Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55780 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ + $ \phi_1\tilde{q}_2^2$ 0.881 1.0823 0.814 [X:[], M:[0.7686, 0.6814], q:[0.6157, 0.6157, 0.7329], qb:[0.5857, 0.7329, 0.58], phi:[0.5343]] [X:[], M:[[0, 1, -6, 1], [0, -1, -1, 0]], q:[[-1, -1, 6, -1], [1, 0, 0, 0], [0, 0, 1, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], phi:[[0, 0, -2, 0]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ M_2^2$, $ M_1M_2$, $ q_3\tilde{q}_2$, $ M_1^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_2q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$ . -6 t^2.04 + t^2.31 + t^3.21 + t^3.5 + 2*t^3.59 + 2*t^3.6 + 2*t^3.94 + t^3.96 + 4*t^4.05 + t^4.09 + t^4.35 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.12 + 2*t^5.19 + 2*t^5.21 + t^5.25 + 3*t^5.3 + t^5.51 + t^5.54 + 2*t^5.63 + 2*t^5.65 + t^5.8 + t^5.98 - 6*t^6. - t^6.02 + 2*t^6.09 - 2*t^6.11 + t^6.13 + 2*t^6.24 + t^6.26 + t^6.39 + t^6.41 - t^6.44 - 2*t^6.46 + t^6.66 + 2*t^6.7 + 2*t^6.79 + 2*t^6.81 + t^6.92 + t^6.99 + 2*t^7.08 + 2*t^7.1 + t^7.13 + t^7.14 + 3*t^7.17 + 3*t^7.19 + 3*t^7.21 + 2*t^7.23 + 2*t^7.25 + t^7.29 + 3*t^7.34 + t^7.39 + t^7.41 + t^7.42 + 2*t^7.44 + t^7.45 + 4*t^7.53 + 6*t^7.54 + 3*t^7.56 - 2*t^7.6 - t^7.62 + 6*t^7.63 + 6*t^7.65 + 2*t^7.68 - 2*t^7.71 + t^7.82 + t^7.85 + 2*t^7.88 + t^7.89 + 6*t^7.98 + 2*t^8. + t^8.03 - 6*t^8.04 - t^8.06 + 6*t^8.09 + t^8.11 + 2*t^8.13 - 2*t^8.15 + t^8.18 + 2*t^8.29 - 2*t^8.31 - t^8.35 + 2*t^8.4 + 2*t^8.41 + t^8.44 + t^8.46 + 2*t^8.5 + t^8.52 + 2*t^8.55 + t^8.57 + t^8.58 + t^8.6 + t^8.61 + 2*t^8.67 + 4*t^8.69 + 5*t^8.7 + 3*t^8.72 - 2*t^8.76 + 3*t^8.78 + 4*t^8.79 + 3*t^8.81 + 2*t^8.84 + 2*t^8.85 + 4*t^8.88 + 4*t^8.9 + t^8.96 - t^4.6/y - t^6.65/y - t^6.91/y + t^7.35/y + t^7.4/y - t^7.81/y + t^8.25/y + t^8.3/y + t^8.51/y + t^8.54/y + t^8.56/y + (2*t^8.63)/y + (2*t^8.65)/y - t^8.69/y + t^8.8/y + (2*t^8.89)/y + (2*t^8.91)/y - t^8.95/y + (2*t^8.98)/y - t^4.6*y - t^6.65*y - t^6.91*y + t^7.35*y + t^7.4*y - t^7.81*y + t^8.25*y + t^8.3*y + t^8.51*y + t^8.54*y + t^8.56*y + 2*t^8.63*y + 2*t^8.65*y - t^8.69*y + t^8.8*y + 2*t^8.89*y + 2*t^8.91*y - t^8.95*y + 2*t^8.98*y t^2.04/(g2*g3) + (g2*g4*t^2.31)/g3^6 + t^3.21/g3^4 + g2*g4*t^3.5 + (g3^6*t^3.59)/(g1*g2) + g1*g4*t^3.59 + g1*g2*t^3.6 + (g3^6*t^3.6)/(g1*g4) + 2*g3*g4*t^3.94 + g2*g3*t^3.96 + 2*g1*g3*t^4.05 + (2*g3^7*t^4.05)/(g1*g2*g4) + t^4.09/(g2^2*g3^2) + (g4*t^4.35)/g3^7 + g3^2*t^4.4 + (g2^2*g4^2*t^4.61)/g3^12 + (g4^2*t^5.08)/g3^2 + (g2*g4*t^5.1)/g3^2 + (g2^2*t^5.12)/g3^2 + (g3^4*t^5.19)/(g1*g2) + (g1*g4*t^5.19)/g3^2 + (g1*g2*t^5.21)/g3^2 + (g3^4*t^5.21)/(g1*g4) + t^5.25/(g2*g3^5) + (g1^2*t^5.3)/g3^2 + (g3^10*t^5.3)/(g1^2*g2^2*g4^2) + (g3^4*t^5.3)/(g2*g4) + (g2*g4*t^5.51)/g3^10 + (g4*t^5.54)/g3 + (g3^5*t^5.63)/(g1*g2^2) + (g1*g4*t^5.63)/(g2*g3) + (g1*t^5.65)/g3 + (g3^5*t^5.65)/(g1*g2*g4) + (g2^2*g4^2*t^5.8)/g3^6 + (g4*t^5.98)/g2 - 4*t^6. - (g3^6*t^6.)/(g1^2*g2*g4) - (g1^2*g2*g4*t^6.)/g3^6 - (g2*t^6.02)/g4 + (g1*t^6.09)/g2 + (g3^6*t^6.09)/(g1*g2^2*g4) - (g3^6*t^6.11)/(g1*g2*g4^2) - (g1*t^6.11)/g4 + t^6.13/(g2^3*g3^3) + (2*g2*g4^2*t^6.24)/g3^5 + (g2^2*g4*t^6.26)/g3^5 + (g4*t^6.39)/(g2*g3^8) + t^6.41/g3^8 - (g3*t^6.44)/g2 - (2*g3*t^6.46)/g4 + (g2*g4^2*t^6.66)/g3^13 + (2*g2*g4*t^6.7)/g3^4 + (g3^2*t^6.79)/(g1*g2) + (g1*g4*t^6.79)/g3^4 + (g1*g2*t^6.81)/g3^4 + (g3^2*t^6.81)/(g1*g4) + (g2^3*g4^3*t^6.92)/g3^18 + g2^2*g4^2*t^6.99 + (g3^6*g4*t^7.08)/g1 + g1*g2*g4^2*t^7.08 + (g2*g3^6*t^7.1)/g1 + g1*g2^2*g4*t^7.1 + (g4^2*t^7.13)/(g2*g3^3) + (g4*t^7.14)/g3^3 + (g3^12*t^7.17)/(g1^2*g2^2) + (g3^6*g4*t^7.17)/g2 + g1^2*g4^2*t^7.17 + g3^6*t^7.19 + (g3^12*t^7.19)/(g1^2*g2*g4) + g1^2*g2*g4*t^7.19 + g1^2*g2^2*t^7.21 + (g3^12*t^7.21)/(g1^2*g4^2) + (g2*g3^6*t^7.21)/g4 + (g3^3*t^7.23)/(g1*g2^2) + (g1*g4*t^7.23)/(g2*g3^3) + (g1*t^7.25)/g3^3 + (g3^3*t^7.25)/(g1*g2*g4) + t^7.29/(g2^2*g3^6) + (g1^2*t^7.34)/(g2*g3^3) + (g3^9*t^7.34)/(g1^2*g2^3*g4^2) + (g3^3*t^7.34)/(g2^2*g4) + (g2*g4^3*t^7.39)/g3^8 + (g2^2*g4^2*t^7.41)/g3^8 + (g2^3*g4*t^7.42)/g3^8 + 2*g2*g3*g4^2*t^7.44 + g2^2*g3*g4*t^7.45 + (2*g3^7*g4*t^7.53)/(g1*g2) + 2*g1*g3*g4^2*t^7.53 + (3*g3^7*t^7.54)/g1 + 3*g1*g2*g3*g4*t^7.54 + g1*g2^2*g3*t^7.56 + (g2*g3^7*t^7.56)/(g1*g4) + (g4*t^7.56)/g3^11 - (2*t^7.6)/g3^2 - (g2*t^7.62)/(g3^2*g4) + (2*g3^7*t^7.63)/g2 + (2*g3^13*t^7.63)/(g1^2*g2^2*g4) + 2*g1^2*g3*g4*t^7.63 + 2*g1^2*g2*g3*t^7.65 + (2*g3^13*t^7.65)/(g1^2*g2*g4^2) + (2*g3^7*t^7.65)/g4 + (g3^4*t^7.68)/(g1*g2^3) + (g1*g4*t^7.68)/(g2^2*g3^2) - (g3^4*t^7.71)/(g1*g2*g4^2) - (g1*t^7.71)/(g3^2*g4) + (g2^2*g4^2*t^7.82)/g3^16 + (g2*g4^2*t^7.85)/g3^7 + 2*g3^2*g4^2*t^7.88 + g2*g3^2*g4*t^7.89 + (3*g3^8*t^7.98)/(g1*g2) + 3*g1*g3^2*g4*t^7.98 + g1*g2*g3^2*t^8. + (g3^8*t^8.)/(g1*g4) + (g4*t^8.03)/(g2^2*g3) - (4*t^8.04)/(g2*g3) - (g3^5*t^8.04)/(g1^2*g2^2*g4) - (g1^2*g4*t^8.04)/g3^7 - t^8.06/(g3*g4) + 2*g1^2*g3^2*t^8.09 + (2*g3^14*t^8.09)/(g1^2*g2^2*g4^2) + (2*g3^8*t^8.09)/(g2*g4) + (g2^3*g4^3*t^8.11)/g3^12 + (g1*t^8.13)/(g2^2*g3) + (g3^5*t^8.13)/(g1*g2^3*g4) - (g3^5*t^8.15)/(g1*g2^2*g4^2) - (g1*t^8.15)/(g2*g3*g4) + t^8.18/(g2^4*g3^4) + (2*g4^2*t^8.29)/g3^6 - (2*g2*g4*t^8.31)/g3^6 - g2*g3^3*t^8.35 + t^8.4/(g1*g2) + (g1*g4*t^8.4)/g3^6 + (g1*g2*t^8.41)/g3^6 + t^8.41/(g1*g4) + (g4*t^8.44)/(g2^2*g3^9) + t^8.46/(g2*g3^9) + (g1^2*t^8.5)/g3^6 + (g3^6*t^8.5)/(g1^2*g2^2*g4^2) + t^8.52/g4^2 + (2*g2^2*g4^3*t^8.55)/g3^11 + (g2^3*g4^2*t^8.57)/g3^11 + (g2*g4^3*t^8.58)/g3^2 + (g2^2*g4^2*t^8.6)/g3^2 + (g2^3*g4*t^8.61)/g3^2 + (g3^4*g4^2*t^8.67)/(g1*g2) + (g1*g4^3*t^8.67)/g3^2 + (2*g3^4*g4*t^8.69)/g1 + (2*g1*g2*g4^2*t^8.69)/g3^2 + (2*g2*g3^4*t^8.7)/g1 + (2*g1*g2^2*g4*t^8.7)/g3^2 + (g4^2*t^8.7)/g3^14 + (g1*g2^3*t^8.72)/g3^2 + (g2^2*g3^4*t^8.72)/(g1*g4) + (g2*g4*t^8.72)/g3^14 - (2*g2*t^8.76)/g3^5 + (g3^10*t^8.78)/(g1^2*g2^2) + (g3^4*g4*t^8.78)/g2 + (g1^2*g4^2*t^8.78)/g3^2 + (2*g3^10*t^8.79)/(g1^2*g2*g4) + (2*g1^2*g2*g4*t^8.79)/g3^2 + (g1^2*g2^2*t^8.81)/g3^2 + (g3^10*t^8.81)/(g1^2*g4^2) + (g2*g3^4*t^8.81)/g4 + (g3*t^8.84)/(g1*g2^2) + (g1*g4*t^8.84)/(g2*g3^5) + (g1*t^8.85)/g3^5 + (g3*t^8.85)/(g1*g2*g4) + (g1*g3^4*t^8.88)/g2 + (g3^16*t^8.88)/(g1^3*g2^3*g4^2) + (g3^10*t^8.88)/(g1*g2^2*g4) + (g1^3*g4*t^8.88)/g3^2 + (g1^3*g2*t^8.9)/g3^2 + (g3^16*t^8.9)/(g1^3*g2^2*g4^3) + (g3^10*t^8.9)/(g1*g2*g4^2) + (g1*g3^4*t^8.9)/g4 + (g2^2*g4^3*t^8.96)/g3^19 - t^4.6/(g3^2*y) - t^6.65/(g2*g3^3*y) - (g2*g4*t^6.91)/(g3^8*y) + (g4*t^7.35)/(g3^7*y) + (g3^2*t^7.4)/y - t^7.81/(g3^6*y) + t^8.25/(g2*g3^5*y) + (g3^4*t^8.3)/(g2*g4*y) + (g2*g4*t^8.51)/(g3^10*y) + (g4*t^8.54)/(g3*y) + (g2*t^8.56)/(g3*y) + (g3^5*t^8.63)/(g1*g2^2*y) + (g1*g4*t^8.63)/(g2*g3*y) + (g1*t^8.65)/(g3*y) + (g3^5*t^8.65)/(g1*g2*g4*y) - t^8.69/(g2^2*g3^4*y) + (g2^2*g4^2*t^8.8)/(g3^6*y) + (g4*t^8.89)/(g1*y) + (g1*g2*g4^2*t^8.89)/(g3^6*y) + (g2*t^8.91)/(g1*y) + (g1*g2^2*g4*t^8.91)/(g3^6*y) - (g4*t^8.95)/(g3^9*y) + (2*g4*t^8.98)/(g2*y) - (t^4.6*y)/g3^2 - (t^6.65*y)/(g2*g3^3) - (g2*g4*t^6.91*y)/g3^8 + (g4*t^7.35*y)/g3^7 + g3^2*t^7.4*y - (t^7.81*y)/g3^6 + (t^8.25*y)/(g2*g3^5) + (g3^4*t^8.3*y)/(g2*g4) + (g2*g4*t^8.51*y)/g3^10 + (g4*t^8.54*y)/g3 + (g2*t^8.56*y)/g3 + (g3^5*t^8.63*y)/(g1*g2^2) + (g1*g4*t^8.63*y)/(g2*g3) + (g1*t^8.65*y)/g3 + (g3^5*t^8.65*y)/(g1*g2*g4) - (t^8.69*y)/(g2^2*g3^4) + (g2^2*g4^2*t^8.8*y)/g3^6 + (g4*t^8.89*y)/g1 + (g1*g2*g4^2*t^8.89*y)/g3^6 + (g2*t^8.91*y)/g1 + (g1*g2^2*g4*t^8.91*y)/g3^6 - (g4*t^8.95*y)/g3^9 + (2*g4*t^8.98*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55601 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_3\tilde{q}_1$ + $ \phi_1q_3\tilde{q}_2$ 0.881 1.0826 0.8138 [X:[], M:[0.7685, 0.6788], q:[0.6157, 0.6157, 0.7364], qb:[0.5847, 0.729, 0.58], phi:[0.5346]] t^2.04 + t^2.31 + t^3.21 + t^3.49 + 2*t^3.59 + 2*t^3.6 + t^3.93 + t^3.94 + t^3.95 + 2*t^4.03 + 2*t^4.06 + t^4.07 + t^4.34 + t^4.4 + t^4.61 + t^5.08 + t^5.1 + t^5.11 + 2*t^5.19 + 2*t^5.21 + t^5.24 + 3*t^5.3 + t^5.51 + t^5.53 + 2*t^5.62 + 2*t^5.64 + t^5.8 + t^5.96 + t^5.98 - 7*t^6. - t^4.6/y - t^4.6*y detail