Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55816 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ M_3q_3\tilde{q}_3$ 0.9018 1.1234 0.8027 [X:[], M:[0.7686, 0.6768, 0.6768], q:[0.6157, 0.6157, 0.7394], qb:[0.5839, 0.727, 0.5839], phi:[0.5336]] [X:[], M:[[0, -3, 1, -3, 1], [0, -1, -1, 0, 0], [0, -1, 0, 0, -1]], q:[[-1, 3, -1, 3, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, -1, 0, -1, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_3$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_2\tilde{q}_2$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ q_2q_3$, $ M_1M_3$, $ M_1M_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_3$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_3q_2\tilde{q}_3$, $ M_2q_1\tilde{q}_3$, $ M_3q_1\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$ . -9 2*t^2.03 + t^2.31 + t^3.2 + t^3.5 + 4*t^3.6 + 2*t^3.93 + 2*t^4.03 + 3*t^4.06 + 2*t^4.07 + 2*t^4.34 + t^4.4 + t^4.61 + 3*t^5.1 + 4*t^5.2 + 2*t^5.23 + 3*t^5.3 + t^5.51 + 2*t^5.53 + 8*t^5.63 + t^5.81 + 4*t^5.96 - 9*t^6. + 4*t^6.06 + 4*t^6.09 + 2*t^6.24 + 3*t^6.37 + t^6.4 - 2*t^6.47 + 2*t^6.64 + 2*t^6.7 + 4*t^6.8 + t^6.92 + t^7.01 + 4*t^7.1 + 6*t^7.13 - 2*t^7.17 + 9*t^7.2 + 8*t^7.23 + 3*t^7.26 + 6*t^7.33 + 3*t^7.41 + 2*t^7.44 + 8*t^7.53 + 2*t^7.54 + 3*t^7.56 - 4*t^7.6 + 6*t^7.63 + 18*t^7.66 - 4*t^7.7 + t^7.81 + 2*t^7.84 + 3*t^7.86 - 3*t^7.9 + 4*t^7.96 + 6*t^7.99 - 18*t^8.03 + 3*t^8.06 + 6*t^8.09 + t^8.11 + 5*t^8.12 + t^8.13 + 4*t^8.27 - 3*t^8.31 - 2*t^8.37 + 8*t^8.4 + 2*t^8.43 - t^8.46 + 2*t^8.5 + 2*t^8.54 + 3*t^8.61 + 3*t^8.67 + 12*t^8.7 + t^8.71 + 2*t^8.74 - t^8.76 - 2*t^8.77 + 12*t^8.8 + 8*t^8.83 - t^8.84 + 8*t^8.89 + 2*t^8.95 - t^4.6/y - (2*t^6.63)/y - t^6.91/y + t^7.06/y + (2*t^7.34)/y + t^7.4/y - t^7.8/y + (2*t^8.23)/y + t^8.3/y + t^8.51/y + (2*t^8.53)/y + (2*t^8.57)/y + (8*t^8.63)/y - (3*t^8.66)/y + t^8.81/y + (4*t^8.9)/y - (2*t^8.94)/y + (4*t^8.96)/y - t^4.6*y - 2*t^6.63*y - t^6.91*y + t^7.06*y + 2*t^7.34*y + t^7.4*y - t^7.8*y + 2*t^8.23*y + t^8.3*y + t^8.51*y + 2*t^8.53*y + 2*t^8.57*y + 8*t^8.63*y - 3*t^8.66*y + t^8.81*y + 4*t^8.9*y - 2*t^8.94*y + 4*t^8.96*y t^2.03/(g2*g3) + t^2.03/(g2*g5) + (g3*g5*t^2.31)/(g2^3*g4^3) + t^3.2/(g2^2*g4^2) + g3*g5*t^3.5 + g1*g3*t^3.6 + (g2^3*g4^3*t^3.6)/(g1*g3) + (g2^3*g4^3*t^3.6)/(g1*g5) + g1*g5*t^3.6 + g3*g4*t^3.93 + g4*g5*t^3.93 + g1*g4*t^4.03 + (g2^3*g4^4*t^4.03)/(g1*g3*g5) + t^4.06/(g2^2*g3^2) + t^4.06/(g2^2*g5^2) + t^4.06/(g2^2*g3*g5) + g1*g2*t^4.07 + (g2^4*g4^3*t^4.07)/(g1*g3*g5) + (g3*t^4.34)/(g2^4*g4^3) + (g5*t^4.34)/(g2^4*g4^3) + g2*g4*t^4.4 + (g3^2*g5^2*t^4.61)/(g2^6*g4^6) + (g3^2*t^5.1)/(g2*g4) + (g3*g5*t^5.1)/(g2*g4) + (g5^2*t^5.1)/(g2*g4) + (g1*g3*t^5.2)/(g2*g4) + (g2^2*g4^2*t^5.2)/(g1*g3) + (g2^2*g4^2*t^5.2)/(g1*g5) + (g1*g5*t^5.2)/(g2*g4) + t^5.23/(g2^3*g3*g4^2) + t^5.23/(g2^3*g4^2*g5) + (g1^2*t^5.3)/(g2*g4) + (g2^5*g4^5*t^5.3)/(g1^2*g3^2*g5^2) + (g2^2*g4^2*t^5.3)/(g3*g5) + (g3*g5*t^5.51)/(g2^5*g4^5) + (g3*t^5.53)/g2 + (g5*t^5.53)/g2 + (2*g1*t^5.63)/g2 + (g2^2*g4^3*t^5.63)/(g1*g3^2) + (g2^2*g4^3*t^5.63)/(g1*g5^2) + (g1*g3*t^5.63)/(g2*g5) + (2*g2^2*g4^3*t^5.63)/(g1*g3*g5) + (g1*g5*t^5.63)/(g2*g3) + (g3^2*g5^2*t^5.81)/(g2^3*g4^3) + (2*g4*t^5.96)/g2 + (g3*g4*t^5.96)/(g2*g5) + (g4*g5*t^5.96)/(g2*g3) - 5*t^6. - (g3*t^6.)/g5 - (g2^3*g4^3*t^6.)/(g1^2*g3*g5) - (g5*t^6.)/g3 - (g1^2*g3*g5*t^6.)/(g2^3*g4^3) + (g1*g4*t^6.06)/(g2*g3) + (g2^2*g4^4*t^6.06)/(g1*g3*g5^2) + (g1*g4*t^6.06)/(g2*g5) + (g2^2*g4^4*t^6.06)/(g1*g3^2*g5) + t^6.09/(g2^3*g3^3) + t^6.09/(g2^3*g5^3) + t^6.09/(g2^3*g3*g5^2) + t^6.09/(g2^3*g3^2*g5) + (g3^2*g5*t^6.24)/(g2^3*g4^2) + (g3*g5^2*t^6.24)/(g2^3*g4^2) + t^6.37/(g2^5*g4^3) + (g3*t^6.37)/(g2^5*g4^3*g5) + (g5*t^6.37)/(g2^5*g3*g4^3) + t^6.4/(g2^4*g4^4) - (g2*t^6.47)/g3 - (g2*t^6.47)/g5 + (g3^2*g5*t^6.64)/(g2^7*g4^6) + (g3*g5^2*t^6.64)/(g2^7*g4^6) + (2*g3*g5*t^6.7)/(g2^2*g4^2) + (g1*g3*t^6.8)/(g2^2*g4^2) + (g2*g4*t^6.8)/(g1*g3) + (g2*g4*t^6.8)/(g1*g5) + (g1*g5*t^6.8)/(g2^2*g4^2) + (g3^3*g5^3*t^6.92)/(g2^9*g4^9) + g3^2*g5^2*t^7.01 + (g2^3*g3*g4^3*t^7.1)/g1 + g1*g3^2*g5*t^7.1 + (g2^3*g4^3*g5*t^7.1)/g1 + g1*g3*g5^2*t^7.1 + (2*g3*t^7.13)/(g2^2*g4) + (g3^2*t^7.13)/(g2^2*g4*g5) + (2*g5*t^7.13)/(g2^2*g4) + (g5^2*t^7.13)/(g2^2*g3*g4) - (g3*t^7.17)/(g2*g4^2) - (g5*t^7.17)/(g2*g4^2) + g1^2*g3^2*t^7.2 + g2^3*g4^3*t^7.2 + (g2^6*g4^6*t^7.2)/(g1^2*g3^2) + (g2^6*g4^6*t^7.2)/(g1^2*g5^2) + (g2^3*g3*g4^3*t^7.2)/g5 + (g2^6*g4^6*t^7.2)/(g1^2*g3*g5) + g1^2*g3*g5*t^7.2 + (g2^3*g4^3*g5*t^7.2)/g3 + g1^2*g5^2*t^7.2 + (2*g1*t^7.23)/(g2^2*g4) + (g2*g4^2*t^7.23)/(g1*g3^2) + (g2*g4^2*t^7.23)/(g1*g5^2) + (g1*g3*t^7.23)/(g2^2*g4*g5) + (2*g2*g4^2*t^7.23)/(g1*g3*g5) + (g1*g5*t^7.23)/(g2^2*g3*g4) + t^7.26/(g2^4*g3^2*g4^2) + t^7.26/(g2^4*g4^2*g5^2) + t^7.26/(g2^4*g3*g4^2*g5) + (g1^2*t^7.33)/(g2^2*g3*g4) + (g2^4*g4^5*t^7.33)/(g1^2*g3^2*g5^3) + (g2*g4^2*t^7.33)/(g3*g5^2) + (g2^4*g4^5*t^7.33)/(g1^2*g3^3*g5^2) + (g1^2*t^7.33)/(g2^2*g4*g5) + (g2*g4^2*t^7.33)/(g3^2*g5) + (g3^3*g5*t^7.41)/(g2^4*g4^4) + (g3^2*g5^2*t^7.41)/(g2^4*g4^4) + (g3*g5^3*t^7.41)/(g2^4*g4^4) + g3^2*g4*g5*t^7.44 + g3*g4*g5^2*t^7.44 + g1*g3^2*g4*t^7.53 + (2*g2^3*g4^4*t^7.53)/g1 + (g2^3*g3*g4^4*t^7.53)/(g1*g5) + 2*g1*g3*g4*g5*t^7.53 + (g2^3*g4^4*g5*t^7.53)/(g1*g3) + g1*g4*g5^2*t^7.53 + (g3*t^7.54)/(g2^6*g4^5) + (g5*t^7.54)/(g2^6*g4^5) + t^7.56/g2^2 + (g3*t^7.56)/(g2^2*g5) + (g5*t^7.56)/(g2^2*g3) - (2*t^7.6)/(g2*g4) - (g3*t^7.6)/(g2*g4*g5) - (g5*t^7.6)/(g2*g3*g4) + g1^2*g3*g4*t^7.63 + (g2^3*g4^4*t^7.63)/g3 + (g2^6*g4^7*t^7.63)/(g1^2*g3*g5^2) + (g2^3*g4^4*t^7.63)/g5 + (g2^6*g4^7*t^7.63)/(g1^2*g3^2*g5) + g1^2*g4*g5*t^7.63 + (2*g1*t^7.66)/(g2^2*g3) + g1^2*g2*g3*t^7.66 + (g2*g4^3*t^7.66)/(g1*g3^3) + (g2^4*g4^3*t^7.66)/g3 + (g2*g4^3*t^7.66)/(g1*g5^3) + (g1*g3*t^7.66)/(g2^2*g5^2) + (2*g2*g4^3*t^7.66)/(g1*g3*g5^2) + (g2^7*g4^6*t^7.66)/(g1^2*g3*g5^2) + (2*g1*t^7.66)/(g2^2*g5) + (g2^4*g4^3*t^7.66)/g5 + (2*g2*g4^3*t^7.66)/(g1*g3^2*g5) + (g2^7*g4^6*t^7.66)/(g1^2*g3^2*g5) + g1^2*g2*g5*t^7.66 + (g1*g5*t^7.66)/(g2^2*g3^2) - (g1*t^7.7)/(g2*g3*g4) - (g2^2*g4^2*t^7.7)/(g1*g3*g5^2) - (g1*t^7.7)/(g2*g4*g5) - (g2^2*g4^2*t^7.7)/(g1*g3^2*g5) + (g3^2*g5^2*t^7.81)/(g2^8*g4^8) + (g3^2*g5*t^7.84)/(g2^4*g4^3) + (g3*g5^2*t^7.84)/(g2^4*g4^3) + g3^2*g4^2*t^7.86 + g3*g4^2*g5*t^7.86 + g4^2*g5^2*t^7.86 - g2*g3^2*g4*t^7.9 - g2*g3*g4*g5*t^7.9 - g2*g4*g5^2*t^7.9 + g1*g3*g4^2*t^7.96 + (g2^3*g4^5*t^7.96)/(g1*g3) + (g2^3*g4^5*t^7.96)/(g1*g5) + g1*g4^2*g5*t^7.96 + (2*g4*t^7.99)/(g2^2*g3) + (g3*g4*t^7.99)/(g2^2*g5^2) + (2*g4*t^7.99)/(g2^2*g5) + (g4*g5*t^7.99)/(g2^2*g3^2) - (6*t^8.03)/(g2*g3) - (g1^2*g3*t^8.03)/(g2^4*g4^3) - (g3*t^8.03)/(g2*g5^2) - (g2^2*g4^3*t^8.03)/(g1^2*g3*g5^2) - (6*t^8.03)/(g2*g5) - (g2^2*g4^3*t^8.03)/(g1^2*g3^2*g5) - (g5*t^8.03)/(g2*g3^2) - (g1^2*g5*t^8.03)/(g2^4*g4^3) + g1^2*g4^2*t^8.06 + (g2^6*g4^8*t^8.06)/(g1^2*g3^2*g5^2) + (g2^3*g4^5*t^8.06)/(g3*g5) + (g1*g4*t^8.09)/(g2^2*g3^2) + (g2*g4^4*t^8.09)/(g1*g3*g5^3) + (g1*g4*t^8.09)/(g2^2*g5^2) + (g2*g4^4*t^8.09)/(g1*g3^2*g5^2) + (g1*g4*t^8.09)/(g2^2*g3*g5) + (g2*g4^4*t^8.09)/(g1*g3^3*g5) + (g3^3*g5^3*t^8.11)/(g2^6*g4^6) + t^8.12/(g2^4*g3^4) + t^8.12/(g2^4*g5^4) + t^8.12/(g2^4*g3*g5^3) + t^8.12/(g2^4*g3^2*g5^2) + t^8.12/(g2^4*g3^3*g5) + g1^2*g2^2*t^8.13 - (g2^2*g4^3*t^8.13)/(g1*g3^2*g5^2) + (g2^8*g4^6*t^8.13)/(g1^2*g3^2*g5^2) - (g1*t^8.13)/(g2*g3*g5) + (g2^5*g4^3*t^8.13)/(g3*g5) + (g3^2*t^8.27)/(g2^4*g4^2) + (2*g3*g5*t^8.27)/(g2^4*g4^2) + (g5^2*t^8.27)/(g2^4*g4^2) - (3*g3*g5*t^8.31)/(g2^3*g4^3) - g2^2*g3*g4*t^8.37 - g2^2*g4*g5*t^8.37 + t^8.4/(g1*g3) + t^8.4/(g2^6*g3*g4^3) + (g1*g3*t^8.4)/(g2^3*g4^3) + (g3*t^8.4)/(g2^6*g4^3*g5^2) + t^8.4/(g1*g5) + t^8.4/(g2^6*g4^3*g5) + (g1*g5*t^8.4)/(g2^3*g4^3) + (g5*t^8.4)/(g2^6*g3^2*g4^3) + t^8.43/(g2^5*g3*g4^4) + t^8.43/(g2^5*g4^4*g5) - (g4*t^8.46)/(g2*g3*g5) + (g1^2*t^8.5)/(g2^3*g4^3) + (g2^3*g4^3*t^8.5)/(g1^2*g3^2*g5^2) + (g3^3*g5^2*t^8.54)/(g2^6*g4^5) + (g3^2*g5^3*t^8.54)/(g2^6*g4^5) + (g3^3*g5*t^8.61)/(g2*g4) + (g3^2*g5^2*t^8.61)/(g2*g4) + (g3*g5^3*t^8.61)/(g2*g4) + (g3^2*t^8.67)/(g2^8*g4^6) + (g3*g5*t^8.67)/(g2^8*g4^6) + (g5^2*t^8.67)/(g2^8*g4^6) + (g1*g3^3*t^8.7)/(g2*g4) + (2*g2^2*g3*g4^2*t^8.7)/g1 + (g2^2*g3^2*g4^2*t^8.7)/(g1*g5) + (2*g1*g3^2*g5*t^8.7)/(g2*g4) + (2*g2^2*g4^2*g5*t^8.7)/g1 + (2*g1*g3*g5^2*t^8.7)/(g2*g4) + (g2^2*g4^2*g5^2*t^8.7)/(g1*g3) + (g1*g5^3*t^8.7)/(g2*g4) + (g3*g5*t^8.71)/(g2^7*g4^7) + (g3*t^8.74)/(g2^3*g4^2) + (g5*t^8.74)/(g2^3*g4^2) - g2*g4^3*t^8.76 - (g3*t^8.77)/(g2^2*g4^3) - (g5*t^8.77)/(g2^2*g4^3) + (g1^2*g3^2*t^8.8)/(g2*g4) + 2*g2^2*g4^2*t^8.8 + (g2^5*g4^5*t^8.8)/(g1^2*g3^2) + (g2^5*g4^5*t^8.8)/(g1^2*g5^2) + (g2^2*g3*g4^2*t^8.8)/g5 + (2*g2^5*g4^5*t^8.8)/(g1^2*g3*g5) + (2*g1^2*g3*g5*t^8.8)/(g2*g4) + (g2^2*g4^2*g5*t^8.8)/g3 + (g1^2*g5^2*t^8.8)/(g2*g4) + (2*g1*t^8.83)/(g2^3*g4^2) + (g4*t^8.83)/(g1*g3^2) + (g4*t^8.83)/(g1*g5^2) + (g1*g3*t^8.83)/(g2^3*g4^2*g5) + (2*g4*t^8.83)/(g1*g3*g5) + (g1*g5*t^8.83)/(g2^3*g3*g4^2) - g2^3*g4*t^8.84 + (g1^3*g3*t^8.89)/(g2*g4) + (g1*g2^2*g4^2*t^8.89)/g3 + (g2^8*g4^8*t^8.89)/(g1^3*g3^2*g5^3) + (g2^5*g4^5*t^8.89)/(g1*g3*g5^2) + (g2^8*g4^8*t^8.89)/(g1^3*g3^3*g5^2) + (g1*g2^2*g4^2*t^8.89)/g5 + (g2^5*g4^5*t^8.89)/(g1*g3^2*g5) + (g1^3*g5*t^8.89)/(g2*g4) + (g3^3*g5^2*t^8.95)/(g2^10*g4^9) + (g3^2*g5^3*t^8.95)/(g2^10*g4^9) - t^4.6/(g2*g4*y) - t^6.63/(g2^2*g3*g4*y) - t^6.63/(g2^2*g4*g5*y) - (g3*g5*t^6.91)/(g2^4*g4^4*y) + t^7.06/(g2^2*g3*g5*y) + (g3*t^7.34)/(g2^4*g4^3*y) + (g5*t^7.34)/(g2^4*g4^3*y) + (g2*g4*t^7.4)/y - t^7.8/(g2^3*g4^3*y) + t^8.23/(g2^3*g3*g4^2*y) + t^8.23/(g2^3*g4^2*g5*y) + (g2^2*g4^2*t^8.3)/(g3*g5*y) + (g3*g5*t^8.51)/(g2^5*g4^5*y) + (g3*t^8.53)/(g2*y) + (g5*t^8.53)/(g2*y) + (g3*t^8.57)/(g4*y) + (g5*t^8.57)/(g4*y) + (2*g1*t^8.63)/(g2*y) + (g2^2*g4^3*t^8.63)/(g1*g3^2*y) + (g2^2*g4^3*t^8.63)/(g1*g5^2*y) + (g1*g3*t^8.63)/(g2*g5*y) + (2*g2^2*g4^3*t^8.63)/(g1*g3*g5*y) + (g1*g5*t^8.63)/(g2*g3*y) - t^8.66/(g2^3*g3^2*g4*y) - t^8.66/(g2^3*g4*g5^2*y) - t^8.66/(g2^3*g3*g4*g5*y) + (g3^2*g5^2*t^8.81)/(g2^3*g4^3*y) + (g3*t^8.9)/(g1*y) + (g5*t^8.9)/(g1*y) + (g1*g3^2*g5*t^8.9)/(g2^3*g4^3*y) + (g1*g3*g5^2*t^8.9)/(g2^3*g4^3*y) - (g3*t^8.94)/(g2^5*g4^4*y) - (g5*t^8.94)/(g2^5*g4^4*y) + (2*g4*t^8.96)/(g2*y) + (g3*g4*t^8.96)/(g2*g5*y) + (g4*g5*t^8.96)/(g2*g3*y) - (t^4.6*y)/(g2*g4) - (t^6.63*y)/(g2^2*g3*g4) - (t^6.63*y)/(g2^2*g4*g5) - (g3*g5*t^6.91*y)/(g2^4*g4^4) + (t^7.06*y)/(g2^2*g3*g5) + (g3*t^7.34*y)/(g2^4*g4^3) + (g5*t^7.34*y)/(g2^4*g4^3) + g2*g4*t^7.4*y - (t^7.8*y)/(g2^3*g4^3) + (t^8.23*y)/(g2^3*g3*g4^2) + (t^8.23*y)/(g2^3*g4^2*g5) + (g2^2*g4^2*t^8.3*y)/(g3*g5) + (g3*g5*t^8.51*y)/(g2^5*g4^5) + (g3*t^8.53*y)/g2 + (g5*t^8.53*y)/g2 + (g3*t^8.57*y)/g4 + (g5*t^8.57*y)/g4 + (2*g1*t^8.63*y)/g2 + (g2^2*g4^3*t^8.63*y)/(g1*g3^2) + (g2^2*g4^3*t^8.63*y)/(g1*g5^2) + (g1*g3*t^8.63*y)/(g2*g5) + (2*g2^2*g4^3*t^8.63*y)/(g1*g3*g5) + (g1*g5*t^8.63*y)/(g2*g3) - (t^8.66*y)/(g2^3*g3^2*g4) - (t^8.66*y)/(g2^3*g4*g5^2) - (t^8.66*y)/(g2^3*g3*g4*g5) + (g3^2*g5^2*t^8.81*y)/(g2^3*g4^3) + (g3*t^8.9*y)/g1 + (g5*t^8.9*y)/g1 + (g1*g3^2*g5*t^8.9*y)/(g2^3*g4^3) + (g1*g3*g5^2*t^8.9*y)/(g2^3*g4^3) - (g3*t^8.94*y)/(g2^5*g4^4) - (g5*t^8.94*y)/(g2^5*g4^4) + (2*g4*t^8.96*y)/g2 + (g3*g4*t^8.96*y)/(g2*g5) + (g4*g5*t^8.96*y)/(g2*g3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55601 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ 0.881 1.0826 0.8138 [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y detail