Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55712 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ 0.9018 1.1232 0.8029 [X:[], M:[0.7687, 0.6779, 0.6779], q:[0.6157, 0.6157, 0.7333], qb:[0.5887, 0.7333, 0.5798], phi:[0.5334]] [X:[], M:[[0, -3, 1, -3, 1], [0, -1, -1, 0, 0], [0, 0, -1, -1, 0]], q:[[-1, 3, -1, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, -1, 0, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ M_1M_3$, $ M_1M_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_1$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_3q_1\tilde{q}_3$, $ M_2q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$ $\phi_1\tilde{q}_2^2$ -7 2*t^2.03 + t^2.31 + t^3.2 + t^3.51 + 2*t^3.59 + 2*t^3.61 + 2*t^3.94 + 4*t^4.05 + 3*t^4.07 + 2*t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.11 + t^5.13 + 2*t^5.19 + 2*t^5.21 + 2*t^5.23 + 3*t^5.29 + t^5.51 + 2*t^5.54 + 4*t^5.62 + 4*t^5.65 + t^5.81 + 3*t^5.97 - 7*t^6. - t^6.03 + 6*t^6.08 + 4*t^6.1 - 2*t^6.11 + 2*t^6.25 + 3*t^6.37 + t^6.4 - 2*t^6.46 + 2*t^6.65 + 2*t^6.71 + 2*t^6.79 + 2*t^6.81 + t^6.92 + t^7.01 + 2*t^7.09 + 2*t^7.11 + 2*t^7.12 + 2*t^7.14 + 3*t^7.17 + 3*t^7.2 + 4*t^7.22 + 3*t^7.23 + 4*t^7.25 + 3*t^7.27 + 6*t^7.33 + t^7.39 + t^7.41 + t^7.44 + 2*t^7.45 + 4*t^7.53 + 2*t^7.54 + 4*t^7.55 + 2*t^7.57 - 2*t^7.6 + 5*t^7.63 + 6*t^7.65 + 6*t^7.66 + 4*t^7.68 - 2*t^7.71 + t^7.81 + 2*t^7.85 + 2*t^7.88 - t^7.91 - t^7.93 + 6*t^7.99 + 2*t^8.01 - 14*t^8.03 - 2*t^8.06 + 6*t^8.09 + 8*t^8.11 + t^8.12 + t^8.14 + 4*t^8.28 - 3*t^8.31 - 2*t^8.37 + 2*t^8.39 + 6*t^8.41 + 2*t^8.43 + t^8.52 + 2*t^8.55 + t^8.58 + t^8.61 + t^8.64 + 2*t^8.67 + 3*t^8.68 + 4*t^8.69 + t^8.71 + 4*t^8.72 + 2*t^8.74 + 2*t^8.75 + t^8.77 + 4*t^8.8 + 4*t^8.82 + 3*t^8.83 + 4*t^8.85 + 4*t^8.88 + 4*t^8.91 + 2*t^8.95 - t^4.6/y - (2*t^6.63)/y - t^6.91/y + t^7.07/y + (2*t^7.34)/y + t^7.4/y - t^7.8/y + (2*t^8.23)/y + t^8.29/y + t^8.51/y + (2*t^8.54)/y + (2*t^8.57)/y + (4*t^8.62)/y + (4*t^8.65)/y - (3*t^8.67)/y + t^8.81/y + (2*t^8.89)/y + (2*t^8.92)/y - (2*t^8.94)/y + (4*t^8.97)/y - t^4.6*y - 2*t^6.63*y - t^6.91*y + t^7.07*y + 2*t^7.34*y + t^7.4*y - t^7.8*y + 2*t^8.23*y + t^8.29*y + t^8.51*y + 2*t^8.54*y + 2*t^8.57*y + 4*t^8.62*y + 4*t^8.65*y - 3*t^8.67*y + t^8.81*y + 2*t^8.89*y + 2*t^8.92*y - 2*t^8.94*y + 4*t^8.97*y t^2.03/(g2*g3) + t^2.03/(g3*g4) + (g3*g5*t^2.31)/(g2^3*g4^3) + t^3.2/(g2^2*g4^2) + g3*g5*t^3.51 + (g2^3*g4^3*t^3.59)/(g1*g3) + g1*g5*t^3.59 + g1*g3*t^3.61 + (g2^3*g4^3*t^3.61)/(g1*g5) + g2*g5*t^3.94 + g4*g5*t^3.94 + g1*g2*t^4.05 + g1*g4*t^4.05 + (g2^4*g4^3*t^4.05)/(g1*g3*g5) + (g2^3*g4^4*t^4.05)/(g1*g3*g5) + t^4.07/(g2^2*g3^2) + t^4.07/(g3^2*g4^2) + t^4.07/(g2*g3^2*g4) + (g5*t^4.34)/(g2^3*g4^4) + (g5*t^4.34)/(g2^4*g4^3) + g2*g4*t^4.4 + (g3^2*g5^2*t^4.61)/(g2^6*g4^6) + (g5^2*t^5.08)/(g2*g4) + (g3*g5*t^5.11)/(g2*g4) + (g3^2*t^5.13)/(g2*g4) + (g2^2*g4^2*t^5.19)/(g1*g3) + (g1*g5*t^5.19)/(g2*g4) + (g1*g3*t^5.21)/(g2*g4) + (g2^2*g4^2*t^5.21)/(g1*g5) + t^5.23/(g2^2*g3*g4^3) + t^5.23/(g2^3*g3*g4^2) + (g1^2*t^5.29)/(g2*g4) + (g2^5*g4^5*t^5.29)/(g1^2*g3^2*g5^2) + (g2^2*g4^2*t^5.29)/(g3*g5) + (g3*g5*t^5.51)/(g2^5*g4^5) + (g5*t^5.54)/g2 + (g5*t^5.54)/g4 + (g2^3*g4^2*t^5.62)/(g1*g3^2) + (g2^2*g4^3*t^5.62)/(g1*g3^2) + (g1*g5*t^5.62)/(g2*g3) + (g1*g5*t^5.62)/(g3*g4) + (g1*t^5.65)/g2 + (g1*t^5.65)/g4 + (g2^3*g4^2*t^5.65)/(g1*g3*g5) + (g2^2*g4^3*t^5.65)/(g1*g3*g5) + (g3^2*g5^2*t^5.81)/(g2^3*g4^3) + (g5*t^5.97)/g3 + (g2*g5*t^5.97)/(g3*g4) + (g4*g5*t^5.97)/(g2*g3) - 5*t^6. - (g2^3*g4^3*t^6.)/(g1^2*g3*g5) - (g1^2*g3*g5*t^6.)/(g2^3*g4^3) - (g3*t^6.03)/g5 + (g1*t^6.08)/g3 + (g1*g2*t^6.08)/(g3*g4) + (g1*g4*t^6.08)/(g2*g3) + (g2^4*g4^2*t^6.08)/(g1*g3^2*g5) + (g2^3*g4^3*t^6.08)/(g1*g3^2*g5) + (g2^2*g4^4*t^6.08)/(g1*g3^2*g5) + t^6.1/(g2^3*g3^3) + t^6.1/(g3^3*g4^3) + t^6.1/(g2*g3^3*g4^2) + t^6.1/(g2^2*g3^3*g4) - (g2^3*g4^3*t^6.11)/(g1*g3*g5^2) - (g1*t^6.11)/g5 + (g3*g5^2*t^6.25)/(g2^2*g4^3) + (g3*g5^2*t^6.25)/(g2^3*g4^2) + (g5*t^6.37)/(g2^3*g3*g4^5) + (g5*t^6.37)/(g2^4*g3*g4^4) + (g5*t^6.37)/(g2^5*g3*g4^3) + t^6.4/(g2^4*g4^4) - (g2*t^6.46)/g5 - (g4*t^6.46)/g5 + (g3*g5^2*t^6.65)/(g2^6*g4^7) + (g3*g5^2*t^6.65)/(g2^7*g4^6) + (2*g3*g5*t^6.71)/(g2^2*g4^2) + (g2*g4*t^6.79)/(g1*g3) + (g1*g5*t^6.79)/(g2^2*g4^2) + (g1*g3*t^6.81)/(g2^2*g4^2) + (g2*g4*t^6.81)/(g1*g5) + (g3^3*g5^3*t^6.92)/(g2^9*g4^9) + g3^2*g5^2*t^7.01 + (g2^3*g4^3*g5*t^7.09)/g1 + g1*g3*g5^2*t^7.09 + (g5^2*t^7.11)/(g2*g3*g4^2) + (g5^2*t^7.11)/(g2^2*g3*g4) + (g2^3*g3*g4^3*t^7.12)/g1 + g1*g3^2*g5*t^7.12 + (g5*t^7.14)/(g2*g4^2) + (g5*t^7.14)/(g2^2*g4) + (g2^6*g4^6*t^7.17)/(g1^2*g3^2) + (g2^3*g4^3*g5*t^7.17)/g3 + g1^2*g5^2*t^7.17 + g2^3*g4^3*t^7.2 + (g2^6*g4^6*t^7.2)/(g1^2*g3*g5) + g1^2*g3*g5*t^7.2 + (g2^2*g4*t^7.22)/(g1*g3^2) + (g2*g4^2*t^7.22)/(g1*g3^2) + (g1*g5*t^7.22)/(g2*g3*g4^2) + (g1*g5*t^7.22)/(g2^2*g3*g4) + g1^2*g3^2*t^7.23 + (g2^6*g4^6*t^7.23)/(g1^2*g5^2) + (g2^3*g3*g4^3*t^7.23)/g5 + (g1*t^7.25)/(g2*g4^2) + (g1*t^7.25)/(g2^2*g4) + (g2^2*g4*t^7.25)/(g1*g3*g5) + (g2*g4^2*t^7.25)/(g1*g3*g5) + t^7.27/(g2^2*g3^2*g4^4) + t^7.27/(g2^3*g3^2*g4^3) + t^7.27/(g2^4*g3^2*g4^2) + (g1^2*t^7.33)/(g2*g3*g4^2) + (g1^2*t^7.33)/(g2^2*g3*g4) + (g2^5*g4^4*t^7.33)/(g1^2*g3^3*g5^2) + (g2^4*g4^5*t^7.33)/(g1^2*g3^3*g5^2) + (g2^2*g4*t^7.33)/(g3^2*g5) + (g2*g4^2*t^7.33)/(g3^2*g5) + (g3*g5^3*t^7.39)/(g2^4*g4^4) + (g3^2*g5^2*t^7.41)/(g2^4*g4^4) + (g3^3*g5*t^7.44)/(g2^4*g4^4) + g2*g3*g5^2*t^7.45 + g3*g4*g5^2*t^7.45 + (g2^4*g4^3*g5*t^7.53)/(g1*g3) + (g2^3*g4^4*g5*t^7.53)/(g1*g3) + g1*g2*g5^2*t^7.53 + g1*g4*g5^2*t^7.53 + (g5*t^7.54)/(g2^5*g4^6) + (g5*t^7.54)/(g2^6*g4^5) + (g2^4*g4^3*t^7.55)/g1 + (g2^3*g4^4*t^7.55)/g1 + g1*g2*g3*g5*t^7.55 + g1*g3*g4*g5*t^7.55 + (g5*t^7.57)/(g2^2*g3) + (g5*t^7.57)/(g3*g4^2) - (2*t^7.6)/(g2*g4) + (g2^4*g4^3*t^7.63)/g3 + (g2^3*g4^4*t^7.63)/g3 - (g3*t^7.63)/(g2*g4*g5) + (g2^7*g4^6*t^7.63)/(g1^2*g3^2*g5) + (g2^6*g4^7*t^7.63)/(g1^2*g3^2*g5) + g1^2*g2*g5*t^7.63 + g1^2*g4*g5*t^7.63 + (g2^3*g4*t^7.65)/(g1*g3^3) + (g2^2*g4^2*t^7.65)/(g1*g3^3) + (g2*g4^3*t^7.65)/(g1*g3^3) + (g1*g5*t^7.65)/(g2^2*g3^2) + (g1*g5*t^7.65)/(g3^2*g4^2) + (g1*g5*t^7.65)/(g2*g3^2*g4) + g1^2*g2*g3*t^7.66 + g1^2*g3*g4*t^7.66 + (g2^7*g4^6*t^7.66)/(g1^2*g3*g5^2) + (g2^6*g4^7*t^7.66)/(g1^2*g3*g5^2) + (g2^4*g4^3*t^7.66)/g5 + (g2^3*g4^4*t^7.66)/g5 + (g1*t^7.68)/(g2^2*g3) + (g1*t^7.68)/(g3*g4^2) + (g2^3*g4*t^7.68)/(g1*g3^2*g5) + (g2*g4^3*t^7.68)/(g1*g3^2*g5) - (g2^2*g4^2*t^7.71)/(g1*g3*g5^2) - (g1*t^7.71)/(g2*g4*g5) + (g3^2*g5^2*t^7.81)/(g2^8*g4^8) + (g3*g5^2*t^7.85)/(g2^3*g4^4) + (g3*g5^2*t^7.85)/(g2^4*g4^3) + g2^2*g5^2*t^7.88 + g4^2*g5^2*t^7.88 - g2*g3*g4*g5*t^7.91 - g2*g3^2*g4*t^7.93 + (g2^5*g4^3*t^7.99)/(g1*g3) + (g2^4*g4^4*t^7.99)/(g1*g3) + (g2^3*g4^5*t^7.99)/(g1*g3) + g1*g2^2*g5*t^7.99 + g1*g2*g4*g5*t^7.99 + g1*g4^2*g5*t^7.99 - g1*g2*g3*g4*t^8.01 - (g2^4*g4^4*t^8.01)/(g1*g5) + (g5*t^8.01)/(g2*g3^2) + (g2*g5*t^8.01)/(g3^2*g4^2) + (g5*t^8.01)/(g3^2*g4) + (g4*g5*t^8.01)/(g2^2*g3^2) - (5*t^8.03)/(g2*g3) - (5*t^8.03)/(g3*g4) - (g2^3*g4^2*t^8.03)/(g1^2*g3^2*g5) - (g2^2*g4^3*t^8.03)/(g1^2*g3^2*g5) - (g1^2*g5*t^8.03)/(g2^3*g4^4) - (g1^2*g5*t^8.03)/(g2^4*g4^3) - t^8.06/(g2*g5) - t^8.06/(g4*g5) + g1^2*g2^2*t^8.09 + g1^2*g4^2*t^8.09 + (g2^8*g4^6*t^8.09)/(g1^2*g3^2*g5^2) + (g2^6*g4^8*t^8.09)/(g1^2*g3^2*g5^2) + (g2^5*g4^3*t^8.09)/(g3*g5) + (g2^3*g4^5*t^8.09)/(g3*g5) + (g1*t^8.11)/(g2*g3^2) + (g1*g2*t^8.11)/(g3^2*g4^2) + (g1*t^8.11)/(g3^2*g4) + (g1*g4*t^8.11)/(g2^2*g3^2) + (g2^4*g4*t^8.11)/(g1*g3^3*g5) + (g2^3*g4^2*t^8.11)/(g1*g3^3*g5) + (g2^2*g4^3*t^8.11)/(g1*g3^3*g5) + (g2*g4^4*t^8.11)/(g1*g3^3*g5) + (g3^3*g5^3*t^8.12)/(g2^6*g4^6) + t^8.14/(g2^4*g3^4) + t^8.14/(g3^4*g4^4) + t^8.14/(g2*g3^4*g4^3) + t^8.14/(g2^2*g3^4*g4^2) + t^8.14/(g2^3*g3^4*g4) - (g2^3*g4^2*t^8.14)/(g1*g3^2*g5^2) - (g2^2*g4^3*t^8.14)/(g1*g3^2*g5^2) - (g1*t^8.14)/(g2*g3*g5) - (g1*t^8.14)/(g3*g4*g5) + (g5^2*t^8.28)/(g2^2*g4^4) + (2*g5^2*t^8.28)/(g2^3*g4^3) + (g5^2*t^8.28)/(g2^4*g4^2) - (3*g3*g5*t^8.31)/(g2^3*g4^3) - g2^2*g3*g4*t^8.37 - g2*g3*g4^2*t^8.37 + t^8.39/(g1*g3) + (g1*g5*t^8.39)/(g2^3*g4^3) + (g1*g3*t^8.41)/(g2^3*g4^3) + t^8.41/(g1*g5) + (g5*t^8.41)/(g2^3*g3^2*g4^6) + (g5*t^8.41)/(g2^4*g3^2*g4^5) + (g5*t^8.41)/(g2^5*g3^2*g4^4) + (g5*t^8.41)/(g2^6*g3^2*g4^3) + t^8.43/(g2^4*g3*g4^5) + t^8.43/(g2^5*g3*g4^4) + (g1^2*t^8.49)/(g2^3*g4^3) + (g2^3*g4^3*t^8.49)/(g1^2*g3^2*g5^2) - (g2*t^8.49)/(g3*g4*g5) - (g4*t^8.49)/(g2*g3*g5) + t^8.52/g5^2 + (g3^2*g5^3*t^8.55)/(g2^5*g4^6) + (g3^2*g5^3*t^8.55)/(g2^6*g4^5) + (g3*g5^3*t^8.58)/(g2*g4) + (g3^2*g5^2*t^8.61)/(g2*g4) + (g3^3*g5*t^8.64)/(g2*g4) + (g2^2*g4^2*g5^2*t^8.67)/(g1*g3) + (g1*g5^3*t^8.67)/(g2*g4) + (g5^2*t^8.68)/(g2^6*g4^8) + (g5^2*t^8.68)/(g2^7*g4^7) + (g5^2*t^8.68)/(g2^8*g4^6) + (2*g2^2*g4^2*g5*t^8.69)/g1 + (2*g1*g3*g5^2*t^8.69)/(g2*g4) + (g3*g5*t^8.71)/(g2^7*g4^7) + (2*g2^2*g3*g4^2*t^8.72)/g1 + (2*g1*g3^2*g5*t^8.72)/(g2*g4) + (g5*t^8.74)/(g2^2*g4^3) + (g5*t^8.74)/(g2^3*g4^2) + (g1*g3^3*t^8.75)/(g2*g4) + (g2^2*g3^2*g4^2*t^8.75)/(g1*g5) - (g3*t^8.77)/(g2^2*g4^3) - (g3*t^8.77)/(g2^3*g4^2) + (g2^5*g4^5*t^8.77)/(g1^2*g3^2) + (g2^2*g4^2*g5*t^8.77)/g3 + (g1^2*g5^2*t^8.77)/(g2*g4) - g2^3*g4*t^8.8 + 2*g2^2*g4^2*t^8.8 - g2*g4^3*t^8.8 + (2*g2^5*g4^5*t^8.8)/(g1^2*g3*g5) + (2*g1^2*g3*g5*t^8.8)/(g2*g4) + (g2*t^8.82)/(g1*g3^2) + (g4*t^8.82)/(g1*g3^2) + (g1*g5*t^8.82)/(g2^2*g3*g4^3) + (g1*g5*t^8.82)/(g2^3*g3*g4^2) + (g1^2*g3^2*t^8.83)/(g2*g4) + (g2^5*g4^5*t^8.83)/(g1^2*g5^2) + (g2^2*g3*g4^2*t^8.83)/g5 + (g1*t^8.85)/(g2^2*g4^3) + (g1*t^8.85)/(g2^3*g4^2) + (g2*t^8.85)/(g1*g3*g5) + (g4*t^8.85)/(g1*g3*g5) + (g1*g2^2*g4^2*t^8.88)/g3 + (g2^8*g4^8*t^8.88)/(g1^3*g3^3*g5^2) + (g2^5*g4^5*t^8.88)/(g1*g3^2*g5) + (g1^3*g5*t^8.88)/(g2*g4) + (g1^3*g3*t^8.91)/(g2*g4) + (g2^8*g4^8*t^8.91)/(g1^3*g3^2*g5^3) + (g2^5*g4^5*t^8.91)/(g1*g3*g5^2) + (g1*g2^2*g4^2*t^8.91)/g5 + (g3^2*g5^3*t^8.95)/(g2^9*g4^10) + (g3^2*g5^3*t^8.95)/(g2^10*g4^9) - t^4.6/(g2*g4*y) - t^6.63/(g2*g3*g4^2*y) - t^6.63/(g2^2*g3*g4*y) - (g3*g5*t^6.91)/(g2^4*g4^4*y) + t^7.07/(g2*g3^2*g4*y) + (g5*t^7.34)/(g2^3*g4^4*y) + (g5*t^7.34)/(g2^4*g4^3*y) + (g2*g4*t^7.4)/y - t^7.8/(g2^3*g4^3*y) + t^8.23/(g2^2*g3*g4^3*y) + t^8.23/(g2^3*g3*g4^2*y) + (g2^2*g4^2*t^8.29)/(g3*g5*y) + (g3*g5*t^8.51)/(g2^5*g4^5*y) + (g5*t^8.54)/(g2*y) + (g5*t^8.54)/(g4*y) + (g3*t^8.57)/(g2*y) + (g3*t^8.57)/(g4*y) + (g2^3*g4^2*t^8.62)/(g1*g3^2*y) + (g2^2*g4^3*t^8.62)/(g1*g3^2*y) + (g1*g5*t^8.62)/(g2*g3*y) + (g1*g5*t^8.62)/(g3*g4*y) + (g1*t^8.65)/(g2*y) + (g1*t^8.65)/(g4*y) + (g2^3*g4^2*t^8.65)/(g1*g3*g5*y) + (g2^2*g4^3*t^8.65)/(g1*g3*g5*y) - t^8.67/(g2*g3^2*g4^3*y) - t^8.67/(g2^2*g3^2*g4^2*y) - t^8.67/(g2^3*g3^2*g4*y) + (g3^2*g5^2*t^8.81)/(g2^3*g4^3*y) + (g5*t^8.89)/(g1*y) + (g1*g3*g5^2*t^8.89)/(g2^3*g4^3*y) + (g3*t^8.92)/(g1*y) + (g1*g3^2*g5*t^8.92)/(g2^3*g4^3*y) - (g5*t^8.94)/(g2^4*g4^5*y) - (g5*t^8.94)/(g2^5*g4^4*y) + (2*g5*t^8.97)/(g3*y) + (g2*g5*t^8.97)/(g3*g4*y) + (g4*g5*t^8.97)/(g2*g3*y) - (t^4.6*y)/(g2*g4) - (t^6.63*y)/(g2*g3*g4^2) - (t^6.63*y)/(g2^2*g3*g4) - (g3*g5*t^6.91*y)/(g2^4*g4^4) + (t^7.07*y)/(g2*g3^2*g4) + (g5*t^7.34*y)/(g2^3*g4^4) + (g5*t^7.34*y)/(g2^4*g4^3) + g2*g4*t^7.4*y - (t^7.8*y)/(g2^3*g4^3) + (t^8.23*y)/(g2^2*g3*g4^3) + (t^8.23*y)/(g2^3*g3*g4^2) + (g2^2*g4^2*t^8.29*y)/(g3*g5) + (g3*g5*t^8.51*y)/(g2^5*g4^5) + (g5*t^8.54*y)/g2 + (g5*t^8.54*y)/g4 + (g3*t^8.57*y)/g2 + (g3*t^8.57*y)/g4 + (g2^3*g4^2*t^8.62*y)/(g1*g3^2) + (g2^2*g4^3*t^8.62*y)/(g1*g3^2) + (g1*g5*t^8.62*y)/(g2*g3) + (g1*g5*t^8.62*y)/(g3*g4) + (g1*t^8.65*y)/g2 + (g1*t^8.65*y)/g4 + (g2^3*g4^2*t^8.65*y)/(g1*g3*g5) + (g2^2*g4^3*t^8.65*y)/(g1*g3*g5) - (t^8.67*y)/(g2*g3^2*g4^3) - (t^8.67*y)/(g2^2*g3^2*g4^2) - (t^8.67*y)/(g2^3*g3^2*g4) + (g3^2*g5^2*t^8.81*y)/(g2^3*g4^3) + (g5*t^8.89*y)/g1 + (g1*g3*g5^2*t^8.89*y)/(g2^3*g4^3) + (g3*t^8.92*y)/g1 + (g1*g3^2*g5*t^8.92*y)/(g2^3*g4^3) - (g5*t^8.94*y)/(g2^4*g4^5) - (g5*t^8.94*y)/(g2^5*g4^4) + (2*g5*t^8.97*y)/g3 + (g2*g5*t^8.97*y)/(g3*g4) + (g4*g5*t^8.97*y)/(g2*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55601 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ 0.881 1.0826 0.8138 [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y detail