Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55770 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ | 0.8792 | 1.0816 | 0.8129 | [X:[], M:[0.6952, 0.7345], q:[0.7183, 0.5864, 0.5471], qb:[0.748, 0.6327, 0.6327], phi:[0.5337]] | [X:[], M:[[5, -3, -3, -3], [0, 0, -1, -1]], q:[[-1, 0, 1, 1], [-4, 3, 2, 2], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ \phi_1^2$, $ q_2q_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ q_1\tilde{q}_1$, $ M_2^2$, $ \phi_1q_3^2$, $ \phi_1q_2q_3$, $ \phi_1q_2^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_1$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_1q_3\tilde{q}_1$ | . | -6 | t^2.09 + t^2.2 + t^3.2 + t^3.4 + 2*t^3.54 + 2*t^3.66 + t^3.8 + t^3.89 + t^4. + 2*t^4.05 + 2*t^4.14 + t^4.17 + t^4.29 + t^4.4 + t^4.41 + t^4.88 + t^5. + t^5.12 + 2*t^5.14 + 2*t^5.26 + t^5.29 + 3*t^5.4 + t^5.41 + t^5.49 + t^5.6 + 2*t^5.63 + 2*t^5.74 + t^5.97 - 6*t^6. + 2*t^6.09 - t^6.12 + t^6.21 + 2*t^6.23 - t^6.26 + t^6.38 + t^6.49 - t^6.51 + t^6.6 + t^6.61 + 2*t^6.74 + t^6.8 + 2*t^6.86 + 2*t^6.94 + t^6.97 + 2*t^7.06 + 3*t^7.08 + 2*t^7.09 - t^7.12 + 4*t^7.2 + 2*t^7.21 + 2*t^7.23 + t^7.29 + 3*t^7.31 + t^7.32 + 4*t^7.34 + t^7.37 + t^7.4 + 2*t^7.42 + 2*t^7.45 + 2*t^7.48 + t^7.49 + 4*t^7.54 + t^7.57 + 4*t^7.59 - 2*t^7.6 + t^7.61 + 2*t^7.66 + 3*t^7.68 + t^7.69 + 5*t^7.71 - t^7.72 - 2*t^7.74 + t^7.77 + 3*t^7.8 + t^7.81 + 2*t^7.83 + 2*t^7.85 - 2*t^7.86 + t^7.89 - t^7.92 + 2*t^7.94 + t^8.01 + 2*t^8.03 + t^8.06 - 6*t^8.09 + 3*t^8.11 + 2*t^8.15 + 2*t^8.17 - 3*t^8.2 + 4*t^8.28 + 2*t^8.29 + t^8.31 + t^8.34 + t^8.4 + t^8.41 + 2*t^8.42 + 3*t^8.46 + t^8.49 + t^8.52 + 4*t^8.54 + t^8.58 + 2*t^8.6 + t^8.61 + 4*t^8.66 + 4*t^8.68 + t^8.7 - t^8.71 + t^8.77 + 2*t^8.78 + 6*t^8.8 + 2*t^8.81 + 2*t^8.83 + t^8.89 + 3*t^8.92 + 6*t^8.94 + 2*t^8.95 - t^4.6/y - t^6.69/y - t^6.8/y + t^7.29/y + t^7.4/y - t^7.8/y + t^8.29/y + t^8.4/y + t^8.41/y + t^8.49/y + t^8.52/y + t^8.6/y + (2*t^8.63)/y + (4*t^8.74)/y - t^8.77/y + (2*t^8.86)/y + t^8.88/y - t^8.89/y + t^8.97/y - t^4.6*y - t^6.69*y - t^6.8*y + t^7.29*y + t^7.4*y - t^7.8*y + t^8.29*y + t^8.4*y + t^8.41*y + t^8.49*y + t^8.52*y + t^8.6*y + 2*t^8.63*y + 4*t^8.74*y - t^8.77*y + 2*t^8.86*y + t^8.88*y - t^8.89*y + t^8.97*y | (g1^5*t^2.09)/(g2^3*g3^3*g4^3) + t^2.2/(g3*g4) + (g1^2*t^3.2)/(g2^2*g3^2*g4^2) + (g2^3*g3^2*g4^2*t^3.4)/g1^3 + g1*g3*t^3.54 + g1*g4*t^3.54 + (g2^3*g3^3*g4^2*t^3.66)/g1^4 + (g2^3*g3^2*g4^3*t^3.66)/g1^4 + g3*g4*t^3.8 + g1*g2*t^3.89 + (g2^4*g3^2*g4^2*t^4.)/g1^4 + (g3^2*g4*t^4.05)/g1 + (g3*g4^2*t^4.05)/g1 + g2*g3*t^4.14 + g2*g4*t^4.14 + (g1^10*t^4.17)/(g2^6*g3^6*g4^6) + (g1^5*t^4.29)/(g2^3*g3^4*g4^4) + (g2*g3*g4*t^4.4)/g1 + t^4.41/(g3^2*g4^2) + (g1^3*t^4.88)/(g2*g3*g4) + (g2^2*g3*g4*t^5.)/g1^2 + (g2^5*g3^3*g4^3*t^5.12)/g1^7 + (g1^2*t^5.14)/(g2*g3) + (g1^2*t^5.14)/(g2*g4) + (g2^2*g3^2*g4*t^5.26)/g1^3 + (g2^2*g3*g4^2*t^5.26)/g1^3 + (g1^7*t^5.29)/(g2^5*g3^5*g4^5) + (g1*t^5.4)/g2 + (g1*g3*t^5.4)/(g2*g4) + (g1*g4*t^5.4)/(g2*g3) + (g1^2*t^5.41)/(g2^2*g3^3*g4^3) + (g1^2*t^5.49)/(g3*g4) + (g2^3*g3*g4*t^5.6)/g1^3 + (g1^6*t^5.63)/(g2^3*g3^2*g4^3) + (g1^6*t^5.63)/(g2^3*g3^3*g4^2) + (g1*t^5.74)/g3 + (g1*t^5.74)/g4 + (g1^6*t^5.97)/(g2^2*g3^3*g4^3) - 4*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 + (2*g1*g2*t^6.09)/(g3*g4) - (g2^3*g3^2*g4^2*t^6.12)/g1^5 + (g2^4*g3*g4*t^6.21)/g1^4 + (g1^5*t^6.23)/(g2^2*g3^2*g4^3) + (g1^5*t^6.23)/(g2^2*g3^3*g4^2) - (g3*t^6.26)/g1 + (g1^15*t^6.26)/(g2^9*g3^9*g4^9) - (g4*t^6.26)/g1 + (g1^10*t^6.38)/(g2^6*g3^7*g4^7) + (g1^4*t^6.4)/(g2^4*g3^4*g4^4) - (g1^3*t^6.4)/(g2^3*g3*g4) + (g1^5*t^6.49)/(g2^3*g3^5*g4^5) - (g3*g4*t^6.51)/g1^2 + (g2*t^6.6)/g1 + t^6.61/(g3^3*g4^3) + (g1^3*t^6.74)/(g2^2*g3*g4^2) + (g1^3*t^6.74)/(g2^2*g3^2*g4) + (g2^6*g3^4*g4^4*t^6.8)/g1^6 + (g2*g3*t^6.86)/g1^2 + (g2*g4*t^6.86)/g1^2 + (g2^3*g3^3*g4^2*t^6.94)/g1^2 + (g2^3*g3^2*g4^3*t^6.94)/g1^2 + (g1^8*t^6.97)/(g2^4*g3^4*g4^4) + (g2^6*g3^5*g4^4*t^7.06)/g1^7 + (g2^6*g3^4*g4^5*t^7.06)/g1^7 + g1^2*g3^2*t^7.08 + g1^2*g3*g4*t^7.08 + g1^2*g4^2*t^7.08 + (2*g1^3*t^7.09)/(g2*g3^2*g4^2) - (g2*g3*g4*t^7.12)/g1^3 + (g2^3*g3^4*g4^2*t^7.2)/g1^3 + (2*g2^3*g3^3*g4^3*t^7.2)/g1^3 + (g2^3*g3^2*g4^4*t^7.2)/g1^3 + (2*g2^2*t^7.21)/g1^2 + (g1^7*t^7.23)/(g2^4*g3^3*g4^4) + (g1^7*t^7.23)/(g2^4*g3^4*g4^3) + (g2^4*g3^2*g4^2*t^7.29)/g1^2 + (g2^6*g3^6*g4^4*t^7.31)/g1^8 + (g2^6*g3^5*g4^5*t^7.31)/g1^8 + (g2^6*g3^4*g4^6*t^7.31)/g1^8 + (g2^5*g3^2*g4^2*t^7.32)/g1^7 + (g1^2*t^7.34)/(g2*g3*g4^2) + (g1^2*t^7.34)/(g2*g3^2*g4) + g1*g3^2*g4*t^7.34 + g1*g3*g4^2*t^7.34 + (g1^12*t^7.37)/(g2^8*g3^8*g4^8) + (g2^7*g3^4*g4^4*t^7.4)/g1^7 + g1^2*g2*g3*t^7.42 + g1^2*g2*g4*t^7.42 + (g2^3*g3^4*g4^3*t^7.45)/g1^4 + (g2^3*g3^3*g4^4*t^7.45)/g1^4 + (g1^6*t^7.48)/(g2^4*g3^2*g4^4) + (g1^6*t^7.48)/(g2^4*g3^4*g4^2) + (g1^7*t^7.49)/(g2^5*g3^6*g4^6) + (2*g2^4*g3^3*g4^2*t^7.54)/g1^3 + (2*g2^4*g3^2*g4^3*t^7.54)/g1^3 + (g1^7*t^7.57)/(g2^3*g3^4*g4^4) + g3^3*g4*t^7.59 + 2*g3^2*g4^2*t^7.59 + g3*g4^3*t^7.59 - (2*g1*t^7.6)/(g2*g3*g4) + (g1^2*t^7.61)/(g2^2*g3^4*g4^4) + (g2^7*g3^5*g4^4*t^7.66)/g1^8 + (g2^7*g3^4*g4^5*t^7.66)/g1^8 + g1*g2*g3^2*t^7.68 + g1*g2*g3*g4*t^7.68 + g1*g2*g4^2*t^7.68 + (g1^2*t^7.69)/(g3^2*g4^2) + (g1^11*t^7.71)/(g2^6*g3^5*g4^6) + (g1^11*t^7.71)/(g2^6*g3^6*g4^5) + (g2^3*g3^5*g4^3*t^7.71)/g1^5 + (g2^3*g3^4*g4^4*t^7.71)/g1^5 + (g2^3*g3^3*g4^5*t^7.71)/g1^5 - (g2^2*g3*g4*t^7.72)/g1^4 - (g1^5*t^7.74)/(g2^4*g3^2*g4^3) - (g1^5*t^7.74)/(g2^4*g3^3*g4^2) + g1^2*g2^2*t^7.77 + (g2^4*g3^4*g4^2*t^7.8)/g1^4 + (g2^4*g3^3*g4^3*t^7.8)/g1^4 + (g2^4*g3^2*g4^4*t^7.8)/g1^4 + (g2^3*t^7.81)/g1^3 + (g1^6*t^7.83)/(g2^3*g3^3*g4^4) + (g1^6*t^7.83)/(g2^3*g3^4*g4^3) + (g3^3*g4^2*t^7.85)/g1 + (g3^2*g4^3*t^7.85)/g1 - t^7.86/(g2*g3) - t^7.86/(g2*g4) + (g2^5*g3^2*g4^2*t^7.89)/g1^3 - (g2^7*g3^5*g4^5*t^7.92)/g1^9 + g2*g3^2*g4*t^7.94 + g2*g3*g4^2*t^7.94 + (g2^8*g3^4*g4^4*t^8.01)/g1^8 + g1*g2^2*g3*t^8.03 + g1*g2^2*g4*t^8.03 + (g1^11*t^8.06)/(g2^5*g3^6*g4^6) - (g1^5*t^8.09)/(g2^3*g3^2*g4^4) - (4*g1^5*t^8.09)/(g2^3*g3^3*g4^3) - (g1^5*t^8.09)/(g2^3*g3^4*g4^2) + (g3^4*g4^2*t^8.11)/g1^2 + (g3^3*g4^3*t^8.11)/g1^2 + (g3^2*g4^4*t^8.11)/g1^2 + (g2^5*g3^3*g4^2*t^8.15)/g1^4 + (g2^5*g3^2*g4^3*t^8.15)/g1^4 + (2*g1^6*t^8.17)/(g2^2*g3^4*g4^4) - (3*t^8.2)/(g3*g4) + g2^2*g3^2*t^8.28 + 2*g2^2*g3*g4*t^8.28 + g2^2*g4^2*t^8.28 + (2*g1*g2*t^8.29)/(g3^2*g4^2) + (g1^10*t^8.31)/(g2^5*g3^5*g4^6) + (g1^10*t^8.31)/(g2^5*g3^6*g4^5) - (g2^4*g3^4*g4^4*t^8.31)/g1^6 + (g1^20*t^8.34)/(g2^12*g3^12*g4^12) + (g2^5*g3^3*g4^3*t^8.4)/g1^5 + (g2^4*t^8.41)/g1^4 + (g1^4*t^8.42)/(g2*g3) + (g1^4*t^8.42)/(g2*g4) + t^8.46/(g1*g3) + (g1^15*t^8.46)/(g2^9*g3^10*g4^10) + t^8.46/(g1*g4) + (g1^9*t^8.49)/(g2^7*g3^7*g4^7) + (g2^8*g3^5*g4^5*t^8.52)/g1^10 + (2*g2^2*g3^2*g4*t^8.54)/g1 + (2*g2^2*g3*g4^2*t^8.54)/g1 + (g1^10*t^8.58)/(g2^6*g3^8*g4^8) + (g1^3*t^8.6)/(g2^3*g3*g4^3) + (g1^3*t^8.6)/(g2^3*g3^3*g4) + (g1^4*t^8.61)/(g2^4*g3^5*g4^5) + (2*g2^5*g3^4*g4^3*t^8.66)/g1^6 + (2*g2^5*g3^3*g4^4*t^8.66)/g1^6 + (2*g1^3*t^8.68)/g2 + (g1^3*g3*t^8.68)/(g2*g4) + (g1^3*g4*t^8.68)/(g2*g3) + (g1^5*t^8.7)/(g2^3*g3^6*g4^6) - (g2*g3^3*g4^3*t^8.71)/g1^3 + (g1^4*t^8.77)/(g3*g4) + (g2^8*g3^6*g4^5*t^8.78)/g1^11 + (g2^8*g3^5*g4^6*t^8.78)/g1^11 + (2*g2^2*g3^3*g4*t^8.8)/g1^2 + (2*g2^2*g3^2*g4^2*t^8.8)/g1^2 + (2*g2^2*g3*g4^3*t^8.8)/g1^2 + t^8.81/(g3^4*g4^4) + (g2*t^8.81)/(g1*g3*g4) + (g1^8*t^8.83)/(g2^5*g3^4*g4^5) + (g1^8*t^8.83)/(g2^5*g3^5*g4^4) + (g2^3*g3*g4*t^8.89)/g1 + (g2^5*g3^5*g4^3*t^8.92)/g1^7 + (g2^5*g3^4*g4^4*t^8.92)/g1^7 + (g2^5*g3^3*g4^5*t^8.92)/g1^7 + (2*g1^2*g3*t^8.94)/g2 + (g1^2*g3^2*t^8.94)/(g2*g4) + (2*g1^2*g4*t^8.94)/g2 + (g1^2*g4^2*t^8.94)/(g2*g3) + (g1^3*t^8.95)/(g2^2*g3^2*g4^3) + (g1^3*t^8.95)/(g2^2*g3^3*g4^2) - (g1*t^4.6)/(g2*g3*g4*y) - (g1^6*t^6.69)/(g2^4*g3^4*g4^4*y) - (g1*t^6.8)/(g2*g3^2*g4^2*y) + (g1^5*t^7.29)/(g2^3*g3^4*g4^4*y) + (g2*g3*g4*t^7.4)/(g1*y) - (g1^3*t^7.8)/(g2^3*g3^3*g4^3*y) + (g1^7*t^8.29)/(g2^5*g3^5*g4^5*y) + (g1*t^8.4)/(g2*y) + (g1^2*t^8.41)/(g2^2*g3^3*g4^3*y) + (g1^2*t^8.49)/(g3*g4*y) + (g2^2*g3^2*g4^2*t^8.52)/(g1^4*y) + (g2^3*g3*g4*t^8.6)/(g1^3*y) + (g1^6*t^8.63)/(g2^3*g3^2*g4^3*y) + (g1^6*t^8.63)/(g2^3*g3^3*g4^2*y) + (2*g1*t^8.74)/(g3*y) + (2*g1*t^8.74)/(g4*y) - (g1^11*t^8.77)/(g2^7*g3^7*g4^7*y) + (g2^3*g3^2*g4*t^8.86)/(g1^4*y) + (g2^3*g3*g4^2*t^8.86)/(g1^4*y) + (g1^5*t^8.88)/(g2^3*g3^2*g4^2*y) - (g1^6*t^8.89)/(g2^4*g3^5*g4^5*y) + (g1^6*t^8.97)/(g2^2*g3^3*g4^3*y) - (g1*t^4.6*y)/(g2*g3*g4) - (g1^6*t^6.69*y)/(g2^4*g3^4*g4^4) - (g1*t^6.8*y)/(g2*g3^2*g4^2) + (g1^5*t^7.29*y)/(g2^3*g3^4*g4^4) + (g2*g3*g4*t^7.4*y)/g1 - (g1^3*t^7.8*y)/(g2^3*g3^3*g4^3) + (g1^7*t^8.29*y)/(g2^5*g3^5*g4^5) + (g1*t^8.4*y)/g2 + (g1^2*t^8.41*y)/(g2^2*g3^3*g4^3) + (g1^2*t^8.49*y)/(g3*g4) + (g2^2*g3^2*g4^2*t^8.52*y)/g1^4 + (g2^3*g3*g4*t^8.6*y)/g1^3 + (g1^6*t^8.63*y)/(g2^3*g3^2*g4^3) + (g1^6*t^8.63*y)/(g2^3*g3^3*g4^2) + (2*g1*t^8.74*y)/g3 + (2*g1*t^8.74*y)/g4 - (g1^11*t^8.77*y)/(g2^7*g3^7*g4^7) + (g2^3*g3^2*g4*t^8.86*y)/g1^4 + (g2^3*g3*g4^2*t^8.86*y)/g1^4 + (g1^5*t^8.88*y)/(g2^3*g3^2*g4^2) - (g1^6*t^8.89*y)/(g2^4*g3^5*g4^5) + (g1^6*t^8.97*y)/(g2^2*g3^3*g4^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55668 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8849 | 1.0962 | 0.8072 | [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] | 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y | detail |