Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55732 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1q_2\tilde{q}_2$ 0.8735 1.0719 0.8149 [X:[], M:[0.7282, 0.7282], q:[0.5861, 0.6857, 0.6857], qb:[0.5861, 0.7883, 0.5641], phi:[0.526]] [X:[], M:[[-3, 1, -3, 1], [-1, -1, 0, 0]], q:[[2, -1, 3, -1], [1, 0, 0, 0], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[-1, 0, -1, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ q_1\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_1q_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_2q_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_3$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ M_2q_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_2^2$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$ . -4 2*t^2.18 + t^3.16 + 2*t^3.45 + t^3.52 + 2*t^3.75 + 2*t^3.82 + t^4.06 + t^4.11 + 2*t^4.12 + 3*t^4.37 + 2*t^4.42 + t^4.96 + 2*t^5.03 + 3*t^5.09 + t^5.33 + 2*t^5.34 + 2*t^5.39 + 3*t^5.64 + t^5.69 + 2*t^5.93 - 4*t^6. - 2*t^6.07 + 2*t^6.24 - 2*t^6.3 + 4*t^6.31 - 2*t^6.36 + 4*t^6.55 + 4*t^6.61 + 3*t^6.9 + t^6.91 + 2*t^6.97 + t^7.03 + 2*t^7.15 + 4*t^7.2 + 3*t^7.21 + 4*t^7.27 + 4*t^7.28 + 2*t^7.33 + 3*t^7.5 + 2*t^7.51 + 3*t^7.53 + 4*t^7.56 + 4*t^7.57 - t^7.58 + 3*t^7.63 + t^7.81 + 4*t^7.82 + 2*t^7.86 + 4*t^7.87 + 2*t^7.93 + t^8.11 + 3*t^8.12 + 2*t^8.17 - 4*t^8.18 + t^8.23 + 3*t^8.25 + 2*t^8.41 + 3*t^8.43 + 4*t^8.48 + 4*t^8.49 + 2*t^8.5 + 7*t^8.54 + 3*t^8.61 + t^8.62 + 2*t^8.71 + 5*t^8.74 + 4*t^8.78 + 5*t^8.79 + 7*t^8.84 + t^8.85 - 2*t^8.86 + 4*t^8.91 - t^4.58/y - (2*t^6.76)/y + t^7.37/y + t^7.42/y - t^7.73/y + (2*t^8.34)/y + (2*t^8.39)/y + (4*t^8.64)/y + (2*t^8.7)/y + (4*t^8.93)/y - (3*t^8.95)/y - t^4.58*y - 2*t^6.76*y + t^7.37*y + t^7.42*y - t^7.73*y + 2*t^8.34*y + 2*t^8.39*y + 4*t^8.64*y + 2*t^8.7*y + 4*t^8.93*y - 3*t^8.95*y t^2.18/(g1*g2) + (g2*g4*t^2.18)/(g1^3*g3^3) + t^3.16/(g1^2*g3^2) + (g1^2*g3^3*t^3.45)/g2 + g2*g4*t^3.45 + (g1^2*g3^3*t^3.52)/g4 + 2*g1*g4*t^3.75 + g1*g2*t^3.82 + (g1^3*g3^3*t^3.82)/(g2*g4) + g3*g4*t^4.06 + g1^2*t^4.11 + g2*g3*t^4.12 + (g1^2*g3^4*t^4.12)/(g2*g4) + t^4.37/(g1^2*g2^2) + (g4*t^4.37)/(g1^4*g3^3) + (g2^2*g4^2*t^4.37)/(g1^6*g3^6) + 2*g1*g3*t^4.42 + (g4^2*t^4.96)/(g1*g3) + (g1*g3^2*t^5.03)/g2 + (g2*g4*t^5.03)/(g1*g3) + (g2^2*t^5.09)/(g1*g3) + (g1^3*g3^5*t^5.09)/(g2^2*g4^2) + (g1*g3^2*t^5.09)/g4 + (g4*t^5.33)/g3 + t^5.34/(g1^3*g2*g3^2) + (g2*g4*t^5.34)/(g1^5*g3^5) + (g2*t^5.39)/g3 + (g1^2*g3^2*t^5.39)/(g2*g4) + (g1*g3^3*t^5.64)/g2^2 + (g4*t^5.64)/g1 + (g2^2*g4^2*t^5.64)/(g1^3*g3^3) + (g1*t^5.69)/g3 + (g4*t^5.93)/g2 + (g2*g4^2*t^5.93)/(g1^2*g3^3) - 4*t^6. - (g1^2*g3^3*t^6.07)/(g2*g4^2) - (g2*t^6.07)/g4 + (g3*g4*t^6.24)/(g1*g2) + (g2*g4^2*t^6.24)/(g1^3*g3^2) - (g1*t^6.3)/g2 - (g2*g4*t^6.3)/(g1*g3^3) + t^6.31/(g1^4*g3^4) + (g3*t^6.31)/g1 + (g1*g3^4*t^6.31)/(g2^2*g4) + (g2^2*g4*t^6.31)/(g1^3*g3^2) - (2*g1*t^6.36)/g4 + t^6.55/(g1^3*g2^3) + (g4*t^6.55)/(g1^5*g2*g3^3) + (g2*g4^2*t^6.55)/(g1^7*g3^6) + (g2^3*g4^3*t^6.55)/(g1^9*g3^9) + (2*g3*t^6.61)/g2 + (2*g2*g4*t^6.61)/(g1^2*g3^2) + (g1^4*g3^6*t^6.9)/g2^2 + g1^2*g3^3*g4*t^6.9 + g2^2*g4^2*t^6.9 + (g4*t^6.91)/(g1*g3^2) + g1^2*g2*g3^3*t^6.97 + (g1^4*g3^6*t^6.97)/(g2*g4) + (g1^4*g3^6*t^7.03)/g4^2 + (g4^2*t^7.15)/(g1^2*g2*g3) + (g2*g4^3*t^7.15)/(g1^4*g3^4) + (2*g1^3*g3^3*g4*t^7.2)/g2 + 2*g1*g2*g4^2*t^7.2 + (g3^2*t^7.21)/g2^2 + (g4*t^7.21)/(g1^2*g3) + (g2^2*g4^2*t^7.21)/(g1^4*g3^4) + 2*g1^3*g3^3*t^7.27 + (g1^5*g3^6*t^7.27)/(g2^2*g4) + g1*g2^2*g4*t^7.27 + (g2*t^7.28)/(g1^2*g3) + (g1^2*g3^5*t^7.28)/(g2^3*g4^2) + (g3^2*t^7.28)/(g2*g4) + (g2^3*g4*t^7.28)/(g1^4*g3^4) + (g1^5*g3^6*t^7.33)/(g2*g4^2) + (g1^3*g2*g3^3*t^7.33)/g4 + 3*g1^2*g4^2*t^7.5 + (g1^2*g3^4*g4*t^7.51)/g2 + g2*g3*g4^2*t^7.51 + t^7.53/(g1^4*g2^2*g3^2) + (g4*t^7.53)/(g1^6*g3^5) + (g2^2*g4^2*t^7.53)/(g1^8*g3^8) + (2*g1^4*g3^3*t^7.56)/g2 + 2*g1^2*g2*g4*t^7.56 + 2*g1^2*g3^4*t^7.57 + (g1^4*g3^7*t^7.57)/(g2^2*g4) + g2^2*g3*g4*t^7.57 - t^7.58/(g1*g3) + g1^2*g2^2*t^7.63 + (g1^6*g3^6*t^7.63)/(g2^2*g4^2) + (g1^4*g3^3*t^7.63)/g4 - (g1*g3^2*t^7.64)/(g2*g4^2) + (g1^4*g3^7*t^7.64)/(g2*g4^2) - (g2*t^7.64)/(g1*g3*g4) + (g1^2*g2*g3^4*t^7.64)/g4 + g1*g3*g4^2*t^7.81 + (g3^3*t^7.82)/g2^3 + (g4*t^7.82)/(g1^2*g2) + (g2*g4^2*t^7.82)/(g1^4*g3^3) + (g2^3*g4^3*t^7.82)/(g1^6*g3^6) + 2*g1^3*g4*t^7.86 + (2*g1^3*g3^4*t^7.87)/g2 + 2*g1*g2*g3*g4*t^7.87 + g1^3*g2*t^7.93 + (g1^5*g3^3*t^7.93)/(g2*g4) - t^7.94/(g3*g4) + (g1^3*g3^4*t^7.94)/g4 + g3^2*g4^2*t^8.11 + (g4*t^8.12)/(g1*g2^2) + (g4^2*t^8.12)/(g1^3*g3^3) + (g2^2*g4^3*t^8.12)/(g1^5*g3^6) + 2*g1^2*g3*g4*t^8.17 - (3*t^8.18)/(g1*g2) + (g1^2*g3^5*t^8.18)/g2 - (3*g2*g4*t^8.18)/(g1^3*g3^3) + g2*g3^2*g4*t^8.18 + g1^4*t^8.23 + g2^2*g3^2*t^8.25 + (g1^4*g3^8*t^8.25)/(g2^2*g4^2) + (g1^2*g3^5*t^8.25)/g4 + (g1*g3^2*g4^2*t^8.41)/g2 + (g2*g4^3*t^8.41)/(g1*g3) + (g3*g4*t^8.43)/(g1^2*g2^2) + (g4^2*t^8.43)/(g1^4*g3^2) + (g2^2*g4^3*t^8.43)/(g1^6*g3^5) + (g1^3*g3^5*t^8.48)/g2^2 - (g4*t^8.48)/(g1^2*g3^3) + 3*g1*g3^2*g4*t^8.48 + (g2^2*g4^2*t^8.48)/(g1*g3) + (g3*t^8.49)/(g1^2*g2) + (g3^4*t^8.49)/(g2^3*g4) + (g2*g4*t^8.49)/(g1^4*g3^2) + (g2^3*g4^2*t^8.49)/(g1^6*g3^5) + t^8.5/(g1^5*g2*g3^4) + (g2*g4*t^8.5)/(g1^7*g3^7) - g1^3*g3*t^8.54 + 3*g1*g2*g3^2*t^8.54 + (g1^5*g3^8*t^8.54)/(g2^3*g4^2) + (3*g1^3*g3^5*t^8.54)/(g2*g4) + (g2^3*g4*t^8.54)/(g1*g3) + (g1^5*g3^8*t^8.61)/(g2^2*g4^3) + (g1^3*g3^5*t^8.61)/g4^2 + (g1*g2^2*g3^2*t^8.61)/g4 + t^8.62/g4^2 + (2*g4^3*t^8.71)/g3 + t^8.74/(g1^4*g2^4) + (g4*t^8.74)/(g1^6*g2^2*g3^3) + (g4^2*t^8.74)/(g1^8*g3^6) + (g2^2*g4^3*t^8.74)/(g1^10*g3^9) + (g2^4*g4^4*t^8.74)/(g1^12*g3^12) + (2*g1^2*g3^2*g4*t^8.78)/g2 + (2*g2*g4^2*t^8.78)/g3 + (2*g3*t^8.79)/(g1*g2^2) + (g4*t^8.79)/(g1^3*g3^2) + (2*g2^2*g4^2*t^8.79)/(g1^5*g3^5) + 3*g1^2*g3^2*t^8.84 + (2*g1^4*g3^5*t^8.84)/(g2^2*g4) + (2*g2^2*g4*t^8.84)/g3 + t^8.85/(g1*g3^3) - (g2*t^8.86)/(g1^3*g3^2) - (g3*t^8.86)/(g1*g2*g4) + (g2^3*t^8.91)/g3 + (g1^6*g3^8*t^8.91)/(g2^3*g4^3) + (g1^4*g3^5*t^8.91)/(g2*g4^2) + (g1^2*g2*g3^2*t^8.91)/g4 - t^4.58/(g1*g3*y) - t^6.76/(g1^2*g2*g3*y) - (g2*g4*t^6.76)/(g1^4*g3^4*y) + (g4*t^7.37)/(g1^4*g3^3*y) + (g1*g3*t^7.42)/y - t^7.73/(g1^3*g3^3*y) + t^8.34/(g1^3*g2*g3^2*y) + (g2*g4*t^8.34)/(g1^5*g3^5*y) + (g2*t^8.39)/(g3*y) + (g1^2*g3^2*t^8.39)/(g2*g4*y) + (g1*g3^3*t^8.64)/(g2^2*y) + (2*g4*t^8.64)/(g1*y) + (g2^2*g4^2*t^8.64)/(g1^3*g3^3*y) + (g2*t^8.7)/(g1*y) + (g1*g3^3*t^8.7)/(g2*g4*y) + (2*g4*t^8.93)/(g2*y) + (2*g2*g4^2*t^8.93)/(g1^2*g3^3*y) - t^8.95/(g1^3*g2^2*g3*y) - (g4*t^8.95)/(g1^5*g3^4*y) - (g2^2*g4^2*t^8.95)/(g1^7*g3^7*y) - (t^4.58*y)/(g1*g3) - (t^6.76*y)/(g1^2*g2*g3) - (g2*g4*t^6.76*y)/(g1^4*g3^4) + (g4*t^7.37*y)/(g1^4*g3^3) + g1*g3*t^7.42*y - (t^7.73*y)/(g1^3*g3^3) + (t^8.34*y)/(g1^3*g2*g3^2) + (g2*g4*t^8.34*y)/(g1^5*g3^5) + (g2*t^8.39*y)/g3 + (g1^2*g3^2*t^8.39*y)/(g2*g4) + (g1*g3^3*t^8.64*y)/g2^2 + (2*g4*t^8.64*y)/g1 + (g2^2*g4^2*t^8.64*y)/(g1^3*g3^3) + (g2*t^8.7*y)/g1 + (g1*g3^3*t^8.7*y)/(g2*g4) + (2*g4*t^8.93*y)/g2 + (2*g2*g4^2*t^8.93*y)/(g1^2*g3^3) - (t^8.95*y)/(g1^3*g2^2*g3) - (g4*t^8.95*y)/(g1^5*g3^4) - (g2^2*g4^2*t^8.95*y)/(g1^7*g3^7)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55601 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ 0.881 1.0826 0.8138 [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y detail