Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55717 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ | 0.869 | 1.0732 | 0.8097 | [X:[], M:[0.6891, 0.6891], q:[0.7491, 0.5618, 0.5618], qb:[0.7218, 0.7355, 0.5537], phi:[0.5291]] | [X:[], M:[[1, 1, -7, 1], [-1, 1, -2, 0]], q:[[0, -1, 2, 0], [-1, 0, 5, -1], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, -2, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ \phi_1q_3\tilde{q}_1$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2q_2\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ | . | -6 | 2*t^2.07 + t^3.17 + 2*t^3.35 + t^3.37 + t^3.83 + 2*t^3.85 + t^3.87 + 2*t^3.89 + t^3.91 + 3*t^4.13 + t^4.37 + t^4.41 + t^4.45 + t^4.91 + 2*t^4.93 + 3*t^4.96 + 2*t^5.24 + 4*t^5.41 + 2*t^5.44 + 2*t^5.89 + 4*t^5.92 + 2*t^5.93 + 3*t^5.96 - 6*t^6. - 2*t^6.02 - t^6.04 + 4*t^6.2 + t^6.35 + 2*t^6.44 - t^6.5 + 2*t^6.52 - 2*t^6.56 - t^6.59 + 3*t^6.69 + 2*t^6.72 + t^6.74 + 2*t^6.98 + 4*t^7. + 6*t^7.03 - 2*t^7.11 + 2*t^7.17 + 4*t^7.2 + 2*t^7.21 + 2*t^7.22 + 4*t^7.24 + 2*t^7.25 + 2*t^7.26 + 3*t^7.31 + 6*t^7.48 + 3*t^7.51 - 2*t^7.56 - 4*t^7.59 - 2*t^7.61 + t^7.65 + 2*t^7.68 + t^7.69 + 3*t^7.7 + 4*t^7.72 + t^7.73 + 4*t^7.74 + 2*t^7.76 + t^7.78 + 2*t^7.8 + t^7.82 + 3*t^7.96 + 6*t^7.99 + 3*t^8. + 4*t^8.03 - t^8.04 - 12*t^8.07 + t^8.08 - 4*t^8.09 + 3*t^8.13 + t^8.2 + 2*t^8.22 + t^8.24 + 4*t^8.26 + 5*t^8.27 + 5*t^8.28 + 6*t^8.3 + t^8.32 + 3*t^8.33 + t^8.36 + 2*t^8.42 + 3*t^8.51 - t^8.55 - 2*t^8.57 + 3*t^8.59 - t^8.63 + t^8.68 + t^8.74 + 8*t^8.76 + 8*t^8.78 + 2*t^8.8 + 6*t^8.81 + t^8.82 + 3*t^8.83 + 4*t^8.85 - t^8.87 - 2*t^8.89 - t^4.59/y - (2*t^6.65)/y + t^7.13/y + t^7.41/y - t^7.76/y + (2*t^8.24)/y + (4*t^8.41)/y + (2*t^8.44)/y + (2*t^8.52)/y - (3*t^8.72)/y + (2*t^8.89)/y + (4*t^8.92)/y + (2*t^8.93)/y + (4*t^8.96)/y + (2*t^8.98)/y - t^4.59*y - 2*t^6.65*y + t^7.13*y + t^7.41*y - t^7.76*y + 2*t^8.24*y + 4*t^8.41*y + 2*t^8.44*y + 2*t^8.52*y - 3*t^8.72*y + 2*t^8.89*y + 4*t^8.92*y + 2*t^8.93*y + 4*t^8.96*y + 2*t^8.98*y | (g2*t^2.07)/(g1*g3^2) + (g1*g2*g4*t^2.07)/g3^7 + t^3.17/g3^4 + (g3^5*t^3.35)/g1 + g1*g4*t^3.35 + (g3^5*t^3.37)/g4 + g2*g4*t^3.83 + g1*g2*t^3.85 + (g2*g3^5*t^3.85)/(g1*g4) + g3*g4*t^3.87 + g1*g3*t^3.89 + (g3^6*t^3.89)/(g1*g4) + (g3^2*g4*t^3.91)/g2 + (g2^2*t^4.13)/(g1^2*g3^4) + (g2^2*g4*t^4.13)/g3^9 + (g1^2*g2^2*g4^2*t^4.13)/g3^14 + g2*g3*t^4.37 + g3^2*t^4.41 + (g3^3*t^4.45)/g2 + (g4^2*t^4.91)/g3^2 + (g3^3*t^4.93)/g1 + (g1*g4*t^4.93)/g3^2 + (g1^2*t^4.96)/g3^2 + (g3^8*t^4.96)/(g1^2*g4^2) + (g3^3*t^4.96)/g4 + (g2*t^5.24)/(g1*g3^6) + (g1*g2*g4*t^5.24)/g3^11 + (g2*g3^3*t^5.41)/g1^2 + (2*g2*g4*t^5.41)/g3^2 + (g1^2*g2*g4^2*t^5.41)/g3^7 + (g1*g2*t^5.44)/g3^2 + (g2*g3^3*t^5.44)/(g1*g4) + (g2^2*g4*t^5.89)/(g1*g3^2) + (g1*g2^2*g4^2*t^5.89)/g3^7 + (2*g2^2*t^5.92)/g3^2 + (g2^2*g3^3*t^5.92)/(g1^2*g4) + (g1^2*g2^2*g4*t^5.92)/g3^7 + (g2*g4*t^5.93)/(g1*g3) + (g1*g2*g4^2*t^5.93)/g3^6 + (g2*t^5.96)/g3 + (g2*g3^4*t^5.96)/(g1^2*g4) + (g1^2*g2*g4*t^5.96)/g3^6 - 4*t^6. - (g3^5*t^6.)/(g1^2*g4) - (g1^2*g4*t^6.)/g3^5 - (g3^5*t^6.02)/(g1*g4^2) - (g1*t^6.02)/g4 - (g3*t^6.04)/g2 + (g2^3*t^6.2)/(g1^3*g3^6) + (g2^3*g4*t^6.2)/(g1*g3^11) + (g1*g2^3*g4^2*t^6.2)/g3^16 + (g1^3*g2^3*g4^3*t^6.2)/g3^21 + t^6.35/g3^8 + (g2^2*t^6.44)/(g1*g3) + (g1*g2^2*g4*t^6.44)/g3^6 - (g2*t^6.5)/g4 + (g3*t^6.52)/g1 + (g1*g4*t^6.52)/g3^4 - (g3^2*t^6.56)/(g1*g2) - (g1*g4*t^6.56)/(g2*g3^3) - (g3^2*t^6.59)/(g2*g4) + (g3^10*t^6.69)/g1^2 + g3^5*g4*t^6.69 + g1^2*g4^2*t^6.69 + g1*g3^5*t^6.72 + (g3^10*t^6.72)/(g1*g4) + (g3^10*t^6.74)/g4^2 + (g2*g4^2*t^6.98)/(g1*g3^4) + (g1*g2*g4^3*t^6.98)/g3^9 + (g2*g3*t^7.)/g1^2 + (2*g2*g4*t^7.)/g3^4 + (g1^2*g2*g4^2*t^7.)/g3^9 + (2*g1*g2*t^7.03)/g3^4 + (g2*g3^6*t^7.03)/(g1^3*g4^2) + (2*g2*g3*t^7.03)/(g1*g4) + (g1^3*g2*g4*t^7.03)/g3^9 - (g1*t^7.11)/(g2*g3^2) - (g3^3*t^7.11)/(g1*g2*g4) + (g2*g3^5*g4*t^7.17)/g1 + g1*g2*g4^2*t^7.17 + 2*g2*g3^5*t^7.2 + (g2*g3^10*t^7.2)/(g1^2*g4) + g1^2*g2*g4*t^7.2 + (g3^6*g4*t^7.21)/g1 + g1*g3*g4^2*t^7.21 + (g2*g3^10*t^7.22)/(g1*g4^2) + (g1*g2*g3^5*t^7.22)/g4 + 2*g3^6*t^7.24 + (g3^11*t^7.24)/(g1^2*g4) + g1^2*g3*g4*t^7.24 + (g3^7*g4*t^7.25)/(g1*g2) + (g1*g3^2*g4^2*t^7.25)/g2 + (g3^11*t^7.26)/(g1*g4^2) + (g1*g3^6*t^7.26)/g4 + (g2^2*t^7.31)/(g1^2*g3^8) + (g2^2*g4*t^7.31)/g3^13 + (g1^2*g2^2*g4^2*t^7.31)/g3^18 + (g2^2*g3*t^7.48)/g1^3 + (2*g2^2*g4*t^7.48)/(g1*g3^4) + (2*g1*g2^2*g4^2*t^7.48)/g3^9 + (g1^3*g2^2*g4^3*t^7.48)/g3^14 + (g2^2*t^7.51)/g3^4 + (g2^2*g3*t^7.51)/(g1^2*g4) + (g1^2*g2^2*g4*t^7.51)/g3^9 - (g4*t^7.56)/(g1*g3^2) - (g1*g4^2*t^7.56)/g3^7 - (2*t^7.59)/g3^2 - (g3^3*t^7.59)/(g1^2*g4) - (g1^2*g4*t^7.59)/g3^7 - (g3^3*t^7.61)/(g1*g4^2) - (g1*t^7.61)/(g3^2*g4) + g2^2*g4^2*t^7.65 + (g2^2*g3^5*t^7.68)/g1 + g1*g2^2*g4*t^7.68 + g2*g3*g4^2*t^7.69 + g1^2*g2^2*t^7.7 + (g2^2*g3^10*t^7.7)/(g1^2*g4^2) + (g2^2*g3^5*t^7.7)/g4 + (2*g2*g3^6*t^7.72)/g1 + 2*g1*g2*g3*g4*t^7.72 + g3^2*g4^2*t^7.73 + g1^2*g2*g3*t^7.74 + (g2*g3^11*t^7.74)/(g1^2*g4^2) + (2*g2*g3^6*t^7.74)/g4 + (g3^7*t^7.76)/g1 + g1*g3^2*g4*t^7.76 + (g3^3*g4^2*t^7.78)/g2 + (g3^8*t^7.8)/(g1*g2) + (g1*g3^3*g4*t^7.8)/g2 + (g3^4*g4^2*t^7.82)/g2^2 + (g2^3*g4*t^7.96)/(g1^2*g3^4) + (g2^3*g4^2*t^7.96)/g3^9 + (g1^2*g2^3*g4^3*t^7.96)/g3^14 + (2*g2^3*t^7.99)/(g1*g3^4) + (g2^3*g3*t^7.99)/(g1^3*g4) + (2*g1*g2^3*g4*t^7.99)/g3^9 + (g1^3*g2^3*g4^2*t^7.99)/g3^14 + (g2^2*g4*t^8.)/(g1^2*g3^3) + (g2^2*g4^2*t^8.)/g3^8 + (g1^2*g2^2*g4^3*t^8.)/g3^13 + (g2^2*t^8.03)/(g1*g3^3) + (g2^2*g3^2*t^8.03)/(g1^3*g4) + (g1*g2^2*g4*t^8.03)/g3^8 + (g1^3*g2^2*g4^2*t^8.03)/g3^13 - (g2*g4^2*t^8.04)/g3^7 - (5*g2*t^8.07)/(g1*g3^2) - (g2*g3^3*t^8.07)/(g1^3*g4) - (5*g1*g2*g4*t^8.07)/g3^7 - (g1^3*g2*g4^2*t^8.07)/g3^12 + (g4^2*t^8.08)/g3^6 - (g1^2*g2*t^8.09)/g3^7 - (g2*g3^3*t^8.09)/(g1^2*g4^2) - (2*g2*t^8.09)/(g3^2*g4) + (g1^2*t^8.13)/g3^6 + (g3^4*t^8.13)/(g1^2*g4^2) + t^8.13/(g3*g4) + g2^2*g3*g4*t^8.2 + g1*g2^2*g3*t^8.22 + (g2^2*g3^6*t^8.22)/(g1*g4) + g2*g3^2*g4*t^8.24 + g1*g2*g3^2*t^8.26 + (g2*g3^7*t^8.26)/(g1*g4) + (g3^3*g4^2*t^8.26)/g1 + (g1*g4^3*t^8.26)/g3^2 + (g2^4*t^8.27)/(g1^4*g3^8) + (g2^4*g4*t^8.27)/(g1^2*g3^13) + (g2^4*g4^2*t^8.27)/g3^18 + (g1^2*g2^4*g4^3*t^8.27)/g3^23 + (g1^4*g2^4*g4^4*t^8.27)/g3^28 + (g3^8*t^8.28)/g1^2 + 3*g3^3*g4*t^8.28 + (g1^2*g4^2*t^8.28)/g3^2 + 2*g1*g3^3*t^8.3 + (g3^13*t^8.3)/(g1^3*g4^2) + (2*g3^8*t^8.3)/(g1*g4) + (g1^3*g4*t^8.3)/g3^2 + (g3^4*g4*t^8.32)/g2 + (g3^13*t^8.33)/(g1^2*g4^3) + (g3^8*t^8.33)/g4^2 + (g1^2*g3^3*t^8.33)/g4 + (g3^5*g4*t^8.36)/g2^2 + (g2*t^8.42)/(g1*g3^10) + (g1*g2*g4*t^8.42)/g3^15 + (g2^3*t^8.51)/(g1^2*g3^3) + (g2^3*g4*t^8.51)/g3^8 + (g1^2*g2^3*g4^2*t^8.51)/g3^13 - (g2^2*g4*t^8.55)/g3^7 - (g1*g2^2*t^8.57)/g3^7 - (g2^2*t^8.57)/(g1*g3^2*g4) + (g2*t^8.59)/(g1^2*g3) + (g2*g4*t^8.59)/g3^6 + (g1^2*g2*g4^2*t^8.59)/g3^11 - (g4*t^8.63)/g3^5 + t^8.68/g4^2 + (g2*g4^3*t^8.74)/g3^2 + (g2*g3^8*t^8.76)/g1^3 + (3*g2*g3^3*g4*t^8.76)/g1 + (3*g1*g2*g4^2*t^8.76)/g3^2 + (g1^3*g2*g4^3*t^8.76)/g3^7 + 3*g2*g3^3*t^8.78 + (2*g2*g3^8*t^8.78)/(g1^2*g4) + (2*g1^2*g2*g4*t^8.78)/g3^2 + (g4^3*t^8.78)/g3 + (g3^4*g4*t^8.8)/g1 + (g1*g4^2*t^8.8)/g3 + (g1^3*g2*t^8.81)/g3^2 + (g2*g3^13*t^8.81)/(g1^3*g4^3) + (2*g2*g3^8*t^8.81)/(g1*g4^2) + (2*g1*g2*g3^3*t^8.81)/g4 + (g4^3*t^8.82)/g2 + g3^4*t^8.83 + (g3^9*t^8.83)/(g1^2*g4) + (g1^2*g4*t^8.83)/g3 + (g1^3*t^8.85)/g3 + (g3^14*t^8.85)/(g1^3*g4^3) + (g3^9*t^8.85)/(g1*g4^2) + (g1*g3^4*t^8.85)/g4 - (g3^5*t^8.87)/g2 - (g3^10*t^8.89)/(g1*g2*g4^2) - (g1*g3^5*t^8.89)/(g2*g4) - t^4.59/(g3^2*y) - (g2*t^6.65)/(g1*g3^4*y) - (g1*g2*g4*t^6.65)/(g3^9*y) + (g2^2*g4*t^7.13)/(g3^9*y) + (g3^2*t^7.41)/y - t^7.76/(g3^6*y) + (g2*t^8.24)/(g1*g3^6*y) + (g1*g2*g4*t^8.24)/(g3^11*y) + (g2*g3^3*t^8.41)/(g1^2*y) + (2*g2*g4*t^8.41)/(g3^2*y) + (g1^2*g2*g4^2*t^8.41)/(g3^7*y) + (g1*g2*t^8.44)/(g3^2*y) + (g2*g3^3*t^8.44)/(g1*g4*y) + (g1*t^8.52)/(g2*y) + (g3^5*t^8.52)/(g1*g2*g4*y) - (g2^2*t^8.72)/(g1^2*g3^6*y) - (g2^2*g4*t^8.72)/(g3^11*y) - (g1^2*g2^2*g4^2*t^8.72)/(g3^16*y) + (g2^2*g4*t^8.89)/(g1*g3^2*y) + (g1*g2^2*g4^2*t^8.89)/(g3^7*y) + (2*g2^2*t^8.92)/(g3^2*y) + (g2^2*g3^3*t^8.92)/(g1^2*g4*y) + (g1^2*g2^2*g4*t^8.92)/(g3^7*y) + (g2*g4*t^8.93)/(g1*g3*y) + (g1*g2*g4^2*t^8.93)/(g3^6*y) + (2*g2*t^8.96)/(g3*y) + (g2*g3^4*t^8.96)/(g1^2*g4*y) + (g1^2*g2*g4*t^8.96)/(g3^6*y) + (g4*t^8.98)/(g1*y) + (g1*g4^2*t^8.98)/(g3^5*y) - (t^4.59*y)/g3^2 - (g2*t^6.65*y)/(g1*g3^4) - (g1*g2*g4*t^6.65*y)/g3^9 + (g2^2*g4*t^7.13*y)/g3^9 + g3^2*t^7.41*y - (t^7.76*y)/g3^6 + (g2*t^8.24*y)/(g1*g3^6) + (g1*g2*g4*t^8.24*y)/g3^11 + (g2*g3^3*t^8.41*y)/g1^2 + (2*g2*g4*t^8.41*y)/g3^2 + (g1^2*g2*g4^2*t^8.41*y)/g3^7 + (g1*g2*t^8.44*y)/g3^2 + (g2*g3^3*t^8.44*y)/(g1*g4) + (g1*t^8.52*y)/g2 + (g3^5*t^8.52*y)/(g1*g2*g4) - (g2^2*t^8.72*y)/(g1^2*g3^6) - (g2^2*g4*t^8.72*y)/g3^11 - (g1^2*g2^2*g4^2*t^8.72*y)/g3^16 + (g2^2*g4*t^8.89*y)/(g1*g3^2) + (g1*g2^2*g4^2*t^8.89*y)/g3^7 + (2*g2^2*t^8.92*y)/g3^2 + (g2^2*g3^3*t^8.92*y)/(g1^2*g4) + (g1^2*g2^2*g4*t^8.92*y)/g3^7 + (g2*g4*t^8.93*y)/(g1*g3) + (g1*g2*g4^2*t^8.93*y)/g3^6 + (2*g2*t^8.96*y)/g3 + (g2*g3^4*t^8.96*y)/(g1^2*g4) + (g1^2*g2*g4*t^8.96*y)/g3^6 + (g4*t^8.98*y)/g1 + (g1*g4^2*t^8.98*y)/g3^5 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55668 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ | 0.8849 | 1.0962 | 0.8072 | [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] | 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y | detail |