Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55758 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8849 1.0954 0.8078 [X:[], M:[0.6816, 0.6785], q:[0.7286, 0.5897, 0.5929], qb:[0.7258, 0.5926, 0.5882], phi:[0.5455]] [X:[], M:[[0, -2, -2, 0], [-5, 1, -1, -1]], q:[[1, -1, 1, 1], [-1, 3, 1, -1], [4, 0, 0, 0]], qb:[[0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 4]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ \phi_1^2$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_3$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_2\tilde{q}_3$, $ M_2q_2q_3$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_2q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_2q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$ . -5 2*t^2.04 + t^3.27 + t^3.53 + 2*t^3.54 + 2*t^3.55 + t^3.56 + t^3.94 + 2*t^3.95 + 3*t^3.96 + t^4.07 + t^4.08 + t^4.09 + t^4.36 + 2*t^5.17 + 5*t^5.18 + 3*t^5.19 + t^5.31 + t^5.32 + t^5.57 + 5*t^5.58 + 5*t^5.59 + t^5.6 + 2*t^5.98 + t^5.99 - 5*t^6. - 3*t^6.01 + t^6.11 + t^6.12 + 2*t^6.13 - t^6.4 - 3*t^6.41 - 2*t^6.42 + t^6.55 + t^6.81 + 4*t^6.82 + t^6.83 + t^7.07 + 5*t^7.08 + 8*t^7.09 + 5*t^7.1 + t^7.11 + t^7.2 + 4*t^7.21 + 7*t^7.22 + 4*t^7.23 + 2*t^7.24 + t^7.34 + t^7.35 + t^7.36 + 4*t^7.48 + 9*t^7.49 + 9*t^7.5 + 5*t^7.51 + t^7.52 + t^7.6 + 3*t^7.61 + 3*t^7.62 + 2*t^7.63 - 3*t^7.64 - 3*t^7.65 + t^7.88 + 2*t^7.89 + 4*t^7.9 + 4*t^7.91 - t^7.92 + t^7.93 + t^8.01 + t^8.02 - 12*t^8.04 - 4*t^8.05 - 2*t^8.06 + t^8.14 + t^8.15 + t^8.16 + t^8.17 + t^8.18 - t^8.32 - t^8.33 + t^8.45 + 2*t^8.46 + 4*t^8.47 + t^8.58 + t^8.59 + 2*t^8.7 + 7*t^8.71 + 9*t^8.72 + 12*t^8.73 + 10*t^8.74 + 3*t^8.75 + t^8.84 + 3*t^8.85 + 4*t^8.86 + 4*t^8.87 - t^4.64/y - t^6.67/y - t^6.68/y + t^7.08/y + t^7.36/y - t^7.91/y + t^8.31/y + t^8.32/y + t^8.57/y + (5*t^8.58)/y + (6*t^8.59)/y + (2*t^8.6)/y - t^8.71/y - t^8.72/y - t^8.73/y + (2*t^8.98)/y + (5*t^8.99)/y - t^4.64*y - t^6.67*y - t^6.68*y + t^7.08*y + t^7.36*y - t^7.91*y + t^8.31*y + t^8.32*y + t^8.57*y + 5*t^8.58*y + 6*t^8.59*y + 2*t^8.6*y - t^8.71*y - t^8.72*y - t^8.73*y + 2*t^8.98*y + 5*t^8.99*y t^2.04/(g2^2*g3^2) + (g2*t^2.04)/(g1^5*g3*g4) + t^3.27/(g1^2*g2^2*g3^2*g4^2) + (g2^3*g3*g4^3*t^3.53)/g1 + g1^4*g4^4*t^3.54 + g3^2*g4^4*t^3.54 + (g1^3*g2^3*g3*t^3.55)/g4 + (g2^3*g3^3*t^3.55)/(g1*g4) + g1^4*g3^2*t^3.56 + g2^2*g4^4*t^3.94 + (g2^5*g3*t^3.95)/(g1*g4) + (g1*g3*g4^5*t^3.95)/g2 + g1^4*g2^2*t^3.96 + g2^2*g3^2*t^3.96 + (g1*g3^3*g4*t^3.96)/g2 + (g2^2*t^4.07)/(g1^10*g3^2*g4^2) + t^4.08/(g1^5*g2*g3^3*g4) + t^4.09/(g2^4*g3^4) + g1*g2*g3*g4*t^4.36 + (g2^2*g4^2*t^5.17)/g1^2 + (g4^7*t^5.17)/(g1*g2*g3) + (g2^5*g3*t^5.18)/(g1^3*g4^3) + (g1^2*g2^2*t^5.18)/g4^2 + (g2^2*g3^2*t^5.18)/(g1^2*g4^2) + (g1^3*g4^3*t^5.18)/(g2*g3) + (g3*g4^3*t^5.18)/(g1*g2) + (g1^7*t^5.19)/(g2*g3*g4) + (g1^3*g3*t^5.19)/(g2*g4) + (g3^3*t^5.19)/(g1*g2*g4) + t^5.31/(g1^7*g2*g3^3*g4^3) + t^5.32/(g1^2*g2^4*g3^4*g4^2) + (g2^4*g4^2*t^5.57)/g1^6 + (g2^4*t^5.58)/(g1^2*g4^2) + (g2^4*g3^2*t^5.58)/(g1^6*g4^2) + (2*g2*g4^3*t^5.58)/(g1*g3) + (g2*g3*g4^3*t^5.58)/g1^5 + (g1^3*g2*t^5.59)/(g3*g4) + (2*g2*g3*t^5.59)/(g1*g4) + (g4^4*t^5.59)/g2^2 + (g1^4*g4^4*t^5.59)/(g2^2*g3^2) + (g1^4*t^5.6)/g2^2 + (g2^6*t^5.98)/(g1^6*g4^2) + (g2^3*g4^3*t^5.98)/(g1^5*g3) + (g2^3*t^5.99)/(g1*g3*g4) - 4*t^6. - (g2^3*g3*t^6.)/(g1*g4^5) - (g1^4*t^6.01)/g4^4 - (g3^2*t^6.01)/g4^4 - (g1^5*g4*t^6.01)/(g2^3*g3) + (g2^3*t^6.11)/(g1^15*g3^3*g4^3) + t^6.12/(g1^10*g3^4*g4^2) + t^6.13/(g2^6*g3^6) + t^6.13/(g1^5*g2^3*g3^5*g4) - (g2^2*t^6.4)/g3^2 - (g2^2*t^6.41)/g4^4 - (g1*g4*t^6.41)/(g2*g3) - (g3*g4*t^6.41)/(g1^3*g2) - (g1*g3*t^6.42)/(g2*g4^3) - (g1^2*g4^2*t^6.42)/g2^4 + t^6.55/(g1^4*g2^4*g3^4*g4^4) + (g2*g4*t^6.81)/(g1^3*g3) + (g1*g2*t^6.82)/(g3*g4^3) + (g2*g3*t^6.82)/(g1^3*g4^3) + (g4^2*t^6.82)/(g1^2*g2^2) + (g1^2*g4^2*t^6.82)/(g2^2*g3^2) + (g1^2*t^6.83)/(g2^2*g4^2) + (g2^6*g3^2*g4^6*t^7.07)/g1^2 + g1^2*g2^6*g3^2*g4^2*t^7.08 + (g2^6*g3^4*g4^2*t^7.08)/g1^2 + g1^3*g2^3*g3*g4^7*t^7.08 + (g2^3*g3^3*g4^7*t^7.08)/g1 + g3^4*g4^8*t^7.08 + (g1^2*g2^6*g3^4*t^7.09)/g4^2 + (g2^6*g3^6*t^7.09)/(g1^2*g4^2) + g1^7*g2^3*g3*g4^3*t^7.09 + 2*g1^3*g2^3*g3^3*g4^3*t^7.09 + (g2^3*g3^5*g4^3*t^7.09)/g1 + g1^8*g4^8*t^7.09 + g1^4*g3^2*g4^8*t^7.09 + (g1^6*g2^6*g3^2*t^7.1)/g4^2 + (g1^7*g2^3*g3^3*t^7.1)/g4 + (g1^3*g2^3*g3^5*t^7.1)/g4 + g1^8*g3^2*g4^4*t^7.1 + g1^4*g3^4*g4^4*t^7.1 + g1^8*g3^4*t^7.11 + (g4^6*t^7.2)/(g1^6*g3^2) + (g2^6*t^7.21)/(g1^8*g4^4) + (g2^3*g4*t^7.21)/(g1^7*g3) + (g4^2*t^7.21)/g1^6 + (g4^7*t^7.21)/(g1*g2^3*g3^3) + (2*g2^3*t^7.22)/(g1^3*g3*g4^3) + (g2^3*g3*t^7.22)/(g1^7*g4^3) + (2*g4^2*t^7.22)/(g1^2*g3^2) + (g1^3*g4^3*t^7.22)/(g2^3*g3^3) + (g4^3*t^7.22)/(g1*g2^3*g3) + t^7.23/(g1^2*g4^2) + (2*g1^2*t^7.23)/(g3^2*g4^2) + (g3^2*t^7.23)/(g1^6*g4^2) + (g1^7*t^7.24)/(g2^3*g3^3*g4) + (g3*t^7.24)/(g1*g2^3*g4) + t^7.34/(g1^12*g3^4*g4^4) + t^7.35/(g1^7*g2^3*g3^5*g4^3) + t^7.36/(g1^2*g2^6*g3^6*g4^2) + (g2^8*g3^2*g4^2*t^7.48)/g1^2 + (g2^5*g3*g4^7*t^7.48)/g1 + 2*g2^2*g3^2*g4^8*t^7.48 + (g1^2*g2^8*g3^2*t^7.49)/g4^2 + (g2^8*g3^4*t^7.49)/(g1^2*g4^2) + 2*g1^3*g2^5*g3*g4^3*t^7.49 + (2*g2^5*g3^3*g4^3*t^7.49)/g1 + g1^4*g2^2*g4^8*t^7.49 + (g1^5*g3*g4^9*t^7.49)/g2 + (g1*g3^3*g4^9*t^7.49)/g2 + (g1^7*g2^5*g3*t^7.5)/g4 + (2*g1^3*g2^5*g3^3*t^7.5)/g4 + (g2^5*g3^5*t^7.5)/(g1*g4) + g1^8*g2^2*g4^4*t^7.5 + 2*g1^4*g2^2*g3^2*g4^4*t^7.5 + 2*g2^2*g3^4*g4^4*t^7.5 + g1^8*g2^2*g3^2*t^7.51 + g1^4*g2^2*g3^4*t^7.51 + g2^2*g3^6*t^7.51 + (g1^5*g3^3*g4^5*t^7.51)/g2 + (g1*g3^5*g4^5*t^7.51)/g2 + (g1^5*g3^5*g4*t^7.52)/g2 + (g2^5*g4*t^7.6)/(g1^11*g3) + (g2^2*g4^2*t^7.61)/g1^10 + (2*g2^2*g4^2*t^7.61)/(g1^6*g3^2) + (g2^5*t^7.62)/(g1^7*g3*g4^3) + (g2^5*g3*t^7.62)/(g1^11*g4^3) + (g4^3*t^7.62)/(g1*g2*g3^3) + (g2^2*t^7.63)/(g1^6*g4^2) + (g1^4*g4^4*t^7.63)/(g2^4*g3^4) - (g2^2*t^7.64)/(g1^2*g4^6) - t^7.64/(g1*g2*g3*g4) - (g3*t^7.64)/(g1^5*g2*g4) - t^7.65/g2^4 - (g1^3*t^7.65)/(g2*g3*g4^5) - (g3*t^7.65)/(g1*g2*g4^5) + g2^4*g4^8*t^7.88 + (g2^10*g3^2*t^7.89)/(g1^2*g4^2) + (g2^7*g3*g4^3*t^7.89)/g1 + (g1^3*g2^7*g3*t^7.9)/g4 + g1^4*g2^4*g4^4*t^7.9 + g2^4*g3^2*g4^4*t^7.9 + (g1^2*g3^2*g4^10*t^7.9)/g2^2 + g1^8*g2^4*t^7.91 + g2^4*g3^4*t^7.91 + g1*g2*g3^3*g4^5*t^7.91 + (g1^2*g3^4*g4^6*t^7.91)/g2^2 - g1^9*g2*g3*g4*t^7.92 + (g1^2*g3^6*g4^2*t^7.93)/g2^2 + (g2^4*g4^2*t^8.01)/(g1^10*g3^2) + (g2^7*t^8.02)/(g1^11*g3*g4^3) + (g2^4*t^8.03)/(g1^6*g3^2*g4^2) - (g4^4*t^8.03)/(g1^4*g2^2*g3^2) - t^8.04/(g1^4*g2^2) - (5*t^8.04)/(g2^2*g3^2) - (g2^4*t^8.04)/(g1^6*g4^6) - (5*g2*t^8.04)/(g1^5*g3*g4) - (2*g2*t^8.05)/(g1*g3*g4^5) - (g2*g3*t^8.05)/(g1^5*g4^5) - (g1^5*g4*t^8.05)/(g2^5*g3^3) - t^8.06/(g2^2*g4^4) - (g1^4*t^8.06)/(g2^2*g3^2*g4^4) + (g2^4*t^8.14)/(g1^20*g3^4*g4^4) + (g2*t^8.15)/(g1^15*g3^5*g4^3) + t^8.16/(g1^10*g2^2*g3^6*g4^2) + t^8.17/(g1^5*g2^5*g3^7*g4) + t^8.18/(g2^8*g3^8) - g1*g2^3*g3^3*g4*t^8.32 - g1^6*g3^2*g4^2*t^8.33 - (g2^3*t^8.44)/(g1^5*g3^3*g4) + (g4^5*t^8.44)/(g1^3*g2^3*g3^3) + (g1*g4*t^8.45)/(g2^3*g3^3) + t^8.46/(g1^4*g4^4) + t^8.46/(g3^2*g4^4) + t^8.47/g4^8 + (g1^5*t^8.47)/(g2^3*g3^3*g4^3) + (g1*t^8.47)/(g2^3*g3*g4^3) + (g3*t^8.47)/(g1^3*g2^3*g4^3) + t^8.58/(g1^9*g2^3*g3^5*g4^5) + t^8.59/(g1^4*g2^6*g3^6*g4^4) + (g2^5*g3*g4^5*t^8.7)/g1^3 + (g2^2*g4^10*t^8.7)/g1^2 + (g2^8*g3^2*t^8.71)/g1^4 + 2*g1^2*g2^2*g4^6*t^8.71 + (2*g2^2*g3^2*g4^6*t^8.71)/g1^2 + (g1^3*g4^11*t^8.71)/(g2*g3) + (g3*g4^11*t^8.71)/(g1*g2) + (g2^8*g3^2*t^8.72)/g4^4 + (g2^8*g3^4*t^8.72)/(g1^4*g4^4) + g1*g2^5*g3*g4*t^8.72 + (2*g2^5*g3^3*g4*t^8.72)/g1^3 + (g1^7*g4^7*t^8.72)/(g2*g3) + (2*g1^3*g3*g4^7*t^8.72)/g2 + (g3^3*g4^7*t^8.72)/(g1*g2) + (g1^5*g2^5*g3*t^8.73)/g4^3 + (2*g1*g2^5*g3^3*t^8.73)/g4^3 + (g2^5*g3^5*t^8.73)/(g1^3*g4^3) + 2*g1^6*g2^2*g4^2*t^8.73 + 3*g1^2*g2^2*g3^2*g4^2*t^8.73 + (2*g2^2*g3^4*g4^2*t^8.73)/g1^2 + (g3^5*g4^3*t^8.73)/(g1*g2) + (g1^10*g2^2*t^8.74)/g4^2 + (2*g1^6*g2^2*g3^2*t^8.74)/g4^2 + (2*g1^2*g2^2*g3^4*t^8.74)/g4^2 + (g2^2*g3^6*t^8.74)/(g1^2*g4^2) + (g1^11*g4^3*t^8.74)/(g2*g3) + (2*g1^7*g3*g4^3*t^8.74)/g2 + (g1^3*g3^3*g4^3*t^8.74)/g2 + (g1^11*g3*t^8.75)/(g2*g4) + (g1^7*g3^3*t^8.75)/(g2*g4) + (g1^3*g3^5*t^8.75)/(g2*g4) + (g2^2*t^8.84)/(g1^8*g3^2) + (2*g4*t^8.85)/(g1^3*g2*g3^3) + (g4*t^8.85)/(g1^7*g2*g3) + (g2^2*t^8.86)/(g1^8*g4^4) + (g2^2*t^8.86)/(g1^4*g3^2*g4^4) + (g1^2*g4^2*t^8.86)/(g2^4*g3^4) + (g4^2*t^8.86)/(g1^2*g2^4*g3^2) + (g1*t^8.87)/(g2*g3^3*g4^3) + (2*t^8.87)/(g1^3*g2*g3*g4^3) + (g1^2*t^8.87)/(g2^4*g3^2*g4^2) - t^4.64/(g1*g2*g3*g4*y) - t^6.67/(g1^6*g3^2*g4^2*y) - t^6.68/(g1*g2^3*g3^3*g4*y) + t^7.08/(g1^5*g2*g3^3*g4*y) + (g1*g2*g3*g4*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g4^3*y) + t^8.31/(g1^7*g2*g3^3*g4^3*y) + t^8.32/(g1^2*g2^4*g3^4*g4^2*y) + (g2^4*g4^2*t^8.57)/(g1^6*y) + (g2^4*t^8.58)/(g1^2*g4^2*y) + (g2^4*g3^2*t^8.58)/(g1^6*g4^2*y) + (2*g2*g4^3*t^8.58)/(g1*g3*y) + (g2*g3*g4^3*t^8.58)/(g1^5*y) + (g1^3*g2*t^8.59)/(g3*g4*y) + (3*g2*g3*t^8.59)/(g1*g4*y) + (g4^4*t^8.59)/(g2^2*y) + (g1^4*g4^4*t^8.59)/(g2^2*g3^2*y) + (2*g1^4*t^8.6)/(g2^2*y) - (g2*t^8.71)/(g1^11*g3^3*g4^3*y) - t^8.72/(g1^6*g2^2*g3^4*g4^2*y) - t^8.73/(g1*g2^5*g3^5*g4*y) + (g2^6*t^8.98)/(g1^6*g4^2*y) + (g2^3*g4^3*t^8.98)/(g1^5*g3*y) + (2*g2^3*t^8.99)/(g1*g3*g4*y) + (g2^3*g3*t^8.99)/(g1^5*g4*y) + (g4^4*t^8.99)/(g1^4*y) + (g4^4*t^8.99)/(g3^2*y) - (t^4.64*y)/(g1*g2*g3*g4) - (t^6.67*y)/(g1^6*g3^2*g4^2) - (t^6.68*y)/(g1*g2^3*g3^3*g4) + (t^7.08*y)/(g1^5*g2*g3^3*g4) + g1*g2*g3*g4*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g4^3) + (t^8.31*y)/(g1^7*g2*g3^3*g4^3) + (t^8.32*y)/(g1^2*g2^4*g3^4*g4^2) + (g2^4*g4^2*t^8.57*y)/g1^6 + (g2^4*t^8.58*y)/(g1^2*g4^2) + (g2^4*g3^2*t^8.58*y)/(g1^6*g4^2) + (2*g2*g4^3*t^8.58*y)/(g1*g3) + (g2*g3*g4^3*t^8.58*y)/g1^5 + (g1^3*g2*t^8.59*y)/(g3*g4) + (3*g2*g3*t^8.59*y)/(g1*g4) + (g4^4*t^8.59*y)/g2^2 + (g1^4*g4^4*t^8.59*y)/(g2^2*g3^2) + (2*g1^4*t^8.6*y)/g2^2 - (g2*t^8.71*y)/(g1^11*g3^3*g4^3) - (t^8.72*y)/(g1^6*g2^2*g3^4*g4^2) - (t^8.73*y)/(g1*g2^5*g3^5*g4) + (g2^6*t^8.98*y)/(g1^6*g4^2) + (g2^3*g4^3*t^8.98*y)/(g1^5*g3) + (2*g2^3*t^8.99*y)/(g1*g3*g4) + (g2^3*g3*t^8.99*y)/(g1^5*g4) + (g4^4*t^8.99*y)/g1^4 + (g4^4*t^8.99*y)/g3^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55668 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_1\tilde{q}_1$ 0.8849 1.0962 0.8072 [X:[], M:[0.6758, 0.6758], q:[0.7322, 0.5919, 0.5919], qb:[0.7212, 0.5883, 0.5883], phi:[0.5465]] 2*t^2.03 + t^3.28 + t^3.53 + 4*t^3.54 + t^3.55 + 2*t^3.93 + 2*t^3.94 + 2*t^3.96 + 3*t^4.05 + t^4.36 + 3*t^5.17 + 4*t^5.18 + 3*t^5.19 + 2*t^5.31 + 2*t^5.56 + 8*t^5.57 + 2*t^5.58 + 4*t^5.96 + 4*t^5.97 - 9*t^6. - t^4.64/y - t^4.64*y detail