Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55668 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8849 | 1.0962 | 0.8072 | [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] | [X:[], M:[[-4, -1, 1, -1, -1], [-1, -4, 1, -1, -1]], q:[[1, 1, -1, 1, 1], [3, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, -1, 0, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_1q_3\tilde{q}_1$ | . | -9 | 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - 4*t^6.01 + 4*t^6.08 - 2*t^6.4 - 2*t^6.42 - 2*t^6.43 + t^6.56 + t^6.81 + 4*t^6.82 + t^6.83 + t^7.06 + 4*t^7.07 + 10*t^7.08 + 4*t^7.09 + t^7.1 + 6*t^7.2 + 8*t^7.21 + 6*t^7.22 - 2*t^7.25 + 3*t^7.33 + 2*t^7.46 + 8*t^7.47 + 8*t^7.48 + 4*t^7.49 + 6*t^7.5 + 3*t^7.58 + 12*t^7.6 + 3*t^7.61 - 4*t^7.63 - 7*t^7.64 - 4*t^7.65 + 3*t^7.86 + 4*t^7.87 + 3*t^7.88 + t^7.89 - 3*t^7.91 + 3*t^7.92 + 6*t^7.98 + 6*t^7.99 - 2*t^8.02 - 18*t^8.03 - 8*t^8.04 + 5*t^8.11 - 2*t^8.33 - t^8.42 - 4*t^8.43 + 2*t^8.45 + 4*t^8.46 + 6*t^8.47 + 2*t^8.59 - t^8.69 + 3*t^8.7 + 12*t^8.71 + 15*t^8.72 + 12*t^8.73 + 3*t^8.74 - t^8.75 + 2*t^8.84 + 8*t^8.85 + 2*t^8.86 - t^4.64/y - (2*t^6.67)/y + t^7.05/y + t^7.36/y - t^7.92/y + (2*t^8.31)/y + (2*t^8.56)/y + (8*t^8.57)/y + (2*t^8.58)/y + (2*t^8.61)/y - (3*t^8.69)/y + (4*t^8.96)/y + (4*t^8.97)/y + (4*t^8.99)/y - t^4.64*y - 2*t^6.67*y + t^7.05*y + t^7.36*y - t^7.92*y + 2*t^8.31*y + 2*t^8.56*y + 8*t^8.57*y + 2*t^8.58*y + 2*t^8.61*y - 3*t^8.69*y + 4*t^8.96*y + 4*t^8.97*y + 4*t^8.99*y | (g3*t^2.03)/(g1*g2^4*g4*g5) + (g3*t^2.03)/(g1^4*g2*g4*g5) + t^3.28/(g1^2*g2^2*g4^2*g5^2) + g4^3*g5^3*t^3.53 + g1^3*g4^3*t^3.54 + g2^3*g4^3*t^3.54 + g1^3*g5^3*t^3.54 + g2^3*g5^3*t^3.54 + g1^3*g2^3*t^3.55 + g3*g4^3*t^3.93 + g3*g5^3*t^3.93 + g1^3*g3*t^3.94 + g2^3*g3*t^3.94 + (g1*g2*g4^4*g5*t^3.96)/g3 + (g1*g2*g4*g5^4*t^3.96)/g3 + (g3^2*t^4.05)/(g1^2*g2^8*g4^2*g5^2) + (g3^2*t^4.05)/(g1^5*g2^5*g4^2*g5^2) + (g3^2*t^4.05)/(g1^8*g2^2*g4^2*g5^2) + g1*g2*g4*g5*t^4.36 + (g4^5*t^5.17)/(g1*g2*g5) + (g4^2*g5^2*t^5.17)/(g1*g2) + (g5^5*t^5.17)/(g1*g2*g4) + (g1^2*g4^2*t^5.18)/(g2*g5) + (g2^2*g4^2*t^5.18)/(g1*g5) + (g1^2*g5^2*t^5.18)/(g2*g4) + (g2^2*g5^2*t^5.18)/(g1*g4) + (g1^5*t^5.19)/(g2*g4*g5) + (g1^2*g2^2*t^5.19)/(g4*g5) + (g2^5*t^5.19)/(g1*g4*g5) + (g3*t^5.31)/(g1^3*g2^6*g4^3*g5^3) + (g3*t^5.31)/(g1^6*g2^3*g4^3*g5^3) + (g3*g4^2*g5^2*t^5.56)/(g1*g2^4) + (g3*g4^2*g5^2*t^5.56)/(g1^4*g2) + (g1^2*g3*g4^2*t^5.57)/(g2^4*g5) + (2*g3*g4^2*t^5.57)/(g1*g2*g5) + (g2^2*g3*g4^2*t^5.57)/(g1^4*g5) + (g1^2*g3*g5^2*t^5.57)/(g2^4*g4) + (2*g3*g5^2*t^5.57)/(g1*g2*g4) + (g2^2*g3*g5^2*t^5.57)/(g1^4*g4) + (g1^2*g3*t^5.58)/(g2*g4*g5) + (g2^2*g3*t^5.58)/(g1*g4*g5) + (g3^2*g4^2*t^5.96)/(g1*g2^4*g5) + (g3^2*g4^2*t^5.96)/(g1^4*g2*g5) + (g3^2*g5^2*t^5.96)/(g1*g2^4*g4) + (g3^2*g5^2*t^5.96)/(g1^4*g2*g4) + (g1^2*g3^2*t^5.97)/(g2^4*g4*g5) + (2*g3^2*t^5.97)/(g1*g2*g4*g5) + (g2^2*g3^2*t^5.97)/(g1^4*g4*g5) - 5*t^6. - (g1^3*t^6.)/g2^3 - (g2^3*t^6.)/g1^3 - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g4^3 - (g1^3*t^6.01)/g4^3 - (g2^3*t^6.01)/g4^3 - (g1^3*t^6.01)/g5^3 - (g2^3*t^6.01)/g5^3 + (g3^3*t^6.08)/(g1^3*g2^12*g4^3*g5^3) + (g3^3*t^6.08)/(g1^6*g2^9*g4^3*g5^3) + (g3^3*t^6.08)/(g1^9*g2^6*g4^3*g5^3) + (g3^3*t^6.08)/(g1^12*g2^3*g4^3*g5^3) - (g3*t^6.4)/g4^3 - (g3*t^6.4)/g5^3 - (g1*g4*g5*t^6.42)/(g2^2*g3) - (g2*g4*g5*t^6.42)/(g1^2*g3) - (g1*g2*g4*t^6.43)/(g3*g5^2) - (g1*g2*g5*t^6.43)/(g3*g4^2) + t^6.56/(g1^4*g2^4*g4^4*g5^4) + (g4*g5*t^6.81)/(g1^2*g2^2) + (g1*g4*t^6.82)/(g2^2*g5^2) + (g2*g4*t^6.82)/(g1^2*g5^2) + (g1*g5*t^6.82)/(g2^2*g4^2) + (g2*g5*t^6.82)/(g1^2*g4^2) + (g1*g2*t^6.83)/(g4^2*g5^2) + g4^6*g5^6*t^7.06 + g1^3*g4^6*g5^3*t^7.07 + g2^3*g4^6*g5^3*t^7.07 + g1^3*g4^3*g5^6*t^7.07 + g2^3*g4^3*g5^6*t^7.07 + g1^6*g4^6*t^7.08 + g1^3*g2^3*g4^6*t^7.08 + g2^6*g4^6*t^7.08 + g1^6*g4^3*g5^3*t^7.08 + 2*g1^3*g2^3*g4^3*g5^3*t^7.08 + g2^6*g4^3*g5^3*t^7.08 + g1^6*g5^6*t^7.08 + g1^3*g2^3*g5^6*t^7.08 + g2^6*g5^6*t^7.08 + g1^6*g2^3*g4^3*t^7.09 + g1^3*g2^6*g4^3*t^7.09 + g1^6*g2^3*g5^3*t^7.09 + g1^3*g2^6*g5^3*t^7.09 + g1^6*g2^6*t^7.1 + (g3*g4^4*t^7.2)/(g1^2*g2^5*g5^2) + (g3*g4^4*t^7.2)/(g1^5*g2^2*g5^2) + (g3*g4*g5*t^7.2)/(g1^2*g2^5) + (g3*g4*g5*t^7.2)/(g1^5*g2^2) + (g3*g5^4*t^7.2)/(g1^2*g2^5*g4^2) + (g3*g5^4*t^7.2)/(g1^5*g2^2*g4^2) + (g1*g3*g4*t^7.21)/(g2^5*g5^2) + (2*g3*g4*t^7.21)/(g1^2*g2^2*g5^2) + (g2*g3*g4*t^7.21)/(g1^5*g5^2) + (g1*g3*g5*t^7.21)/(g2^5*g4^2) + (2*g3*g5*t^7.21)/(g1^2*g2^2*g4^2) + (g2*g3*g5*t^7.21)/(g1^5*g4^2) + (g1^4*g3*t^7.22)/(g2^5*g4^2*g5^2) + (2*g1*g3*t^7.22)/(g2^2*g4^2*g5^2) + (2*g2*g3*t^7.22)/(g1^2*g4^2*g5^2) + (g2^4*g3*t^7.22)/(g1^5*g4^2*g5^2) - (g1^2*t^7.25)/(g2*g3*g4*g5) - (g2^2*t^7.25)/(g1*g3*g4*g5) + (g3^2*t^7.33)/(g1^4*g2^10*g4^4*g5^4) + (g3^2*t^7.33)/(g1^7*g2^7*g4^4*g5^4) + (g3^2*t^7.33)/(g1^10*g2^4*g4^4*g5^4) + g3*g4^6*g5^3*t^7.46 + g3*g4^3*g5^6*t^7.46 + g1^3*g3*g4^6*t^7.47 + g2^3*g3*g4^6*t^7.47 + 2*g1^3*g3*g4^3*g5^3*t^7.47 + 2*g2^3*g3*g4^3*g5^3*t^7.47 + g1^3*g3*g5^6*t^7.47 + g2^3*g3*g5^6*t^7.47 + g1^6*g3*g4^3*t^7.48 + 2*g1^3*g2^3*g3*g4^3*t^7.48 + g2^6*g3*g4^3*t^7.48 + g1^6*g3*g5^3*t^7.48 + 2*g1^3*g2^3*g3*g5^3*t^7.48 + g2^6*g3*g5^3*t^7.48 + g1^6*g2^3*g3*t^7.49 + g1^3*g2^6*g3*t^7.49 + (g1*g2*g4^7*g5^4*t^7.49)/g3 + (g1*g2*g4^4*g5^7*t^7.49)/g3 + (g1^4*g2*g4^7*g5*t^7.5)/g3 + (g1*g2^4*g4^7*g5*t^7.5)/g3 + (g1^4*g2*g4^4*g5^4*t^7.5)/g3 + (g1*g2^4*g4^4*g5^4*t^7.5)/g3 + (g1^4*g2*g4*g5^7*t^7.5)/g3 + (g1*g2^4*g4*g5^7*t^7.5)/g3 + (g3^2*g4*g5*t^7.58)/(g1^2*g2^8) + (g3^2*g4*g5*t^7.58)/(g1^5*g2^5) + (g3^2*g4*g5*t^7.58)/(g1^8*g2^2) + (g1*g3^2*g4*t^7.6)/(g2^8*g5^2) + (2*g3^2*g4*t^7.6)/(g1^2*g2^5*g5^2) + (2*g3^2*g4*t^7.6)/(g1^5*g2^2*g5^2) + (g2*g3^2*g4*t^7.6)/(g1^8*g5^2) + (g1*g3^2*g5*t^7.6)/(g2^8*g4^2) + (2*g3^2*g5*t^7.6)/(g1^2*g2^5*g4^2) + (2*g3^2*g5*t^7.6)/(g1^5*g2^2*g4^2) + (g2*g3^2*g5*t^7.6)/(g1^8*g4^2) + (g1*g3^2*t^7.61)/(g2^5*g4^2*g5^2) + (g3^2*t^7.61)/(g1^2*g2^2*g4^2*g5^2) + (g2*g3^2*t^7.61)/(g1^5*g4^2*g5^2) - (g4^2*t^7.63)/(g1*g2^4*g5) - (g4^2*t^7.63)/(g1^4*g2*g5) - (g5^2*t^7.63)/(g1*g2^4*g4) - (g5^2*t^7.63)/(g1^4*g2*g4) - (g4^2*t^7.64)/(g1*g2*g5^4) - (g1^2*t^7.64)/(g2^4*g4*g5) - (3*t^7.64)/(g1*g2*g4*g5) - (g2^2*t^7.64)/(g1^4*g4*g5) - (g5^2*t^7.64)/(g1*g2*g4^4) - (g1^2*t^7.65)/(g2*g4*g5^4) - (g2^2*t^7.65)/(g1*g4*g5^4) - (g1^2*t^7.65)/(g2*g4^4*g5) - (g2^2*t^7.65)/(g1*g4^4*g5) + g3^2*g4^6*t^7.86 + g3^2*g4^3*g5^3*t^7.86 + g3^2*g5^6*t^7.86 + g1^3*g3^2*g4^3*t^7.87 + g2^3*g3^2*g4^3*t^7.87 + g1^3*g3^2*g5^3*t^7.87 + g2^3*g3^2*g5^3*t^7.87 + g1^6*g3^2*t^7.88 + g1^3*g2^3*g3^2*t^7.88 + g2^6*g3^2*t^7.88 + g1*g2*g4^4*g5^4*t^7.89 - g1^7*g2*g4*g5*t^7.91 - g1^4*g2^4*g4*g5*t^7.91 - g1*g2^7*g4*g5*t^7.91 + (g1^2*g2^2*g4^8*g5^2*t^7.92)/g3^2 + (g1^2*g2^2*g4^5*g5^5*t^7.92)/g3^2 + (g1^2*g2^2*g4^2*g5^8*t^7.92)/g3^2 + (g3^3*g4*t^7.98)/(g1^2*g2^8*g5^2) + (g3^3*g4*t^7.98)/(g1^5*g2^5*g5^2) + (g3^3*g4*t^7.98)/(g1^8*g2^2*g5^2) + (g3^3*g5*t^7.98)/(g1^2*g2^8*g4^2) + (g3^3*g5*t^7.98)/(g1^5*g2^5*g4^2) + (g3^3*g5*t^7.98)/(g1^8*g2^2*g4^2) + (g1*g3^3*t^7.99)/(g2^8*g4^2*g5^2) + (2*g3^3*t^7.99)/(g1^2*g2^5*g4^2*g5^2) + (2*g3^3*t^7.99)/(g1^5*g2^2*g4^2*g5^2) + (g2*g3^3*t^7.99)/(g1^8*g4^2*g5^2) - (g3*g4^2*t^8.02)/(g1^4*g2^4*g5) - (g3*g5^2*t^8.02)/(g1^4*g2^4*g4) - (g3*g4^2*t^8.03)/(g1*g2^4*g5^4) - (g3*g4^2*t^8.03)/(g1^4*g2*g5^4) - (g1^2*g3*t^8.03)/(g2^7*g4*g5) - (6*g3*t^8.03)/(g1*g2^4*g4*g5) - (6*g3*t^8.03)/(g1^4*g2*g4*g5) - (g2^2*g3*t^8.03)/(g1^7*g4*g5) - (g3*g5^2*t^8.03)/(g1*g2^4*g4^4) - (g3*g5^2*t^8.03)/(g1^4*g2*g4^4) - (g1^2*g3*t^8.04)/(g2^4*g4*g5^4) - (2*g3*t^8.04)/(g1*g2*g4*g5^4) - (g2^2*g3*t^8.04)/(g1^4*g4*g5^4) - (g1^2*g3*t^8.04)/(g2^4*g4^4*g5) - (2*g3*t^8.04)/(g1*g2*g4^4*g5) - (g2^2*g3*t^8.04)/(g1^4*g4^4*g5) + (g3^4*t^8.11)/(g1^4*g2^16*g4^4*g5^4) + (g3^4*t^8.11)/(g1^7*g2^13*g4^4*g5^4) + (g3^4*t^8.11)/(g1^10*g2^10*g4^4*g5^4) + (g3^4*t^8.11)/(g1^13*g2^7*g4^4*g5^4) + (g3^4*t^8.11)/(g1^16*g2^4*g4^4*g5^4) - (g1^5*g2^2*g4^2*g5^2*t^8.33)/g3 - (g1^2*g2^5*g4^2*g5^2*t^8.33)/g3 - (g3^2*t^8.42)/(g1^4*g2^4*g4*g5) - (g3^2*t^8.43)/(g1*g2^4*g4*g5^4) - (g3^2*t^8.43)/(g1^4*g2*g4*g5^4) - (g3^2*t^8.43)/(g1*g2^4*g4^4*g5) - (g3^2*t^8.43)/(g1^4*g2*g4^4*g5) + (g4^3*t^8.45)/(g1^3*g2^3*g5^3) + (g5^3*t^8.45)/(g1^3*g2^3*g4^3) + t^8.46/(g1^3*g4^3) + t^8.46/(g2^3*g4^3) + t^8.46/(g1^3*g5^3) + t^8.46/(g2^3*g5^3) + t^8.47/g4^6 + t^8.47/g5^6 + (2*t^8.47)/(g4^3*g5^3) + (g1^3*t^8.47)/(g2^3*g4^3*g5^3) + (g2^3*t^8.47)/(g1^3*g4^3*g5^3) + (g3*t^8.59)/(g1^5*g2^8*g4^5*g5^5) + (g3*t^8.59)/(g1^8*g2^5*g4^5*g5^5) - g1*g2*g3^2*g4*g5*t^8.69 + (g4^8*g5^2*t^8.7)/(g1*g2) + (g4^5*g5^5*t^8.7)/(g1*g2) + (g4^2*g5^8*t^8.7)/(g1*g2) + (g1^2*g4^8*t^8.71)/(g2*g5) + (g2^2*g4^8*t^8.71)/(g1*g5) + (2*g1^2*g4^5*g5^2*t^8.71)/g2 + (2*g2^2*g4^5*g5^2*t^8.71)/g1 + (2*g1^2*g4^2*g5^5*t^8.71)/g2 + (2*g2^2*g4^2*g5^5*t^8.71)/g1 + (g1^2*g5^8*t^8.71)/(g2*g4) + (g2^2*g5^8*t^8.71)/(g1*g4) + (g1^5*g4^5*t^8.72)/(g2*g5) + (2*g1^2*g2^2*g4^5*t^8.72)/g5 + (g2^5*g4^5*t^8.72)/(g1*g5) + (2*g1^5*g4^2*g5^2*t^8.72)/g2 + 3*g1^2*g2^2*g4^2*g5^2*t^8.72 + (2*g2^5*g4^2*g5^2*t^8.72)/g1 + (g1^5*g5^5*t^8.72)/(g2*g4) + (2*g1^2*g2^2*g5^5*t^8.72)/g4 + (g2^5*g5^5*t^8.72)/(g1*g4) + (g1^8*g4^2*t^8.73)/(g2*g5) + (2*g1^5*g2^2*g4^2*t^8.73)/g5 + (2*g1^2*g2^5*g4^2*t^8.73)/g5 + (g2^8*g4^2*t^8.73)/(g1*g5) + (g1^8*g5^2*t^8.73)/(g2*g4) + (2*g1^5*g2^2*g5^2*t^8.73)/g4 + (2*g1^2*g2^5*g5^2*t^8.73)/g4 + (g2^8*g5^2*t^8.73)/(g1*g4) + (g1^8*g2^2*t^8.74)/(g4*g5) + (g1^5*g2^5*t^8.74)/(g4*g5) + (g1^2*g2^8*t^8.74)/(g4*g5) - (g1^3*g2^3*g4^3*g5^3*t^8.75)/g3^2 + (g3*t^8.84)/(g1^3*g2^6) + (g3*t^8.84)/(g1^6*g2^3) + (g3*t^8.85)/(g1^6*g4^3) + (g3*t^8.85)/(g2^6*g4^3) + (2*g3*t^8.85)/(g1^3*g2^3*g4^3) + (g3*t^8.85)/(g1^6*g5^3) + (g3*t^8.85)/(g2^6*g5^3) + (2*g3*t^8.85)/(g1^3*g2^3*g5^3) + (g3*t^8.86)/(g1^3*g4^3*g5^3) + (g3*t^8.86)/(g2^3*g4^3*g5^3) - t^4.64/(g1*g2*g4*g5*y) - (g3*t^6.67)/(g1^2*g2^5*g4^2*g5^2*y) - (g3*t^6.67)/(g1^5*g2^2*g4^2*g5^2*y) + (g3^2*t^7.05)/(g1^5*g2^5*g4^2*g5^2*y) + (g1*g2*g4*g5*t^7.36)/y - t^7.92/(g1^3*g2^3*g4^3*g5^3*y) + (g3*t^8.31)/(g1^3*g2^6*g4^3*g5^3*y) + (g3*t^8.31)/(g1^6*g2^3*g4^3*g5^3*y) + (g3*g4^2*g5^2*t^8.56)/(g1*g2^4*y) + (g3*g4^2*g5^2*t^8.56)/(g1^4*g2*y) + (g1^2*g3*g4^2*t^8.57)/(g2^4*g5*y) + (2*g3*g4^2*t^8.57)/(g1*g2*g5*y) + (g2^2*g3*g4^2*t^8.57)/(g1^4*g5*y) + (g1^2*g3*g5^2*t^8.57)/(g2^4*g4*y) + (2*g3*g5^2*t^8.57)/(g1*g2*g4*y) + (g2^2*g3*g5^2*t^8.57)/(g1^4*g4*y) + (g1^2*g3*t^8.58)/(g2*g4*g5*y) + (g2^2*g3*t^8.58)/(g1*g4*g5*y) + (g1^3*t^8.61)/(g3*y) + (g2^3*t^8.61)/(g3*y) - (g3^2*t^8.69)/(g1^3*g2^9*g4^3*g5^3*y) - (g3^2*t^8.69)/(g1^6*g2^6*g4^3*g5^3*y) - (g3^2*t^8.69)/(g1^9*g2^3*g4^3*g5^3*y) + (g3^2*g4^2*t^8.96)/(g1*g2^4*g5*y) + (g3^2*g4^2*t^8.96)/(g1^4*g2*g5*y) + (g3^2*g5^2*t^8.96)/(g1*g2^4*g4*y) + (g3^2*g5^2*t^8.96)/(g1^4*g2*g4*y) + (g1^2*g3^2*t^8.97)/(g2^4*g4*g5*y) + (2*g3^2*t^8.97)/(g1*g2*g4*g5*y) + (g2^2*g3^2*t^8.97)/(g1^4*g4*g5*y) + (g4^3*t^8.99)/(g1^3*y) + (g4^3*t^8.99)/(g2^3*y) + (g5^3*t^8.99)/(g1^3*y) + (g5^3*t^8.99)/(g2^3*y) - (t^4.64*y)/(g1*g2*g4*g5) - (g3*t^6.67*y)/(g1^2*g2^5*g4^2*g5^2) - (g3*t^6.67*y)/(g1^5*g2^2*g4^2*g5^2) + (g3^2*t^7.05*y)/(g1^5*g2^5*g4^2*g5^2) + g1*g2*g4*g5*t^7.36*y - (t^7.92*y)/(g1^3*g2^3*g4^3*g5^3) + (g3*t^8.31*y)/(g1^3*g2^6*g4^3*g5^3) + (g3*t^8.31*y)/(g1^6*g2^3*g4^3*g5^3) + (g3*g4^2*g5^2*t^8.56*y)/(g1*g2^4) + (g3*g4^2*g5^2*t^8.56*y)/(g1^4*g2) + (g1^2*g3*g4^2*t^8.57*y)/(g2^4*g5) + (2*g3*g4^2*t^8.57*y)/(g1*g2*g5) + (g2^2*g3*g4^2*t^8.57*y)/(g1^4*g5) + (g1^2*g3*g5^2*t^8.57*y)/(g2^4*g4) + (2*g3*g5^2*t^8.57*y)/(g1*g2*g4) + (g2^2*g3*g5^2*t^8.57*y)/(g1^4*g4) + (g1^2*g3*t^8.58*y)/(g2*g4*g5) + (g2^2*g3*t^8.58*y)/(g1*g4*g5) + (g1^3*t^8.61*y)/g3 + (g2^3*t^8.61*y)/g3 - (g3^2*t^8.69*y)/(g1^3*g2^9*g4^3*g5^3) - (g3^2*t^8.69*y)/(g1^6*g2^6*g4^3*g5^3) - (g3^2*t^8.69*y)/(g1^9*g2^3*g4^3*g5^3) + (g3^2*g4^2*t^8.96*y)/(g1*g2^4*g5) + (g3^2*g4^2*t^8.96*y)/(g1^4*g2*g5) + (g3^2*g5^2*t^8.96*y)/(g1*g2^4*g4) + (g3^2*g5^2*t^8.96*y)/(g1^4*g2*g4) + (g1^2*g3^2*t^8.97*y)/(g2^4*g4*g5) + (2*g3^2*t^8.97*y)/(g1*g2*g4*g5) + (g2^2*g3^2*t^8.97*y)/(g1^4*g4*g5) + (g4^3*t^8.99*y)/g1^3 + (g4^3*t^8.99*y)/g2^3 + (g5^3*t^8.99*y)/g1^3 + (g5^3*t^8.99*y)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55772 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_1q_3\tilde{q}_1$ | 0.8849 | 1.0958 | 0.8076 | [X:[], M:[0.6802, 0.6758], q:[0.7292, 0.5906, 0.595], qb:[0.7248, 0.5882, 0.5882], phi:[0.546]] | t^2.03 + t^2.04 + t^3.28 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.56 + 2*t^3.94 + 3*t^3.95 + t^3.96 + t^4.05 + t^4.07 + t^4.08 + t^4.36 + 5*t^5.17 + t^5.18 + 3*t^5.19 + t^5.21 + t^5.3 + t^5.32 + 3*t^5.56 + t^5.57 + 5*t^5.58 + 2*t^5.59 + t^5.6 + 3*t^5.97 + 2*t^5.98 + t^5.99 - 6*t^6. - t^4.64/y - t^4.64*y | detail | |
55758 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_1\tilde{q}_1\tilde{q}_2$ | 0.8849 | 1.0954 | 0.8078 | [X:[], M:[0.6816, 0.6785], q:[0.7286, 0.5897, 0.5929], qb:[0.7258, 0.5926, 0.5882], phi:[0.5455]] | 2*t^2.04 + t^3.27 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.56 + t^3.94 + 2*t^3.95 + 3*t^3.96 + t^4.07 + t^4.08 + t^4.09 + t^4.36 + 2*t^5.17 + 5*t^5.18 + 3*t^5.19 + t^5.31 + t^5.32 + t^5.57 + 5*t^5.58 + 5*t^5.59 + t^5.6 + 2*t^5.98 + t^5.99 - 5*t^6. - t^4.64/y - t^4.64*y | detail | |
55770 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ | 0.8792 | 1.0816 | 0.8129 | [X:[], M:[0.6952, 0.7345], q:[0.7183, 0.5864, 0.5471], qb:[0.748, 0.6327, 0.6327], phi:[0.5337]] | t^2.09 + t^2.2 + t^3.2 + t^3.4 + 2*t^3.54 + 2*t^3.66 + t^3.8 + t^3.89 + t^4. + 2*t^4.05 + 2*t^4.14 + t^4.17 + t^4.29 + t^4.4 + t^4.41 + t^4.88 + t^5. + t^5.12 + 2*t^5.14 + 2*t^5.26 + t^5.29 + 3*t^5.4 + t^5.41 + t^5.49 + t^5.6 + 2*t^5.63 + 2*t^5.74 + t^5.97 - 6*t^6. - t^4.6/y - t^4.6*y | detail | |
55751 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_3q_3\tilde{q}_1$ | 0.9057 | 1.1366 | 0.7968 | [X:[], M:[0.6778, 0.6744, 0.6786], q:[0.7296, 0.5926, 0.596], qb:[0.7254, 0.5881, 0.5881], phi:[0.545]] | t^2.02 + t^2.03 + t^2.04 + t^3.27 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.57 + 2*t^3.94 + 3*t^3.95 + t^4.05 + 2*t^4.06 + 3*t^4.07 + t^4.36 + 3*t^5.16 + 2*t^5.18 + 3*t^5.19 + t^5.2 + t^5.21 + t^5.29 + t^5.3 + t^5.31 + t^5.55 + 2*t^5.56 + 2*t^5.57 + 6*t^5.58 + 5*t^5.59 + 2*t^5.6 + 2*t^5.96 + 2*t^5.97 + 3*t^5.98 + 3*t^5.99 - 7*t^6. - t^4.64/y - t^4.64*y | detail | |
55717 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ | 0.869 | 1.0732 | 0.8097 | [X:[], M:[0.6891, 0.6891], q:[0.7491, 0.5618, 0.5618], qb:[0.7218, 0.7355, 0.5537], phi:[0.5291]] | 2*t^2.07 + t^3.17 + 2*t^3.35 + t^3.37 + t^3.83 + 2*t^3.85 + t^3.87 + 2*t^3.89 + t^3.91 + 3*t^4.13 + t^4.37 + t^4.41 + t^4.45 + t^4.91 + 2*t^4.93 + 3*t^4.96 + 2*t^5.24 + 4*t^5.41 + 2*t^5.44 + 2*t^5.89 + 4*t^5.92 + 2*t^5.93 + 3*t^5.96 - 6*t^6. - t^4.59/y - t^4.59*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55444 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ | 0.8986 | 1.1079 | 0.8111 | [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] | 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y | detail |