Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55800 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1q_2^2$ | 0.8688 | 1.0717 | 0.8107 | [X:[], M:[0.6989, 0.693], q:[0.5649, 0.7362, 0.7442], qb:[0.5628, 0.7282, 0.5533], phi:[0.5276]] | [X:[], M:[[-6, 1, -6, 1], [-2, -1, 0, 0]], q:[[5, -1, 5, -1], [1, 0, 1, 0], [2, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]], phi:[[-2, 0, -2, 0]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_1$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_1q_3$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2q_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ \phi_1\tilde{q}_2^2$, $ M_2q_2\tilde{q}_3$, $ M_2q_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_3$ | . | -4 | t^2.08 + t^2.1 + t^3.17 + 2*t^3.35 + t^3.38 + t^3.84 + 2*t^3.87 + t^3.88 + t^3.89 + t^3.9 + t^3.93 + t^4.16 + t^4.18 + t^4.19 + t^4.39 + t^4.42 + t^4.44 + t^4.9 + t^4.93 + t^4.94 + t^4.96 + 2*t^4.97 + t^5.24 + t^5.26 + 2*t^5.43 + 2*t^5.45 + t^5.46 + t^5.48 + t^5.92 + t^5.94 + 2*t^5.95 + t^5.96 + t^5.97 + t^5.98 + t^5.99 - 4*t^6. - 2*t^6.03 + t^6.24 + t^6.25 + t^6.27 + t^6.29 + t^6.33 + t^6.47 + t^6.51 - t^6.54 - t^6.57 + 2*t^6.7 + t^6.71 + t^6.73 + t^6.74 + t^6.77 + t^6.98 + t^7. + t^7.01 + t^7.02 + 2*t^7.03 + 2*t^7.04 + t^7.05 + 2*t^7.06 - t^7.09 + t^7.19 + t^7.2 + 3*t^7.22 + 3*t^7.23 + t^7.24 + 3*t^7.25 + 2*t^7.26 + 3*t^7.28 + t^7.31 + t^7.32 + t^7.34 + t^7.36 + 2*t^7.51 + t^7.52 + t^7.53 + 2*t^7.54 - t^7.55 + t^7.56 - 2*t^7.58 - t^7.59 - t^7.61 - t^7.62 + t^7.69 + t^7.71 + 2*t^7.72 + 3*t^7.74 + 3*t^7.75 + 2*t^7.76 + 3*t^7.77 + t^7.78 + 2*t^7.79 + t^7.8 + 2*t^7.82 + t^7.85 + t^8. + t^8.02 + 2*t^8.03 + 2*t^8.04 + 2*t^8.05 + 2*t^8.07 - 4*t^8.08 + t^8.09 - 3*t^8.1 - 2*t^8.11 + t^8.14 + t^8.24 + t^8.25 + 2*t^8.26 + 2*t^8.27 + t^8.28 + 5*t^8.29 + 4*t^8.31 + 3*t^8.32 + 3*t^8.33 + t^8.34 + 2*t^8.35 + t^8.36 + 2*t^8.37 + t^8.39 + t^8.41 + t^8.43 + t^8.55 + 2*t^8.61 - t^8.64 + t^8.65 - t^8.67 + t^8.68 + t^8.75 + t^8.77 + 4*t^8.78 + 2*t^8.79 + 4*t^8.8 + 3*t^8.81 + 2*t^8.82 + 5*t^8.83 + t^8.84 + 3*t^8.85 + 3*t^8.86 + t^8.9 - t^4.58/y - t^6.66/y - t^6.68/y + t^7.18/y + t^7.42/y - t^7.75/y + t^8.24/y + t^8.26/y + (2*t^8.43)/y + (2*t^8.45)/y + t^8.46/y + t^8.48/y + t^8.49/y + t^8.5/y - t^8.74/y - t^8.76/y - t^8.78/y + t^8.92/y + t^8.94/y + (2*t^8.95)/y + t^8.96/y + (3*t^8.97)/y + (2*t^8.98)/y + (2*t^8.99)/y - t^4.58*y - t^6.66*y - t^6.68*y + t^7.18*y + t^7.42*y - t^7.75*y + t^8.24*y + t^8.26*y + 2*t^8.43*y + 2*t^8.45*y + t^8.46*y + t^8.48*y + t^8.49*y + t^8.5*y - t^8.74*y - t^8.76*y - t^8.78*y + t^8.92*y + t^8.94*y + 2*t^8.95*y + t^8.96*y + 3*t^8.97*y + 2*t^8.98*y + 2*t^8.99*y | t^2.08/(g1^2*g2) + (g2*g4*t^2.1)/(g1^6*g3^6) + t^3.17/(g1^4*g3^4) + (g1^5*g3^5*t^3.35)/g2 + g2*g4*t^3.35 + (g1^5*g3^5*t^3.38)/g4 + g3^2*g4*t^3.84 + g2*g3^2*t^3.87 + g1*g3*g4*t^3.87 + (g1^5*g3^7*t^3.88)/(g2*g4) + g1^2*g4*t^3.89 + g1*g2*g3*t^3.9 + (g1^7*g3^5*t^3.93)/(g2*g4) + t^4.16/(g1^4*g2^2) + (g4*t^4.18)/(g1^8*g3^6) + (g2^2*g4^2*t^4.19)/(g1^12*g3^12) + g1*g3^3*t^4.39 + g1^2*g3^2*t^4.42 + g1^3*g3*t^4.44 + (g4^2*t^4.9)/(g1^2*g3^2) + (g2*g4*t^4.93)/(g1^2*g3^2) + (g1^3*g3^3*t^4.94)/g2 + (g2^2*t^4.96)/(g1^2*g3^2) + (g1^8*g3^8*t^4.97)/(g2^2*g4^2) + (g1^3*g3^3*t^4.97)/g4 + t^5.24/(g1^6*g2*g3^4) + (g2*g4*t^5.26)/(g1^10*g3^10) + (g1^3*g3^5*t^5.43)/g2^2 + (g4*t^5.43)/g1^2 + (g4*t^5.45)/(g1*g3) + (g2^2*g4^2*t^5.45)/(g1^6*g3^6) + (g1^3*g3^5*t^5.46)/(g2*g4) + (g2*t^5.48)/(g1*g3) + (g3^2*g4*t^5.92)/(g1^2*g2) + (g2*g4^2*t^5.94)/(g1^6*g3^4) + (g3^2*t^5.95)/g1^2 + (g3*g4*t^5.95)/(g1*g2) + (g1^3*g3^7*t^5.96)/(g2^2*g4) + (g2^2*g4*t^5.97)/(g1^6*g3^4) + (g3*t^5.98)/g1 + (g2*g4^2*t^5.99)/(g1^4*g3^6) - 4*t^6. - (g1^5*g3^5*t^6.03)/(g2*g4^2) - (g2*t^6.03)/g4 + t^6.24/(g1^6*g2^3) + (g4*t^6.25)/(g1^10*g2*g3^6) + (g2*g4^2*t^6.27)/(g1^14*g3^12) + (g2^3*g4^3*t^6.29)/(g1^18*g3^18) + t^6.33/(g1^8*g3^8) + (g3^3*t^6.47)/(g1*g2) + (g2*g4*t^6.51)/(g1^4*g3^4) + (g1*g3*t^6.52)/g2 - (g3^2*t^6.52)/g4 - (g1^2*t^6.54)/g2 - (g1^2*t^6.57)/g4 + g1^5*g3^5*g4*t^6.7 + g2^2*g4^2*t^6.7 + (g1^10*g3^10*t^6.71)/g2^2 + g1^5*g2*g3^5*t^6.73 + (g1^10*g3^10*t^6.74)/(g2*g4) + (g1^10*g3^10*t^6.77)/g4^2 + (g4^2*t^6.98)/(g1^4*g2*g3^2) + (g2*g4^3*t^7.)/(g1^8*g3^8) + (g4*t^7.01)/(g1^4*g3^2) + (g1*g3^3*t^7.02)/g2^2 + (g4*t^7.03)/(g1^3*g3^3) + (g2^2*g4^2*t^7.03)/(g1^8*g3^8) + (g2*t^7.04)/(g1^4*g3^2) + (g1*g3^3*t^7.04)/(g2*g4) + (g1^6*g3^8*t^7.05)/(g2^3*g4^2) + (g2*t^7.06)/(g1^3*g3^3) + (g2^3*g4*t^7.06)/(g1^8*g3^8) - (g2*t^7.09)/(g1^2*g3^4) + g2*g3^2*g4^2*t^7.19 + (g1^5*g3^7*g4*t^7.2)/g2 + g2^2*g3^2*g4*t^7.22 + (g1^6*g3^6*g4*t^7.22)/g2 + g1*g2*g3*g4^2*t^7.22 + 2*g1^5*g3^7*t^7.23 + (g1^10*g3^12*t^7.23)/(g2^2*g4) + g1^2*g2*g4^2*t^7.24 + g1^6*g3^6*t^7.25 + g1*g2^2*g3*g4*t^7.25 + (g1^7*g3^5*g4*t^7.25)/g2 + (g1^10*g3^12*t^7.26)/(g2*g4^2) + (g1^5*g2*g3^7*t^7.26)/g4 + g1^7*g3^5*t^7.28 + (g1^6*g2*g3^6*t^7.28)/g4 + (g1^12*g3^10*t^7.28)/(g2^2*g4) + (g1^12*g3^10*t^7.31)/(g2*g4^2) + t^7.32/(g1^8*g2^2*g3^4) + (g4*t^7.34)/(g1^12*g3^10) + (g2^2*g4^2*t^7.36)/(g1^16*g3^16) + (g1*g3^5*t^7.51)/g2^3 + (g4*t^7.51)/(g1^4*g2) + (g2*g4^2*t^7.52)/(g1^8*g3^6) + (g4*t^7.53)/(g1^3*g2*g3) + (g1*g3^5*t^7.54)/(g2^2*g4) + (g2^3*g4^3*t^7.54)/(g1^12*g3^12) - (g4*t^7.55)/(g1^2*g2*g3^2) + t^7.56/(g1^3*g3) - (2*t^7.58)/(g1^2*g3^2) - (g1^3*g3^3*t^7.59)/(g2^2*g4) - (g2*t^7.61)/(g1^2*g3^2*g4) - (g1^3*g3^3*t^7.62)/(g2*g4^2) + g3^4*g4^2*t^7.69 + g1*g3^3*g4^2*t^7.71 + (g1^5*g3^9*t^7.72)/g2 + g2*g3^4*g4*t^7.72 + 2*g1*g2*g3^3*g4*t^7.74 + g1^2*g3^2*g4^2*t^7.74 + g2^2*g3^4*t^7.75 + (g1^6*g3^8*t^7.75)/g2 + (g1^5*g3^9*t^7.75)/g4 + (g1^10*g3^14*t^7.76)/(g2^2*g4^2) + g1^3*g3*g4^2*t^7.76 + g1*g2^2*g3^3*t^7.77 + (g1^7*g3^7*t^7.77)/g2 + g1^2*g2*g3^2*g4*t^7.77 + (g1^6*g3^8*t^7.78)/g4 + g1^3*g2*g3*g4*t^7.79 + g1^4*g4^2*t^7.79 + (g1^8*g3^6*t^7.8)/g2 + (g1^9*g3^5*t^7.82)/g2 + (g1^8*g3^6*t^7.82)/g4 + (g1^14*g3^10*t^7.85)/(g2^2*g4^2) + (g3^2*g4*t^8.)/(g1^4*g2^2) + (g4^2*t^8.02)/(g1^8*g3^4) + (g3^2*t^8.03)/(g1^4*g2) + (g3*g4*t^8.03)/(g1^3*g2^2) + (g1*g3^7*t^8.04)/(g2^3*g4) + (g2^2*g4^3*t^8.04)/(g1^12*g3^10) + (g3*t^8.05)/(g1^3*g2) + (g2*g4*t^8.05)/(g1^8*g3^4) + (g2^3*g4^2*t^8.07)/(g1^12*g3^10) + (g4^2*t^8.07)/(g1^6*g3^6) - (4*t^8.08)/(g1^2*g2) + (g2^2*g4^3*t^8.09)/(g1^10*g3^12) - (3*g2*g4*t^8.1)/(g1^6*g3^6) - (g1^3*g3^5*t^8.11)/(g2^2*g4^2) - t^8.11/(g1^2*g4) + (g1^4*g3^4*t^8.14)/(g2^2*g4^2) + g1*g3^5*g4*t^8.24 + (g2*g4^3*t^8.25)/(g1^2*g3^2) + g1^2*g3^4*g4*t^8.26 + (g1^3*g3^3*g4^2*t^8.26)/g2 + g1*g2*g3^5*t^8.27 + (g1^6*g3^10*t^8.27)/(g2*g4) + (g2^2*g4^2*t^8.28)/(g1^2*g3^2) + g1^2*g2*g3^4*t^8.29 + (g1^8*g3^8*t^8.29)/g2^2 + 3*g1^3*g3^3*g4*t^8.29 + 2*g1^3*g2*g3^3*t^8.31 + (g2^3*g4*t^8.31)/(g1^2*g3^2) + g1^4*g3^2*g4*t^8.31 + t^8.32/(g1^8*g2^4) + (2*g1^8*g3^8*t^8.32)/(g2*g4) + (g1^13*g3^13*t^8.33)/(g2^3*g4^2) + (g4*t^8.33)/(g1^12*g2^2*g3^6) + g1^5*g3*g4*t^8.33 + (g1^3*g2^2*g3^3*t^8.34)/g4 + (g1^8*g3^8*t^8.35)/g4^2 + (g4^2*t^8.35)/(g1^16*g3^12) + (g1^13*g3^13*t^8.36)/(g2^2*g4^3) + (g1^10*g3^6*t^8.37)/(g2*g4) + (g2^2*g4^3*t^8.37)/(g1^20*g3^18) + (g2^4*g4^4*t^8.39)/(g1^24*g3^24) + t^8.41/(g1^10*g2*g3^8) + (g2*g4*t^8.43)/(g1^14*g3^14) + (g3^3*t^8.55)/(g1^3*g2^2) + (g3*t^8.6)/(g1*g2^2) - (g3^2*t^8.6)/(g1^2*g2*g4) + (2*g2^2*g4^2*t^8.61)/(g1^10*g3^10) - (g2*t^8.62)/(g1^6*g3^4) + (g4*t^8.62)/(g1^5*g3^5) - (g4*t^8.64)/(g1^4*g3^6) + (g2*t^8.65)/(g1^5*g3^5) - (g2*t^8.67)/(g1^4*g3^6) + t^8.68/g4^2 + (g4^3*t^8.75)/g1^2 + (g4^3*t^8.77)/(g1*g3) + (2*g1^3*g3^5*g4*t^8.78)/g2 + (2*g2*g4^2*t^8.78)/g1^2 + (g1^8*g3^10*t^8.79)/g2^3 + (g2^3*g4^3*t^8.79)/(g1^6*g3^6) + (g2^2*g4*t^8.8)/g1^2 + (2*g2*g4^2*t^8.8)/(g1*g3) + (g4^3*t^8.8)/g3^2 + 2*g1^3*g3^5*t^8.81 + (g1^4*g3^4*g4*t^8.81)/g2 + (2*g1^8*g3^10*t^8.82)/(g2^2*g4) + (g2^3*t^8.83)/g1^2 + g1^4*g3^4*t^8.83 + (2*g2^2*g4*t^8.83)/(g1*g3) + (g1^5*g3^3*g4*t^8.83)/g2 + (g1^3*g2*g3^5*t^8.84)/g4 + (g1^13*g3^15*t^8.85)/(g2^3*g4^3) + (2*g1^8*g3^10*t^8.85)/(g2*g4^2) + (g2^3*t^8.86)/(g1*g3) + (g1^4*g2*g3^4*t^8.86)/g4 + (g1^10*g3^8*t^8.86)/(g2^2*g4) + (g1^15*g3^13*t^8.9)/(g2^3*g4^3) - t^4.58/(g1^2*g3^2*y) - t^6.66/(g1^4*g2*g3^2*y) - (g2*g4*t^6.68)/(g1^8*g3^8*y) + (g4*t^7.18)/(g1^8*g3^6*y) + (g1^2*g3^2*t^7.42)/y - t^7.75/(g1^6*g3^6*y) + t^8.24/(g1^6*g2*g3^4*y) + (g2*g4*t^8.26)/(g1^10*g3^10*y) + (g1^3*g3^5*t^8.43)/(g2^2*y) + (g4*t^8.43)/(g1^2*y) + (g4*t^8.45)/(g1*g3*y) + (g2^2*g4^2*t^8.45)/(g1^6*g3^6*y) + (g1^3*g3^5*t^8.46)/(g2*g4*y) + (g2*t^8.48)/(g1*g3*y) + (g1^4*g3^4*t^8.49)/(g2*g4*y) + (g2*t^8.5)/(g3^2*y) - t^8.74/(g1^6*g2^2*g3^2*y) - (g4*t^8.76)/(g1^10*g3^8*y) - (g2^2*g4^2*t^8.78)/(g1^14*g3^14*y) + (g3^2*g4*t^8.92)/(g1^2*g2*y) + (g2*g4^2*t^8.94)/(g1^6*g3^4*y) + (g3^2*t^8.95)/(g1^2*y) + (g3*g4*t^8.95)/(g1*g2*y) + (g1^3*g3^7*t^8.96)/(g2^2*g4*y) + (g4*t^8.97)/(g2*y) + (g2^2*g4*t^8.97)/(g1^6*g3^4*y) + (g2*g4^2*t^8.97)/(g1^5*g3^5*y) + (2*g3*t^8.98)/(g1*y) + (g2^2*g4*t^8.99)/(g1^5*g3^5*y) + (g2*g4^2*t^8.99)/(g1^4*g3^6*y) - (t^4.58*y)/(g1^2*g3^2) - (t^6.66*y)/(g1^4*g2*g3^2) - (g2*g4*t^6.68*y)/(g1^8*g3^8) + (g4*t^7.18*y)/(g1^8*g3^6) + g1^2*g3^2*t^7.42*y - (t^7.75*y)/(g1^6*g3^6) + (t^8.24*y)/(g1^6*g2*g3^4) + (g2*g4*t^8.26*y)/(g1^10*g3^10) + (g1^3*g3^5*t^8.43*y)/g2^2 + (g4*t^8.43*y)/g1^2 + (g4*t^8.45*y)/(g1*g3) + (g2^2*g4^2*t^8.45*y)/(g1^6*g3^6) + (g1^3*g3^5*t^8.46*y)/(g2*g4) + (g2*t^8.48*y)/(g1*g3) + (g1^4*g3^4*t^8.49*y)/(g2*g4) + (g2*t^8.5*y)/g3^2 - (t^8.74*y)/(g1^6*g2^2*g3^2) - (g4*t^8.76*y)/(g1^10*g3^8) - (g2^2*g4^2*t^8.78*y)/(g1^14*g3^14) + (g3^2*g4*t^8.92*y)/(g1^2*g2) + (g2*g4^2*t^8.94*y)/(g1^6*g3^4) + (g3^2*t^8.95*y)/g1^2 + (g3*g4*t^8.95*y)/(g1*g2) + (g1^3*g3^7*t^8.96*y)/(g2^2*g4) + (g4*t^8.97*y)/g2 + (g2^2*g4*t^8.97*y)/(g1^6*g3^4) + (g2*g4^2*t^8.97*y)/(g1^5*g3^5) + (2*g3*t^8.98*y)/g1 + (g2^2*g4*t^8.99*y)/(g1^5*g3^5) + (g2*g4^2*t^8.99*y)/(g1^4*g3^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55601 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ | 0.881 | 1.0826 | 0.8138 | [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] | t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y | detail |