Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55772 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_1q_3\tilde{q}_1$ | 0.8849 | 1.0958 | 0.8076 | [X:[], M:[0.6802, 0.6758], q:[0.7292, 0.5906, 0.595], qb:[0.7248, 0.5882, 0.5882], phi:[0.546]] | [X:[], M:[[-2, -2, 0, 0], [-3, 1, -1, -1]], q:[[1, -1, 1, 1], [1, 3, -1, -1], [2, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_3^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$ | . | -6 | t^2.03 + t^2.04 + t^3.28 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.56 + 2*t^3.94 + 3*t^3.95 + t^3.96 + t^4.05 + t^4.07 + t^4.08 + t^4.36 + 5*t^5.17 + t^5.18 + 3*t^5.19 + t^5.21 + t^5.3 + t^5.32 + 3*t^5.56 + t^5.57 + 5*t^5.58 + 2*t^5.59 + t^5.6 + 3*t^5.97 + 2*t^5.98 + t^5.99 - 6*t^6. - 3*t^6.01 - 2*t^6.02 + t^6.08 + t^6.1 + t^6.11 + t^6.12 - t^6.4 - 2*t^6.41 - 3*t^6.42 + t^6.55 + 3*t^6.81 + 3*t^6.83 + t^7.06 + 5*t^7.07 + 2*t^7.08 + 6*t^7.09 + 3*t^7.1 + 3*t^7.11 + 3*t^7.19 + 2*t^7.2 + 4*t^7.21 + 6*t^7.22 + 2*t^7.23 + t^7.24 + t^7.33 + t^7.34 + t^7.36 + 2*t^7.47 + 8*t^7.48 + 7*t^7.49 + 8*t^7.5 + 2*t^7.51 + t^7.52 + t^7.58 + 2*t^7.59 + 5*t^7.6 + 2*t^7.61 + 2*t^7.62 - 4*t^7.64 - 3*t^7.65 - 2*t^7.66 + 3*t^7.88 + 4*t^7.89 + 5*t^7.9 - t^7.93 + 2*t^7.99 + t^8. + 3*t^8.01 - 8*t^8.03 - 7*t^8.04 - 5*t^8.05 - 2*t^8.06 + t^8.11 + t^8.12 + t^8.14 + t^8.15 + t^8.16 - t^8.32 - t^8.33 - t^8.43 + 3*t^8.46 + 4*t^8.47 + t^8.48 + t^8.58 + t^8.59 + 9*t^8.7 + 3*t^8.71 + 15*t^8.72 + 4*t^8.73 + 8*t^8.74 + t^8.75 + 3*t^8.76 + t^8.83 + 2*t^8.84 + 5*t^8.85 + t^8.86 + 3*t^8.87 - t^4.64/y - t^6.67/y - t^6.68/y + t^7.07/y + t^7.36/y - t^7.91/y + t^8.3/y + t^8.32/y + (3*t^8.56)/y + t^8.57/y + (5*t^8.58)/y + (2*t^8.59)/y + (2*t^8.6)/y + t^8.61/y - t^8.69/y - t^8.71/y - t^8.72/y + (3*t^8.97)/y + (4*t^8.98)/y + (4*t^8.99)/y - t^4.64*y - t^6.67*y - t^6.68*y + t^7.07*y + t^7.36*y - t^7.91*y + t^8.3*y + t^8.32*y + 3*t^8.56*y + t^8.57*y + 5*t^8.58*y + 2*t^8.59*y + 2*t^8.6*y + t^8.61*y - t^8.69*y - t^8.71*y - t^8.72*y + 3*t^8.97*y + 4*t^8.98*y + 4*t^8.99*y | (g2*t^2.03)/(g1^3*g3*g4) + t^2.04/(g1^2*g2^2) + t^3.28/(g1^2*g2^2*g3^2*g4^2) + g3^4*g4^4*t^3.53 + (g1*g2^3*g3^3*t^3.54)/g4 + (g1*g2^3*g4^3*t^3.54)/g3 + g1^2*g3^4*t^3.55 + g1^2*g4^4*t^3.55 + (g1^3*g2^3*t^3.56)/(g3*g4) + g2^2*g3^4*t^3.94 + g2^2*g4^4*t^3.94 + (g1*g2^5*t^3.95)/(g3*g4) + (g1*g3^5*g4*t^3.95)/g2 + (g1*g3*g4^5*t^3.95)/g2 + g1^2*g2^2*t^3.96 + (g2^2*t^4.05)/(g1^6*g3^2*g4^2) + t^4.07/(g1^5*g2*g3*g4) + t^4.08/(g1^4*g2^4) + g1*g2*g3*g4*t^4.36 + (g2^2*g3^2*t^5.17)/g4^2 + (g3^7*t^5.17)/(g1*g2*g4) + (g2^2*g4^2*t^5.17)/g3^2 + (g3^3*g4^3*t^5.17)/(g1*g2) + (g4^7*t^5.17)/(g1*g2*g3) + (g1*g2^5*t^5.18)/(g3^3*g4^3) + (g1^2*g2^2*t^5.19)/(g3^2*g4^2) + (g1*g3^3*t^5.19)/(g2*g4) + (g1*g4^3*t^5.19)/(g2*g3) + (g1^3*t^5.21)/(g2*g3*g4) + t^5.3/(g1^5*g2*g3^3*g4^3) + t^5.32/(g1^4*g2^4*g3^2*g4^2) + (g2^4*g3^2*t^5.56)/(g1^2*g4^2) + (g2^4*g4^2*t^5.56)/(g1^2*g3^2) + (g2*g3^3*g4^3*t^5.56)/g1^3 + (g3^4*g4^4*t^5.57)/(g1^2*g2^2) + (g2^4*t^5.58)/(g3^2*g4^2) + (2*g2*g3^3*t^5.58)/(g1*g4) + (2*g2*g4^3*t^5.58)/(g1*g3) + (g3^4*t^5.59)/g2^2 + (g4^4*t^5.59)/g2^2 + (g1*g2*t^5.6)/(g3*g4) + (g2^6*t^5.97)/(g1^2*g3^2*g4^2) + (g2^3*g3^3*t^5.97)/(g1^3*g4) + (g2^3*g4^3*t^5.97)/(g1^3*g3) + (g3^4*t^5.98)/g1^2 + (g4^4*t^5.98)/g1^2 + (g2^3*t^5.99)/(g1*g3*g4) - 4*t^6. - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g1*g2^3*t^6.01)/(g3*g4^5) - (g1*g2^3*t^6.01)/(g3^5*g4) - (g1*g3*g4*t^6.01)/g2^3 - (g1^2*t^6.02)/g3^4 - (g1^2*t^6.02)/g4^4 + (g2^3*t^6.08)/(g1^9*g3^3*g4^3) + t^6.1/(g1^8*g3^2*g4^2) + t^6.11/(g1^7*g2^3*g3*g4) + t^6.12/(g1^6*g2^6) - (g3*g4*t^6.4)/(g1*g2) - (g2^2*t^6.41)/g3^4 - (g2^2*t^6.41)/g4^4 - (g1*g3*t^6.42)/(g2*g4^3) - (g1*g4*t^6.42)/(g2*g3^3) - (g3^2*g4^2*t^6.42)/g2^4 + t^6.55/(g1^4*g2^4*g3^4*g4^4) + (g2*g3*t^6.81)/(g1*g4^3) + (g2*g4*t^6.81)/(g1*g3^3) + (g3^2*g4^2*t^6.81)/(g1^2*g2^2) + (g1*g2*t^6.83)/(g3^3*g4^3) + (g3^2*t^6.83)/(g2^2*g4^2) + (g4^2*t^6.83)/(g2^2*g3^2) + g3^8*g4^8*t^7.06 + (g1^2*g2^6*g3^6*t^7.07)/g4^2 + g1^2*g2^6*g3^2*g4^2*t^7.07 + g1*g2^3*g3^7*g4^3*t^7.07 + (g1^2*g2^6*g4^6*t^7.07)/g3^2 + g1*g2^3*g3^3*g4^7*t^7.07 + g1^2*g3^8*g4^4*t^7.08 + g1^2*g3^4*g4^8*t^7.08 + (g1^4*g2^6*g3^2*t^7.09)/g4^2 + (g1^3*g2^3*g3^7*t^7.09)/g4 + (g1^4*g2^6*g4^2*t^7.09)/g3^2 + 2*g1^3*g2^3*g3^3*g4^3*t^7.09 + (g1^3*g2^3*g4^7*t^7.09)/g3 + g1^4*g3^8*t^7.1 + g1^4*g3^4*g4^4*t^7.1 + g1^4*g4^8*t^7.1 + (g1^6*g2^6*t^7.11)/(g3^2*g4^2) + (g1^5*g2^3*g3^3*t^7.11)/g4 + (g1^5*g2^3*g4^3*t^7.11)/g3 + (g3^6*t^7.19)/(g1^4*g4^2) + (g3^2*g4^2*t^7.19)/g1^4 + (g4^6*t^7.19)/(g1^4*g3^2) + (g2^3*g3*t^7.2)/(g1^3*g4^3) + (g2^3*g4*t^7.2)/(g1^3*g3^3) + (g2^6*t^7.21)/(g1^2*g3^4*g4^4) + (g3^7*t^7.21)/(g1^3*g2^3*g4) + (g3^3*g4^3*t^7.21)/(g1^3*g2^3) + (g4^7*t^7.21)/(g1^3*g2^3*g3) + (2*g2^3*t^7.22)/(g1*g3^3*g4^3) + (2*g3^2*t^7.22)/(g1^2*g4^2) + (2*g4^2*t^7.22)/(g1^2*g3^2) + (g3^3*t^7.23)/(g1*g2^3*g4) + (g4^3*t^7.23)/(g1*g2^3*g3) + t^7.24/(g3^2*g4^2) + t^7.33/(g1^8*g3^4*g4^4) + t^7.34/(g1^7*g2^3*g3^3*g4^3) + t^7.36/(g1^6*g2^6*g3^2*g4^2) + g2^2*g3^8*g4^4*t^7.47 + g2^2*g3^4*g4^8*t^7.47 + (g1^2*g2^8*g3^2*t^7.48)/g4^2 + (g1*g2^5*g3^7*t^7.48)/g4 + (g1^2*g2^8*g4^2*t^7.48)/g3^2 + 2*g1*g2^5*g3^3*g4^3*t^7.48 + (g1*g3^9*g4^5*t^7.48)/g2 + (g1*g2^5*g4^7*t^7.48)/g3 + (g1*g3^5*g4^9*t^7.48)/g2 + 2*g1^2*g2^2*g3^8*t^7.49 + 3*g1^2*g2^2*g3^4*g4^4*t^7.49 + 2*g1^2*g2^2*g4^8*t^7.49 + (g1^4*g2^8*t^7.5)/(g3^2*g4^2) + (2*g1^3*g2^5*g3^3*t^7.5)/g4 + (g1^3*g3^9*g4*t^7.5)/g2 + (2*g1^3*g2^5*g4^3*t^7.5)/g3 + (g1^3*g3^5*g4^5*t^7.5)/g2 + (g1^3*g3*g4^9*t^7.5)/g2 + g1^4*g2^2*g3^4*t^7.51 + g1^4*g2^2*g4^4*t^7.51 + (g1^5*g2^5*t^7.52)/(g3*g4) + (g2^2*g3^2*g4^2*t^7.58)/g1^6 + (g2^5*g3*t^7.59)/(g1^5*g4^3) + (g2^5*g4*t^7.59)/(g1^5*g3^3) + (2*g2^2*g3^2*t^7.6)/(g1^4*g4^2) + (2*g2^2*g4^2*t^7.6)/(g1^4*g3^2) + (g3^3*g4^3*t^7.6)/(g1^5*g2) + (g2^5*t^7.61)/(g1^3*g3^3*g4^3) + (g3^4*g4^4*t^7.61)/(g1^4*g2^4) + (g3^3*t^7.62)/(g1^3*g2*g4) + (g4^3*t^7.62)/(g1^3*g2*g3) - (g3^3*t^7.64)/(g1*g2*g4^5) - (2*t^7.64)/(g1*g2*g3*g4) - (g4^3*t^7.64)/(g1*g2*g3^5) - t^7.65/g2^4 - (g2^2*t^7.65)/(g3^2*g4^6) - (g2^2*t^7.65)/(g3^6*g4^2) - (g1*t^7.66)/(g2*g3*g4^5) - (g1*t^7.66)/(g2*g3^5*g4) + g2^4*g3^8*t^7.88 + g2^4*g3^4*g4^4*t^7.88 + g2^4*g4^8*t^7.88 + (g1^2*g2^10*t^7.89)/(g3^2*g4^2) + (g1*g2^7*g3^3*t^7.89)/g4 + (g1*g2^7*g4^3*t^7.89)/g3 + g1*g2*g3^5*g4^5*t^7.89 + g1^2*g2^4*g3^4*t^7.9 + (g1^2*g3^10*g4^2*t^7.9)/g2^2 + g1^2*g2^4*g4^4*t^7.9 + (g1^2*g3^6*g4^6*t^7.9)/g2^2 + (g1^2*g3^2*g4^10*t^7.9)/g2^2 - g1^5*g2*g3*g4*t^7.93 + (g2^4*g3^2*t^7.99)/(g1^6*g4^2) + (g2^4*g4^2*t^7.99)/(g1^6*g3^2) + (g2^7*t^8.)/(g1^5*g3^3*g4^3) + (g2^4*t^8.01)/(g1^4*g3^2*g4^2) + (g2*g3^3*t^8.01)/(g1^5*g4) + (g2*g4^3*t^8.01)/(g1^5*g3) - (g2^4*t^8.03)/(g1^2*g3^2*g4^6) - (g2*g3^3*t^8.03)/(g1^3*g4^5) - (g2^4*t^8.03)/(g1^2*g3^6*g4^2) - (4*g2*t^8.03)/(g1^3*g3*g4) - (g2*g4^3*t^8.03)/(g1^3*g3^5) - (5*t^8.04)/(g1^2*g2^2) - (g3^4*t^8.04)/(g1^2*g2^2*g4^4) - (g4^4*t^8.04)/(g1^2*g2^2*g3^4) - (2*g2*t^8.05)/(g1*g3*g4^5) - (2*g2*t^8.05)/(g1*g3^5*g4) - (g3*g4*t^8.05)/(g1*g2^5) - t^8.06/(g2^2*g3^4) - t^8.06/(g2^2*g4^4) + (g2^4*t^8.11)/(g1^12*g3^4*g4^4) + (g2*t^8.12)/(g1^11*g3^3*g4^3) + t^8.14/(g1^10*g2^2*g3^2*g4^2) + t^8.15/(g1^9*g2^5*g3*g4) + t^8.16/(g1^8*g2^8) - g1^3*g2^3*g3*g4*t^8.32 - g1^4*g3^2*g4^2*t^8.33 - t^8.43/g1^4 - (g2^3*t^8.44)/(g1^3*g3*g4^5) + (g3^5*t^8.44)/(g1^3*g2^3*g4^3) - (g2^3*t^8.44)/(g1^3*g3^5*g4) + (g4^5*t^8.44)/(g1^3*g2^3*g3^3) + (g2^3*t^8.46)/(g1*g3^5*g4^5) + (g3*t^8.46)/(g1*g2^3*g4^3) + (g4*t^8.46)/(g1*g2^3*g3^3) + t^8.47/g3^8 + t^8.47/g4^8 + (2*t^8.47)/(g3^4*g4^4) + (g1*t^8.48)/(g2^3*g3^3*g4^3) + t^8.58/(g1^7*g2^3*g3^5*g4^5) + t^8.59/(g1^6*g2^6*g3^4*g4^4) + (g2^2*g3^10*t^8.7)/g4^2 + 2*g2^2*g3^6*g4^2*t^8.7 + (g3^11*g4^3*t^8.7)/(g1*g2) + 2*g2^2*g3^2*g4^6*t^8.7 + (g3^7*g4^7*t^8.7)/(g1*g2) + (g2^2*g4^10*t^8.7)/g3^2 + (g3^3*g4^11*t^8.7)/(g1*g2) + (g1*g2^5*g3^5*t^8.71)/g4^3 + g1*g2^5*g3*g4*t^8.71 + (g1*g2^5*g4^5*t^8.71)/g3^3 + (g1^2*g2^8*t^8.72)/g3^4 + (g1^2*g2^8*t^8.72)/g4^4 + (2*g1^2*g2^2*g3^6*t^8.72)/g4^2 + (g1*g3^11*t^8.72)/(g2*g4) + 3*g1^2*g2^2*g3^2*g4^2*t^8.72 + (2*g1*g3^7*g4^3*t^8.72)/g2 + (2*g1^2*g2^2*g4^6*t^8.72)/g3^2 + (2*g1*g3^3*g4^7*t^8.72)/g2 + (g1*g4^11*t^8.72)/(g2*g3) + (2*g1^3*g2^5*g3*t^8.73)/g4^3 + (2*g1^3*g2^5*g4*t^8.73)/g3^3 + (g1^4*g2^8*t^8.74)/(g3^4*g4^4) + (2*g1^4*g2^2*g3^2*t^8.74)/g4^2 + (g1^3*g3^7*t^8.74)/(g2*g4) + (2*g1^4*g2^2*g4^2*t^8.74)/g3^2 + (g1^3*g3^3*g4^3*t^8.74)/g2 + (g1^3*g4^7*t^8.74)/(g2*g3) + (g1^5*g2^5*t^8.75)/(g3^3*g4^3) + (g1^6*g2^2*t^8.76)/(g3^2*g4^2) + (g1^5*g3^3*t^8.76)/(g2*g4) + (g1^5*g4^3*t^8.76)/(g2*g3) + (g3*g4*t^8.83)/(g1^5*g2) + (g2^2*t^8.84)/(g1^4*g3^4) + (g2^2*t^8.84)/(g1^4*g4^4) + (2*g3*t^8.85)/(g1^3*g2*g4^3) + (2*g4*t^8.85)/(g1^3*g2*g3^3) + (g3^2*g4^2*t^8.85)/(g1^4*g2^4) + (g2^2*t^8.86)/(g1^2*g3^4*g4^4) + t^8.87/(g1*g2*g3^3*g4^3) + (g3^2*t^8.87)/(g1^2*g2^4*g4^2) + (g4^2*t^8.87)/(g1^2*g2^4*g3^2) - t^4.64/(g1*g2*g3*g4*y) - t^6.67/(g1^4*g3^2*g4^2*y) - t^6.68/(g1^3*g2^3*g3*g4*y) + t^7.07/(g1^5*g2*g3*g4*y) + (g1*g2*g3*g4*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g4^3*y) + t^8.3/(g1^5*g2*g3^3*g4^3*y) + t^8.32/(g1^4*g2^4*g3^2*g4^2*y) + (g2^4*g3^2*t^8.56)/(g1^2*g4^2*y) + (g2^4*g4^2*t^8.56)/(g1^2*g3^2*y) + (g2*g3^3*g4^3*t^8.56)/(g1^3*y) + (g3^4*g4^4*t^8.57)/(g1^2*g2^2*y) + (g2^4*t^8.58)/(g3^2*g4^2*y) + (2*g2*g3^3*t^8.58)/(g1*g4*y) + (2*g2*g4^3*t^8.58)/(g1*g3*y) + (g3^4*t^8.59)/(g2^2*y) + (g4^4*t^8.59)/(g2^2*y) + (2*g1*g2*t^8.6)/(g3*g4*y) + (g1^2*t^8.61)/(g2^2*y) - (g2*t^8.69)/(g1^7*g3^3*g4^3*y) - t^8.71/(g1^6*g2^2*g3^2*g4^2*y) - t^8.72/(g1^5*g2^5*g3*g4*y) + (g2^6*t^8.97)/(g1^2*g3^2*g4^2*y) + (g2^3*g3^3*t^8.97)/(g1^3*g4*y) + (g2^3*g4^3*t^8.97)/(g1^3*g3*y) + (2*g3^4*t^8.98)/(g1^2*y) + (2*g4^4*t^8.98)/(g1^2*y) + (2*g2^3*t^8.99)/(g1*g3*g4*y) + (g3^5*g4*t^8.99)/(g1*g2^3*y) + (g3*g4^5*t^8.99)/(g1*g2^3*y) - (t^4.64*y)/(g1*g2*g3*g4) - (t^6.67*y)/(g1^4*g3^2*g4^2) - (t^6.68*y)/(g1^3*g2^3*g3*g4) + (t^7.07*y)/(g1^5*g2*g3*g4) + g1*g2*g3*g4*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g4^3) + (t^8.3*y)/(g1^5*g2*g3^3*g4^3) + (t^8.32*y)/(g1^4*g2^4*g3^2*g4^2) + (g2^4*g3^2*t^8.56*y)/(g1^2*g4^2) + (g2^4*g4^2*t^8.56*y)/(g1^2*g3^2) + (g2*g3^3*g4^3*t^8.56*y)/g1^3 + (g3^4*g4^4*t^8.57*y)/(g1^2*g2^2) + (g2^4*t^8.58*y)/(g3^2*g4^2) + (2*g2*g3^3*t^8.58*y)/(g1*g4) + (2*g2*g4^3*t^8.58*y)/(g1*g3) + (g3^4*t^8.59*y)/g2^2 + (g4^4*t^8.59*y)/g2^2 + (2*g1*g2*t^8.6*y)/(g3*g4) + (g1^2*t^8.61*y)/g2^2 - (g2*t^8.69*y)/(g1^7*g3^3*g4^3) - (t^8.71*y)/(g1^6*g2^2*g3^2*g4^2) - (t^8.72*y)/(g1^5*g2^5*g3*g4) + (g2^6*t^8.97*y)/(g1^2*g3^2*g4^2) + (g2^3*g3^3*t^8.97*y)/(g1^3*g4) + (g2^3*g4^3*t^8.97*y)/(g1^3*g3) + (2*g3^4*t^8.98*y)/g1^2 + (2*g4^4*t^8.98*y)/g1^2 + (2*g2^3*t^8.99*y)/(g1*g3*g4) + (g3^5*g4*t^8.99*y)/(g1*g2^3) + (g3*g4^5*t^8.99*y)/(g1*g2^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55668 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8849 | 1.0962 | 0.8072 | [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] | 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y | detail |