t^8.06)/(g2^4*g3^4) - g2*g3*g4^9*g5*t^8.06 - g2*g3*g4^5*g5^5*t^8.06 - g2*g3*g4*g5^9*t^8.06 - g1*g2*g3*g4^5*g5*t^8.09 - g1*g2*g3*g4*g5^5*t^8.09 - (g1*t^8.1)/g2^6 - (g1*t^8.1)/g3^6 - (6*g1*t^8.1)/(g2^2*g3^4) - (6*g1*t^8.1)/(g2^4*g3^2) - (g1*g4^4*t^8.1)/(g2^2*g3^4*g5^4) - (g1*g4^4*t^8.1)/(g2^4*g3^2*g5^4) - (g1*g5^4*t^8.1)/(g2^2*g3^4*g4^4) - (g1*g5^4*t^8.1)/(g2^4*g3^2*g4^4) - g1^2*g2*g3*g4*g5*t^8.12 - (g1^2*t^8.13)/(g2^2*g3^4*g4^4) - (g1^2*t^8.13)/(g2^4*g3^2*g4^4) - (g1^2*t^8.13)/(g2^2*g3^4*g5^4) - (g1^2*t^8.13)/(g2^4*g3^2*g5^4) - (2*t^8.14)/g2^4 - (2*t^8.14)/g3^4 - (7*t^8.14)/(g2^2*g3^2) - (g4^4*t^8.14)/(g2^2*g3^2*g5^4) - g2^3*g3*g4^5*g5*t^8.14 - g2*g3^3*g4^5*g5*t^8.14 - (g5^4*t^8.14)/(g2^2*g3^2*g4^4) - g2^3*g3*g4*g5^5*t^8.14 - g2*g3^3*g4*g5^5*t^8.14 - (g1*t^8.17)/(g2^4*g4^4) - (g1*t^8.17)/(g3^4*g4^4) - (2*g1*t^8.17)/(g2^2*g3^2*g4^4) - (g1*t^8.17)/(g2^4*g5^4) - (g1*t^8.17)/(g3^4*g5^4) - (2*g1*t^8.17)/(g2^2*g3^2*g5^4) - g1*g2^3*g3*g4*g5*t^8.17 - g1*g2*g3^3*g4*g5*t^8.17 - (g2^3*g3^3*g4^5*g5*t^8.18)/g1 - (g2^3*g3^3*g4*g5^5*t^8.18)/g1 - (2*t^8.19)/(g1*g2^2) - (2*t^8.19)/(g1*g3^2) - g2^5*g3*g4*g5*t^8.21 - 2*g2^3*g3^3*g4*g5*t^8.21 - g2*g3^5*g4*g5*t^8.21 - t^8.22/(g2^2*g4^4) - t^8.22/(g3^2*g4^4) - t^8.22/(g2^2*g5^4) - t^8.22/(g3^2*g5^4) - (g2^5*g3^3*g4*g5*t^8.25)/g1 - (g2^3*g3^5*g4*g5*t^8.25)/g1 + t^8.29/g4^8 + t^8.29/g5^8 + t^8.29/(g4^4*g5^4) - (g2^5*g3^5*g4*g5*t^8.3)/g1^2 + (g1^4*t^8.4)/(g2^8*g3^16) + (g1^4*t^8.4)/(g2^10*g3^14) + (g1^4*t^8.4)/(g2^12*g3^12) + (g1^4*t^8.4)/(g2^14*g3^10) + (g1^4*t^8.4)/(g2^16*g3^8) + (g1^3*t^8.45)/(g2^8*g3^14) + (g1^3*t^8.45)/(g2^10*g3^12) + (g1^3*t^8.45)/(g2^12*g3^10) + (g1^3*t^8.45)/(g2^14*g3^8) + (g1^2*t^8.49)/(g2^8*g3^12) + (g1^2*t^8.49)/(g2^10*g3^10) + (g1^2*t^8.49)/(g2^12*g3^8) + (g1*t^8.53)/(g2^8*g3^10) + (g1*t^8.53)/(g2^10*g3^8) + t^8.58/(g2^8*g3^8) + (g4^5*t^8.64)/(g2^3*g3^3*g5^3) + (g4*g5*t^8.64)/(g2^3*g3^3) + (g5^5*t^8.64)/(g2^3*g3^3*g4^3) + (g1*g4*t^8.67)/(g2^3*g3^3*g5^3) + (g1*g5*t^8.67)/(g2^3*g3^3*g4^3) + (g1*t^8.68)/(g2^6*g3^8*g4^4*g5^4) + (g1*t^8.68)/(g2^8*g3^6*g4^4*g5^4) + (g1^2*t^8.7)/(g2^3*g3^3*g4^3*g5^3) + (g4*t^8.72)/(g2*g3^3*g5^3) + (g4*t^8.72)/(g2^3*g3*g5^3) + (g5*t^8.72)/(g2*g3^3*g4^3) + (g5*t^8.72)/(g2^3*g3*g4^3) + t^8.73/(g2^6*g3^6*g4^4*g5^4) + (g1*t^8.75)/(g2*g3^3*g4^3*g5^3) + (g1*t^8.75)/(g2^3*g3*g4^3*g5^3) + (g4*t^8.76)/(g1*g2*g3*g5^3) + (g5*t^8.76)/(g1*g2*g3*g4^3) + (g2*t^8.79)/(g3^3*g4^3*g5^3) + (2*t^8.79)/(g2*g3*g4^3*g5^3) + (g3*t^8.79)/(g2^3*g4^3*g5^3) + (g2*t^8.84)/(g1*g3*g4^3*g5^3) + (g3*t^8.84)/(g1*g2*g4^3*g5^3) + (g2*g3*t^8.88)/(g1^2*g4^3*g5^3) - t^4.65/(g2*g3*g4*g5*y) - (g1*t^6.75)/(g2^3*g3^5*g4*g5*y) - (g1*t^6.75)/(g2^5*g3^3*g4*g5*y) - t^6.79/(g2^3*g3^3*g4*g5*y) + (g1^2*t^7.2)/(g2^6*g3^6*y) + (g1*t^7.24)/(g2^4*g3^6*y) + (g1*t^7.24)/(g2^6*g3^4*y) + (g2*g3*g4*g5*t^7.35)/y - t^7.94/(g2^3*g3^3*g4^3*g5^3*y) + (g1*t^8.39)/(g2^4*g3^6*g4^2*g5^2*y) + (g1*t^8.39)/(g2^6*g3^4*g4^2*g5^2*y) + t^8.44/(g2^4*g3^4*g4^2*g5^2*y) + (g2*g3*t^8.5)/(g4*g5*y) + (g2^3*g3*t^8.55)/(g1*g4*g5*y) + (g2*g3^3*t^8.55)/(g1*g4*g5*y) + (g1*g4^4*g5^4*t^8.81)/(g2^2*g3^4*y) + (g1*g4^4*g5^4*t^8.81)/(g2^4*g3^2*y) + (g1^2*g4^4*t^8.84)/(g2^2*g3^4*y) + (g1^2*g4^4*t^8.84)/(g2^4*g3^2*y) + (g1^2*g5^4*t^8.84)/(g2^2*g3^4*y) + (g1^2*g5^4*t^8.84)/(g2^4*g3^2*y) - (g1^2*t^8.85)/(g2^5*g3^9*g4*g5*y) - (g1^2*t^8.85)/(g2^7*g3^7*g4*g5*y) - (g1^2*t^8.85)/(g2^9*g3^5*g4*g5*y) + (g4^4*g5^4*t^8.85)/(g2^2*g3^2*y) + (g1*g4^4*t^8.88)/(g2^4*y) + (g1*g4^4*t^8.88)/(g3^4*y) + (3*g1*g4^4*t^8.88)/(g2^2*g3^2*y) + (g1*g5^4*t^8.88)/(g2^4*y) + (g1*g5^4*t^8.88)/(g3^4*y) + (3*g1*g5^4*t^8.88)/(g2^2*g3^2*y) - (g1*t^8.89)/(g2^5*g3^7*g4*g5*y) - (g1*t^8.89)/(g2^7*g3^5*g4*g5*y) + (g1^2*t^8.91)/(g2^4*y) + (g1^2*t^8.91)/(g3^4*y) + (2*g1^2*t^8.91)/(g2^2*g3^2*y) + (2*g4^4*t^8.93)/(g2^2*y) + (2*g4^4*t^8.93)/(g3^2*y) - t^8.93/(g2^5*g3^5*g4*g5*y) + (2*g5^4*t^8.93)/(g2^2*y) + (2*g5^4*t^8.93)/(g3^2*y) + (2*g1*t^8.96)/(g2^2*y) + (2*g1*t^8.96)/(g3^2*y) + (g4^4*t^8.97)/(g1*y) + (g5^4*t^8.97)/(g1*y) - (t^4.65*y)/(g2*g3*g4*g5) - (g1*t^6.75*y)/(g2^3*g3^5*g4*g5) - (g1*t^6.75*y)/(g2^5*g3^3*g4*g5) - (t^6.79*y)/(g2^3*g3^3*g4*g5) + (g1^2*t^7.2*y)/(g2^6*g3^6) + (g1*t^7.24*y)/(g2^4*g3^6) + (g1*t^7.24*y)/(g2^6*g3^4) + g2*g3*g4*g5*t^7.35*y - (t^7.94*y)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.39*y)/(g2^4*g3^6*g4^2*g5^2) + (g1*t^8.39*y)/(g2^6*g3^4*g4^2*g5^2) + (t^8.44*y)/(g2^4*g3^4*g4^2*g5^2) + (g2*g3*t^8.5*y)/(g4*g5) + (g2^3*g3*t^8.55*y)/(g1*g4*g5) + (g2*g3^3*t^8.55*y)/(g1*g4*g5) + (g1*g4^4*g5^4*t^8.81*y)/(g2^2*g3^4) + (g1*g4^4*g5^4*t^8.81*y)/(g2^4*g3^2) + (g1^2*g4^4*t^8.84*y)/(g2^2*g3^4) + (g1^2*g4^4*t^8.84*y)/(g2^4*g3^2) + (g1^2*g5^4*t^8.84*y)/(g2^2*g3^4) + (g1^2*g5^4*t^8.84*y)/(g2^4*g3^2) - (g1^2*t^8.85*y)/(g2^5*g3^9*g4*g5) - (g1^2*t^8.85*y)/(g2^7*g3^7*g4*g5) - (g1^2*t^8.85*y)/(g2^9*g3^5*g4*g5) + (g4^4*g5^4*t^8.85*y)/(g2^2*g3^2) + (g1*g4^4*t^8.88*y)/g2^4 + (g1*g4^4*t^8.88*y)/g3^4 + (3*g1*g4^4*t^8.88*y)/(g2^2*g3^2) + (g1*g5^4*t^8.88*y)/g2^4 + (g1*g5^4*t^8.88*y)/g3^4 + (3*g1*g5^4*t^8.88*y)/(g2^2*g3^2) - (g1*t^8.89*y)/(g2^5*g3^7*g4*g5) - (g1*t^8.89*y)/(g2^7*g3^5*g4*g5) + (g1^2*t^8.91*y)/g2^4 + (g1^2*t^8.91*y)/g3^4 + (2*g1^2*t^8.91*y)/(g2^2*g3^2) + (2*g4^4*t^8.93*y)/g2^2 + (2*g4^4*t^8.93*y)/g3^2 - (t^8.93*y)/(g2^5*g3^5*g4*g5) + (2*g5^4*t^8.93*y)/g2^2 + (2*g5^4*t^8.93*y)/g3^2 + (2*g1*t^8.96*y)/g2^2 + (2*g1*t^8.96*y)/g3^2 + (g4^4*t^8.97*y)/g1 + (g5^4*t^8.97*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55697 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_1\tilde{q}_1$ | 0.9189 | 1.1465 | 0.8014 | [X:[], M:[0.7018, 0.7018, 0.7018], q:[0.6649, 0.6333, 0.6333], qb:[0.6333, 0.6185, 0.6185], phi:[0.5495]] | 3*t^2.11 + t^3.3 + t^3.71 + 6*t^3.76 + 3*t^3.8 + 2*t^3.85 + 6*t^4.21 + 3*t^5.36 + 9*t^5.4 + 6*t^5.45 + 2*t^5.5 + 3*t^5.54 + t^5.64 + 3*t^5.82 + 16*t^5.86 + 6*t^5.91 - 14*t^6. - t^4.65/y - t^4.65*y | detail |