Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55751 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_3q_3\tilde{q}_1$ | 0.9057 | 1.1366 | 0.7968 | [X:[], M:[0.6778, 0.6744, 0.6786], q:[0.7296, 0.5926, 0.596], qb:[0.7254, 0.5881, 0.5881], phi:[0.545]] | [X:[], M:[[-4, -1, 1, -1, -1], [-1, -4, 1, -1, -1], [0, -3, -1, 0, 0]], q:[[1, 1, -1, 1, 1], [3, 0, 0, 0, 0], [0, 3, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 3, 0], [0, 0, 0, 0, 3]], phi:[[-1, -1, 0, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_2M_3$, $ M_3^2$, $ M_1^2$, $ M_1M_3$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ M_3q_2q_3$, $ \phi_1q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_3q_1\tilde{q}_2$ | . | -7 | t^2.02 + t^2.03 + t^2.04 + t^3.27 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.57 + 2*t^3.94 + 3*t^3.95 + t^4.05 + 2*t^4.06 + 3*t^4.07 + t^4.36 + 3*t^5.16 + 2*t^5.18 + 3*t^5.19 + t^5.2 + t^5.21 + t^5.29 + t^5.3 + t^5.31 + t^5.55 + 2*t^5.56 + 2*t^5.57 + 6*t^5.58 + 5*t^5.59 + 2*t^5.6 + 2*t^5.96 + 2*t^5.97 + 3*t^5.98 + 3*t^5.99 - 7*t^6. - 3*t^6.01 - 2*t^6.02 + t^6.07 + 2*t^6.08 + 3*t^6.09 + 2*t^6.1 + 2*t^6.11 - 3*t^6.41 - 2*t^6.42 + t^6.54 + t^6.8 + 2*t^6.81 + 2*t^6.82 + t^6.84 + t^7.06 + 2*t^7.07 + 5*t^7.08 + 4*t^7.09 + 3*t^7.1 + 2*t^7.11 + 2*t^7.12 + t^7.13 + 3*t^7.19 + 8*t^7.2 + 7*t^7.21 + 6*t^7.22 + 2*t^7.23 + t^7.24 + t^7.32 + 2*t^7.33 + 3*t^7.34 + 2*t^7.47 + 6*t^7.48 + 3*t^7.49 + 5*t^7.5 + 5*t^7.51 + t^7.52 + t^7.58 + 4*t^7.59 + 9*t^7.6 + 9*t^7.61 + 5*t^7.62 + t^7.63 - 3*t^7.64 - 3*t^7.65 - 2*t^7.66 + 3*t^7.88 + 3*t^7.89 + 4*t^7.91 - 3*t^7.92 - t^7.93 - t^7.94 + 2*t^7.99 + 5*t^8. + 5*t^8.01 - 4*t^8.02 - 8*t^8.03 - 10*t^8.04 - 7*t^8.05 - 4*t^8.06 + t^8.09 + t^8.1 + 2*t^8.11 + 3*t^8.12 + 4*t^8.13 + 4*t^8.14 - 2*t^8.33 - t^8.34 - t^8.42 - 3*t^8.45 + t^8.46 + 4*t^8.47 + t^8.48 + t^8.56 + t^8.57 + t^8.58 + 3*t^8.69 + 6*t^8.71 + 9*t^8.72 + 9*t^8.73 + 7*t^8.74 + 4*t^8.75 + 3*t^8.76 + t^8.77 + t^8.78 + t^8.82 + 2*t^8.83 + 2*t^8.84 + 6*t^8.85 + 5*t^8.86 + 2*t^8.87 - t^4.64/y - t^6.66/y - (2*t^6.67)/y + (2*t^7.06)/y + t^7.07/y + t^7.36/y - t^7.91/y + t^8.29/y + t^8.3/y + t^8.31/y + t^8.55/y + (2*t^8.56)/y + (2*t^8.57)/y + (6*t^8.58)/y + (5*t^8.59)/y + (4*t^8.6)/y + t^8.61/y - t^8.68/y - (2*t^8.69)/y - (2*t^8.7)/y - t^8.71/y + (2*t^8.96)/y + (2*t^8.97)/y + (5*t^8.98)/y + (6*t^8.99)/y - t^4.64*y - t^6.66*y - 2*t^6.67*y + 2*t^7.06*y + t^7.07*y + t^7.36*y - t^7.91*y + t^8.29*y + t^8.3*y + t^8.31*y + t^8.55*y + 2*t^8.56*y + 2*t^8.57*y + 6*t^8.58*y + 5*t^8.59*y + 4*t^8.6*y + t^8.61*y - t^8.68*y - 2*t^8.69*y - 2*t^8.7*y - t^8.71*y + 2*t^8.96*y + 2*t^8.97*y + 5*t^8.98*y + 6*t^8.99*y | (g3*t^2.02)/(g1*g2^4*g4*g5) + (g3*t^2.03)/(g1^4*g2*g4*g5) + t^2.04/(g2^3*g3) + t^3.27/(g1^2*g2^2*g4^2*g5^2) + g4^3*g5^3*t^3.53 + g1^3*g4^3*t^3.54 + g1^3*g5^3*t^3.54 + g2^3*g4^3*t^3.55 + g2^3*g5^3*t^3.55 + g1^3*g2^3*t^3.57 + g3*g4^3*t^3.94 + g3*g5^3*t^3.94 + g1^3*g3*t^3.95 + (g1*g2*g4^4*g5*t^3.95)/g3 + (g1*g2*g4*g5^4*t^3.95)/g3 + (g3^2*t^4.05)/(g1^2*g2^8*g4^2*g5^2) + (g3^2*t^4.06)/(g1^5*g2^5*g4^2*g5^2) + t^4.06/(g1*g2^7*g4*g5) + t^4.07/(g2^6*g3^2) + (g3^2*t^4.07)/(g1^8*g2^2*g4^2*g5^2) + t^4.07/(g1^4*g2^4*g4*g5) + g1*g2*g4*g5*t^4.36 + (g4^5*t^5.16)/(g1*g2*g5) + (g4^2*g5^2*t^5.16)/(g1*g2) + (g5^5*t^5.16)/(g1*g2*g4) + (g1^2*g4^2*t^5.18)/(g2*g5) + (g1^2*g5^2*t^5.18)/(g2*g4) + (g1^5*t^5.19)/(g2*g4*g5) + (g2^2*g4^2*t^5.19)/(g1*g5) + (g2^2*g5^2*t^5.19)/(g1*g4) + (g1^2*g2^2*t^5.2)/(g4*g5) + (g2^5*t^5.21)/(g1*g4*g5) + (g3*t^5.29)/(g1^3*g2^6*g4^3*g5^3) + (g3*t^5.3)/(g1^6*g2^3*g4^3*g5^3) + t^5.31/(g1^2*g2^5*g3*g4^2*g5^2) + (g3*g4^2*g5^2*t^5.55)/(g1*g2^4) + (g3*g4^2*g5^2*t^5.56)/(g1^4*g2) + (g4^3*g5^3*t^5.56)/(g2^3*g3) + (g1^2*g3*g4^2*t^5.57)/(g2^4*g5) + (g1^2*g3*g5^2*t^5.57)/(g2^4*g4) + (g1^3*g4^3*t^5.58)/(g2^3*g3) + (2*g3*g4^2*t^5.58)/(g1*g2*g5) + (2*g3*g5^2*t^5.58)/(g1*g2*g4) + (g1^3*g5^3*t^5.58)/(g2^3*g3) + (g4^3*t^5.59)/g3 + (g1^2*g3*t^5.59)/(g2*g4*g5) + (g2^2*g3*g4^2*t^5.59)/(g1^4*g5) + (g2^2*g3*g5^2*t^5.59)/(g1^4*g4) + (g5^3*t^5.59)/g3 + (g1^3*t^5.6)/g3 + (g2^2*g3*t^5.6)/(g1*g4*g5) + (g3^2*g4^2*t^5.96)/(g1*g2^4*g5) + (g3^2*g5^2*t^5.96)/(g1*g2^4*g4) + (g3^2*g4^2*t^5.97)/(g1^4*g2*g5) + (g3^2*g5^2*t^5.97)/(g1^4*g2*g4) + (g4^3*t^5.98)/g2^3 + (g1^2*g3^2*t^5.98)/(g2^4*g4*g5) + (g5^3*t^5.98)/g2^3 + (g3^2*t^5.99)/(g1*g2*g4*g5) + (g1*g4^4*g5*t^5.99)/(g2^2*g3^2) + (g1*g4*g5^4*t^5.99)/(g2^2*g3^2) - 5*t^6. - (g4^3*t^6.)/g5^3 - (g5^3*t^6.)/g4^3 - (g2^3*t^6.01)/g1^3 - (g1^3*t^6.01)/g4^3 - (g1^3*t^6.01)/g5^3 - (g2^3*t^6.02)/g4^3 - (g2^3*t^6.02)/g5^3 + (g3^3*t^6.07)/(g1^3*g2^12*g4^3*g5^3) + (g3^3*t^6.08)/(g1^6*g2^9*g4^3*g5^3) + (g3*t^6.08)/(g1^2*g2^11*g4^2*g5^2) + (g3^3*t^6.09)/(g1^9*g2^6*g4^3*g5^3) + (g3*t^6.09)/(g1^5*g2^8*g4^2*g5^2) + t^6.09/(g1*g2^10*g3*g4*g5) + (g3^3*t^6.1)/(g1^12*g2^3*g4^3*g5^3) + (g3*t^6.1)/(g1^8*g2^5*g4^2*g5^2) + t^6.11/(g2^9*g3^3) + t^6.11/(g1^4*g2^7*g3*g4*g5) - (g3*t^6.41)/g4^3 - (g3*t^6.41)/g5^3 - (g2*g4*g5*t^6.41)/(g1^2*g3) - (g1*g2*g4*t^6.42)/(g3*g5^2) - (g1*g2*g5*t^6.42)/(g3*g4^2) + t^6.54/(g1^4*g2^4*g4^4*g5^4) + (g4*g5*t^6.8)/(g1^2*g2^2) + (g1*g4*t^6.81)/(g2^2*g5^2) + (g1*g5*t^6.81)/(g2^2*g4^2) + (g2*g4*t^6.82)/(g1^2*g5^2) + (g2*g5*t^6.82)/(g1^2*g4^2) + (g1*g2*t^6.84)/(g4^2*g5^2) + g4^6*g5^6*t^7.06 + g1^3*g4^6*g5^3*t^7.07 + g1^3*g4^3*g5^6*t^7.07 + g1^6*g4^6*t^7.08 + g1^6*g4^3*g5^3*t^7.08 + g2^3*g4^6*g5^3*t^7.08 + g1^6*g5^6*t^7.08 + g2^3*g4^3*g5^6*t^7.08 + g1^3*g2^3*g4^6*t^7.09 + 2*g1^3*g2^3*g4^3*g5^3*t^7.09 + g1^3*g2^3*g5^6*t^7.09 + g2^6*g4^6*t^7.1 + g2^6*g4^3*g5^3*t^7.1 + g2^6*g5^6*t^7.1 + g1^6*g2^3*g4^3*t^7.11 + g1^6*g2^3*g5^3*t^7.11 + g1^3*g2^6*g4^3*t^7.12 + g1^3*g2^6*g5^3*t^7.12 + g1^6*g2^6*t^7.13 + (g3*g4^4*t^7.19)/(g1^2*g2^5*g5^2) + (g3*g4*g5*t^7.19)/(g1^2*g2^5) + (g3*g5^4*t^7.19)/(g1^2*g2^5*g4^2) + (g1*g3*g4*t^7.2)/(g2^5*g5^2) + (g3*g4^4*t^7.2)/(g1^5*g2^2*g5^2) + (g4^5*t^7.2)/(g1*g2^4*g3*g5) + (g1*g3*g5*t^7.2)/(g2^5*g4^2) + (g3*g4*g5*t^7.2)/(g1^5*g2^2) + (g4^2*g5^2*t^7.2)/(g1*g2^4*g3) + (g3*g5^4*t^7.2)/(g1^5*g2^2*g4^2) + (g5^5*t^7.2)/(g1*g2^4*g3*g4) + (g1^4*g3*t^7.21)/(g2^5*g4^2*g5^2) + (2*g3*g4*t^7.21)/(g1^2*g2^2*g5^2) + (g1^2*g4^2*t^7.21)/(g2^4*g3*g5) + (2*g3*g5*t^7.21)/(g1^2*g2^2*g4^2) + (g1^2*g5^2*t^7.21)/(g2^4*g3*g4) + (2*g1*g3*t^7.22)/(g2^2*g4^2*g5^2) + (g2*g3*g4*t^7.22)/(g1^5*g5^2) + (g4^2*t^7.22)/(g1*g2*g3*g5) + (g2*g3*g5*t^7.22)/(g1^5*g4^2) + (g5^2*t^7.22)/(g1*g2*g3*g4) + (g2*g3*t^7.23)/(g1^2*g4^2*g5^2) + (g1^5*t^7.23)/(g2^4*g3*g4*g5) + (g2^4*g3*t^7.24)/(g1^5*g4^2*g5^2) + (g3^2*t^7.32)/(g1^4*g2^10*g4^4*g5^4) + (g3^2*t^7.33)/(g1^7*g2^7*g4^4*g5^4) + t^7.33/(g1^3*g2^9*g4^3*g5^3) + (g3^2*t^7.34)/(g1^10*g2^4*g4^4*g5^4) + t^7.34/(g1^6*g2^6*g4^3*g5^3) + t^7.34/(g1^2*g2^8*g3^2*g4^2*g5^2) + g3*g4^6*g5^3*t^7.47 + g3*g4^3*g5^6*t^7.47 + g1^3*g3*g4^6*t^7.48 + 2*g1^3*g3*g4^3*g5^3*t^7.48 + (g1*g2*g4^7*g5^4*t^7.48)/g3 + g1^3*g3*g5^6*t^7.48 + (g1*g2*g4^4*g5^7*t^7.48)/g3 + g2^3*g3*g4^6*t^7.49 + g2^3*g3*g4^3*g5^3*t^7.49 + g2^3*g3*g5^6*t^7.49 + g1^6*g3*g4^3*t^7.5 + (g1^4*g2*g4^7*g5*t^7.5)/g3 + g1^6*g3*g5^3*t^7.5 + (g1^4*g2*g4^4*g5^4*t^7.5)/g3 + (g1^4*g2*g4*g5^7*t^7.5)/g3 + g1^3*g2^3*g3*g4^3*t^7.51 + (g1*g2^4*g4^7*g5*t^7.51)/g3 + g1^3*g2^3*g3*g5^3*t^7.51 + (g1*g2^4*g4^4*g5^4*t^7.51)/g3 + (g1*g2^4*g4*g5^7*t^7.51)/g3 + g1^6*g2^3*g3*t^7.52 + (g3^2*g4*g5*t^7.58)/(g1^2*g2^8) + (g1*g3^2*g4*t^7.59)/(g2^8*g5^2) + (g1*g3^2*g5*t^7.59)/(g2^8*g4^2) + (g3^2*g4*g5*t^7.59)/(g1^5*g2^5) + (g4^2*g5^2*t^7.59)/(g1*g2^7) + (2*g3^2*g4*t^7.6)/(g1^2*g2^5*g5^2) + (g1^2*g4^2*t^7.6)/(g2^7*g5) + (2*g3^2*g5*t^7.6)/(g1^2*g2^5*g4^2) + (g3^2*g4*g5*t^7.6)/(g1^8*g2^2) + (g1^2*g5^2*t^7.6)/(g2^7*g4) + (g4^2*g5^2*t^7.6)/(g1^4*g2^4) + (g4^3*g5^3*t^7.6)/(g2^6*g3^2) + (g1^3*g4^3*t^7.61)/(g2^6*g3^2) + (g1*g3^2*t^7.61)/(g2^5*g4^2*g5^2) + (2*g3^2*g4*t^7.61)/(g1^5*g2^2*g5^2) + (g4^2*t^7.61)/(g1*g2^4*g5) + (2*g3^2*g5*t^7.61)/(g1^5*g2^2*g4^2) + (g5^2*t^7.61)/(g1*g2^4*g4) + (g1^3*g5^3*t^7.61)/(g2^6*g3^2) + (g4^3*t^7.62)/(g2^3*g3^2) + (g3^2*t^7.62)/(g1^2*g2^2*g4^2*g5^2) + (g2*g3^2*g4*t^7.62)/(g1^8*g5^2) + (g2*g3^2*g5*t^7.62)/(g1^8*g4^2) + (g5^3*t^7.62)/(g2^3*g3^2) + (g2*g3^2*t^7.63)/(g1^5*g4^2*g5^2) + (g1^3*t^7.64)/(g2^3*g3^2) - (g4^2*t^7.64)/(g1*g2*g5^4) - (2*t^7.64)/(g1*g2*g4*g5) - (g5^2*t^7.64)/(g1*g2*g4^4) - (g1^2*t^7.65)/(g2*g4*g5^4) - (g1^2*t^7.65)/(g2*g4^4*g5) - (g2^2*t^7.65)/(g1^4*g4*g5) - (g2^2*t^7.66)/(g1*g4*g5^4) - (g2^2*t^7.66)/(g1*g4^4*g5) + g3^2*g4^6*t^7.88 + g3^2*g4^3*g5^3*t^7.88 + g3^2*g5^6*t^7.88 + g1^3*g3^2*g4^3*t^7.89 + g1^3*g3^2*g5^3*t^7.89 + g1*g2*g4^4*g5^4*t^7.89 + g1^6*g3^2*t^7.91 + (g1^2*g2^2*g4^8*g5^2*t^7.91)/g3^2 + (g1^2*g2^2*g4^5*g5^5*t^7.91)/g3^2 + (g1^2*g2^2*g4^2*g5^8*t^7.91)/g3^2 - g1^7*g2*g4*g5*t^7.92 - g1*g2^4*g4^4*g5*t^7.92 - g1*g2^4*g4*g5^4*t^7.92 - g1^4*g2^4*g4*g5*t^7.93 - g1*g2^7*g4*g5*t^7.94 + (g3^3*g4*t^7.99)/(g1^2*g2^8*g5^2) + (g3^3*g5*t^7.99)/(g1^2*g2^8*g4^2) + (g1*g3^3*t^8.)/(g2^8*g4^2*g5^2) + (g3^3*g4*t^8.)/(g1^5*g2^5*g5^2) + (g3*g4^2*t^8.)/(g1*g2^7*g5) + (g3^3*g5*t^8.)/(g1^5*g2^5*g4^2) + (g3*g5^2*t^8.)/(g1*g2^7*g4) + (g4^3*t^8.01)/(g2^6*g3) + (g3^3*t^8.01)/(g1^2*g2^5*g4^2*g5^2) + (g3^3*g4*t^8.01)/(g1^8*g2^2*g5^2) + (g3^3*g5*t^8.01)/(g1^8*g2^2*g4^2) + (g5^3*t^8.01)/(g2^6*g3) - (g3*g4^2*t^8.02)/(g1*g2^4*g5^4) + (g3^3*t^8.02)/(g1^5*g2^2*g4^2*g5^2) - (5*g3*t^8.02)/(g1*g2^4*g4*g5) + (g1*g4^4*g5*t^8.02)/(g2^5*g3^3) - (g3*g5^2*t^8.02)/(g1*g2^4*g4^4) + (g1*g4*g5^4*t^8.02)/(g2^5*g3^3) - (g3*g4^2*t^8.03)/(g1^4*g2*g5^4) - (6*g3*t^8.03)/(g1^4*g2*g4*g5) - (g3*g5^2*t^8.03)/(g1^4*g2*g4^4) - (5*t^8.04)/(g2^3*g3) - (g1^2*g3*t^8.04)/(g2^4*g4*g5^4) - (g4^3*t^8.04)/(g2^3*g3*g5^3) - (g1^2*g3*t^8.04)/(g2^4*g4^4*g5) - (g2^2*g3*t^8.04)/(g1^7*g4*g5) - (g5^3*t^8.04)/(g2^3*g3*g4^3) - t^8.05/(g1^3*g3) - (g1^3*t^8.05)/(g2^3*g3*g4^3) - (2*g3*t^8.05)/(g1*g2*g4*g5^4) - (g1^3*t^8.05)/(g2^3*g3*g5^3) - (2*g3*t^8.05)/(g1*g2*g4^4*g5) - t^8.06/(g3*g4^3) - (g2^2*g3*t^8.06)/(g1^4*g4*g5^4) - t^8.06/(g3*g5^3) - (g2^2*g3*t^8.06)/(g1^4*g4^4*g5) + (g3^4*t^8.09)/(g1^4*g2^16*g4^4*g5^4) + (g3^4*t^8.1)/(g1^7*g2^13*g4^4*g5^4) + (g3^4*t^8.11)/(g1^10*g2^10*g4^4*g5^4) + (g3^2*t^8.11)/(g1^3*g2^15*g4^3*g5^3) + (g3^4*t^8.12)/(g1^13*g2^7*g4^4*g5^4) + (g3^2*t^8.12)/(g1^6*g2^12*g4^3*g5^3) + t^8.12/(g1^2*g2^14*g4^2*g5^2) + (g3^4*t^8.13)/(g1^16*g2^4*g4^4*g5^4) + (g3^2*t^8.13)/(g1^9*g2^9*g4^3*g5^3) + t^8.13/(g1^5*g2^11*g4^2*g5^2) + t^8.13/(g1*g2^13*g3^2*g4*g5) + t^8.14/(g2^12*g3^4) + (g3^2*t^8.14)/(g1^12*g2^6*g4^3*g5^3) + t^8.14/(g1^8*g2^8*g4^2*g5^2) + t^8.14/(g1^4*g2^10*g3^2*g4*g5) - g1*g2^4*g3*g4*g5*t^8.33 - (g1^5*g2^2*g4^2*g5^2*t^8.33)/g3 - (g1^2*g2^5*g4^2*g5^2*t^8.34)/g3 - (g3^2*t^8.42)/(g1^4*g2^4*g4*g5) - (g3^2*t^8.43)/(g1*g2^4*g4*g5^4) + (g4^3*t^8.43)/(g1^3*g2^3*g5^3) - (g3^2*t^8.43)/(g1*g2^4*g4^4*g5) + (g5^3*t^8.43)/(g1^3*g2^3*g4^3) - (g3^2*t^8.45)/(g1^4*g2*g4*g5^4) - (g3^2*t^8.45)/(g1^4*g2*g4^4*g5) - (g4*g5*t^8.45)/(g1^2*g2^2*g3^2) + t^8.46/(g1^3*g4^3) + t^8.46/(g1^3*g5^3) + (g1^3*t^8.46)/(g2^3*g4^3*g5^3) - (g1*g4*t^8.46)/(g2^2*g3^2*g5^2) - (g1*g5*t^8.46)/(g2^2*g3^2*g4^2) + t^8.47/g4^6 + t^8.47/g5^6 + (2*t^8.47)/(g4^3*g5^3) + (g2^3*t^8.48)/(g1^3*g4^3*g5^3) + (g3*t^8.56)/(g1^5*g2^8*g4^5*g5^5) + (g3*t^8.57)/(g1^8*g2^5*g4^5*g5^5) + t^8.58/(g1^4*g2^7*g3*g4^4*g5^4) + (g4^8*g5^2*t^8.69)/(g1*g2) + (g4^5*g5^5*t^8.69)/(g1*g2) + (g4^2*g5^8*t^8.69)/(g1*g2) + (g1^2*g4^8*t^8.71)/(g2*g5) + (2*g1^2*g4^5*g5^2*t^8.71)/g2 + (2*g1^2*g4^2*g5^5*t^8.71)/g2 + (g1^2*g5^8*t^8.71)/(g2*g4) + (g1^5*g4^5*t^8.72)/(g2*g5) + (g2^2*g4^8*t^8.72)/(g1*g5) - g1*g2*g3^2*g4*g5*t^8.72 + (2*g1^5*g4^2*g5^2*t^8.72)/g2 + (2*g2^2*g4^5*g5^2*t^8.72)/g1 + (g1^5*g5^5*t^8.72)/(g2*g4) + (2*g2^2*g4^2*g5^5*t^8.72)/g1 + (g2^2*g5^8*t^8.72)/(g1*g4) + (g1^8*g4^2*t^8.73)/(g2*g5) + (2*g1^2*g2^2*g4^5*t^8.73)/g5 + (g1^8*g5^2*t^8.73)/(g2*g4) + 3*g1^2*g2^2*g4^2*g5^2*t^8.73 + (2*g1^2*g2^2*g5^5*t^8.73)/g4 + (2*g1^5*g2^2*g4^2*t^8.74)/g5 + (g2^5*g4^5*t^8.74)/(g1*g5) + (2*g1^5*g2^2*g5^2*t^8.74)/g4 + (2*g2^5*g4^2*g5^2*t^8.74)/g1 - (g1^3*g2^3*g4^3*g5^3*t^8.74)/g3^2 + (g2^5*g5^5*t^8.74)/(g1*g4) + (2*g1^2*g2^5*g4^2*t^8.75)/g5 + (2*g1^2*g2^5*g5^2*t^8.75)/g4 + (g1^8*g2^2*t^8.76)/(g4*g5) + (g2^8*g4^2*t^8.76)/(g1*g5) + (g2^8*g5^2*t^8.76)/(g1*g4) + (g1^5*g2^5*t^8.77)/(g4*g5) + (g1^2*g2^8*t^8.78)/(g4*g5) + (g3*t^8.82)/(g1^3*g2^6) + (g3*t^8.83)/(g1^6*g2^3) + (g4*g5*t^8.83)/(g1^2*g2^5*g3) + (g3*t^8.84)/(g2^6*g4^3) + (g3*t^8.84)/(g2^6*g5^3) + (2*g3*t^8.85)/(g1^3*g2^3*g4^3) + (2*g3*t^8.85)/(g1^3*g2^3*g5^3) + (g1*g4*t^8.85)/(g2^5*g3*g5^2) + (g1*g5*t^8.85)/(g2^5*g3*g4^2) + (g3*t^8.86)/(g1^6*g4^3) + (g3*t^8.86)/(g1^6*g5^3) + (g3*t^8.86)/(g2^3*g4^3*g5^3) + (g4*t^8.86)/(g1^2*g2^2*g3*g5^2) + (g5*t^8.86)/(g1^2*g2^2*g3*g4^2) + (g3*t^8.87)/(g1^3*g4^3*g5^3) + (g1*t^8.87)/(g2^2*g3*g4^2*g5^2) - t^4.64/(g1*g2*g4*g5*y) - (g3*t^6.66)/(g1^2*g2^5*g4^2*g5^2*y) - (g3*t^6.67)/(g1^5*g2^2*g4^2*g5^2*y) - t^6.67/(g1*g2^4*g3*g4*g5*y) + (g3^2*t^7.06)/(g1^5*g2^5*g4^2*g5^2*y) + t^7.06/(g1*g2^7*g4*g5*y) + t^7.07/(g1^4*g2^4*g4*g5*y) + (g1*g2*g4*g5*t^7.36)/y - t^7.91/(g1^3*g2^3*g4^3*g5^3*y) + (g3*t^8.29)/(g1^3*g2^6*g4^3*g5^3*y) + (g3*t^8.3)/(g1^6*g2^3*g4^3*g5^3*y) + t^8.31/(g1^2*g2^5*g3*g4^2*g5^2*y) + (g3*g4^2*g5^2*t^8.55)/(g1*g2^4*y) + (g3*g4^2*g5^2*t^8.56)/(g1^4*g2*y) + (g4^3*g5^3*t^8.56)/(g2^3*g3*y) + (g1^2*g3*g4^2*t^8.57)/(g2^4*g5*y) + (g1^2*g3*g5^2*t^8.57)/(g2^4*g4*y) + (g1^3*g4^3*t^8.58)/(g2^3*g3*y) + (2*g3*g4^2*t^8.58)/(g1*g2*g5*y) + (2*g3*g5^2*t^8.58)/(g1*g2*g4*y) + (g1^3*g5^3*t^8.58)/(g2^3*g3*y) + (g4^3*t^8.59)/(g3*y) + (g1^2*g3*t^8.59)/(g2*g4*g5*y) + (g2^2*g3*g4^2*t^8.59)/(g1^4*g5*y) + (g2^2*g3*g5^2*t^8.59)/(g1^4*g4*y) + (g5^3*t^8.59)/(g3*y) + (2*g1^3*t^8.6)/(g3*y) + (2*g2^2*g3*t^8.6)/(g1*g4*g5*y) + (g2^3*t^8.61)/(g3*y) - (g3^2*t^8.68)/(g1^3*g2^9*g4^3*g5^3*y) - (g3^2*t^8.69)/(g1^6*g2^6*g4^3*g5^3*y) - t^8.69/(g1^2*g2^8*g4^2*g5^2*y) - (g3^2*t^8.7)/(g1^9*g2^3*g4^3*g5^3*y) - t^8.7/(g1^5*g2^5*g4^2*g5^2*y) - t^8.71/(g1*g2^7*g3^2*g4*g5*y) + (g3^2*g4^2*t^8.96)/(g1*g2^4*g5*y) + (g3^2*g5^2*t^8.96)/(g1*g2^4*g4*y) + (g3^2*g4^2*t^8.97)/(g1^4*g2*g5*y) + (g3^2*g5^2*t^8.97)/(g1^4*g2*g4*y) + (2*g4^3*t^8.98)/(g2^3*y) + (g1^2*g3^2*t^8.98)/(g2^4*g4*g5*y) + (2*g5^3*t^8.98)/(g2^3*y) + (g1^3*t^8.99)/(g2^3*y) + (g4^3*t^8.99)/(g1^3*y) + (g3^2*t^8.99)/(g1*g2*g4*g5*y) + (g1*g4^4*g5*t^8.99)/(g2^2*g3^2*y) + (g5^3*t^8.99)/(g1^3*y) + (g1*g4*g5^4*t^8.99)/(g2^2*g3^2*y) - (t^4.64*y)/(g1*g2*g4*g5) - (g3*t^6.66*y)/(g1^2*g2^5*g4^2*g5^2) - (g3*t^6.67*y)/(g1^5*g2^2*g4^2*g5^2) - (t^6.67*y)/(g1*g2^4*g3*g4*g5) + (g3^2*t^7.06*y)/(g1^5*g2^5*g4^2*g5^2) + (t^7.06*y)/(g1*g2^7*g4*g5) + (t^7.07*y)/(g1^4*g2^4*g4*g5) + g1*g2*g4*g5*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g4^3*g5^3) + (g3*t^8.29*y)/(g1^3*g2^6*g4^3*g5^3) + (g3*t^8.3*y)/(g1^6*g2^3*g4^3*g5^3) + (t^8.31*y)/(g1^2*g2^5*g3*g4^2*g5^2) + (g3*g4^2*g5^2*t^8.55*y)/(g1*g2^4) + (g3*g4^2*g5^2*t^8.56*y)/(g1^4*g2) + (g4^3*g5^3*t^8.56*y)/(g2^3*g3) + (g1^2*g3*g4^2*t^8.57*y)/(g2^4*g5) + (g1^2*g3*g5^2*t^8.57*y)/(g2^4*g4) + (g1^3*g4^3*t^8.58*y)/(g2^3*g3) + (2*g3*g4^2*t^8.58*y)/(g1*g2*g5) + (2*g3*g5^2*t^8.58*y)/(g1*g2*g4) + (g1^3*g5^3*t^8.58*y)/(g2^3*g3) + (g4^3*t^8.59*y)/g3 + (g1^2*g3*t^8.59*y)/(g2*g4*g5) + (g2^2*g3*g4^2*t^8.59*y)/(g1^4*g5) + (g2^2*g3*g5^2*t^8.59*y)/(g1^4*g4) + (g5^3*t^8.59*y)/g3 + (2*g1^3*t^8.6*y)/g3 + (2*g2^2*g3*t^8.6*y)/(g1*g4*g5) + (g2^3*t^8.61*y)/g3 - (g3^2*t^8.68*y)/(g1^3*g2^9*g4^3*g5^3) - (g3^2*t^8.69*y)/(g1^6*g2^6*g4^3*g5^3) - (t^8.69*y)/(g1^2*g2^8*g4^2*g5^2) - (g3^2*t^8.7*y)/(g1^9*g2^3*g4^3*g5^3) - (t^8.7*y)/(g1^5*g2^5*g4^2*g5^2) - (t^8.71*y)/(g1*g2^7*g3^2*g4*g5) + (g3^2*g4^2*t^8.96*y)/(g1*g2^4*g5) + (g3^2*g5^2*t^8.96*y)/(g1*g2^4*g4) + (g3^2*g4^2*t^8.97*y)/(g1^4*g2*g5) + (g3^2*g5^2*t^8.97*y)/(g1^4*g2*g4) + (2*g4^3*t^8.98*y)/g2^3 + (g1^2*g3^2*t^8.98*y)/(g2^4*g4*g5) + (2*g5^3*t^8.98*y)/g2^3 + (g1^3*t^8.99*y)/g2^3 + (g4^3*t^8.99*y)/g1^3 + (g3^2*t^8.99*y)/(g1*g2*g4*g5) + (g1*g4^4*g5*t^8.99*y)/(g2^2*g3^2) + (g5^3*t^8.99*y)/g1^3 + (g1*g4*g5^4*t^8.99*y)/(g2^2*g3^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55668 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8849 | 1.0962 | 0.8072 | [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] | 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y | detail |