Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55595 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ 0.9185 1.1444 0.8026 [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [0, -4, 0, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_1M_3$, $ M_2^2$, $ M_3^2$, $ M_2M_3$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1\phi_1^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_3$, $ \phi_1q_2q_3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_2$ $M_2q_2q_3$, $ M_3q_1\tilde{q}_1$ -8 t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - 4*t^6.04 - 4*t^6.06 - 4*t^6.1 + t^6.29 + 2*t^6.33 + 3*t^6.37 + 4*t^6.41 + t^6.57 + t^6.99 + 4*t^7.05 + 4*t^7.09 + t^7.1 + 2*t^7.15 + t^7.41 + 3*t^7.44 + 4*t^7.47 + t^7.48 + 6*t^7.49 + 4*t^7.5 + 4*t^7.51 + 2*t^7.52 + 10*t^7.53 + 8*t^7.54 + 6*t^7.56 + 14*t^7.57 + 4*t^7.58 + 4*t^7.59 + 6*t^7.6 + 9*t^7.61 + 8*t^7.63 + t^7.64 + 4*t^7.67 + 4*t^7.68 - 4*t^7.7 + 2*t^7.72 - 4*t^7.74 + t^7.9 + 2*t^7.94 + 4*t^7.95 + 3*t^7.98 + 8*t^8. + t^8.01 + 8*t^8.04 - 3*t^8.06 + 4*t^8.08 - 10*t^8.1 - 4*t^8.12 - 18*t^8.14 - 4*t^8.15 - 4*t^8.16 - 8*t^8.18 - 8*t^8.19 - 4*t^8.22 - 4*t^8.24 - 3*t^8.26 + 3*t^8.29 + t^8.38 + 2*t^8.42 + 3*t^8.47 + 4*t^8.51 + 5*t^8.55 + 3*t^8.63 + t^8.66 + 4*t^8.69 + 2*t^8.71 + 4*t^8.73 + 3*t^8.75 + 4*t^8.79 + 3*t^8.83 - t^4.64/y - t^6.74/y - (2*t^6.78)/y + (2*t^7.23)/y + t^7.28/y + t^7.36/y - t^7.93/y + t^8.38/y + (2*t^8.42)/y + (2*t^8.5)/y + t^8.55/y + t^8.8/y - t^8.83/y + (2*t^8.84)/y + (4*t^8.86)/y - (2*t^8.88)/y + (12*t^8.9)/y - (2*t^8.92)/y + (8*t^8.94)/y + (4*t^8.96)/y - t^4.64*y - t^6.74*y - 2*t^6.78*y + 2*t^7.23*y + t^7.28*y + t^7.36*y - t^7.93*y + t^8.38*y + 2*t^8.42*y + 2*t^8.5*y + t^8.55*y + t^8.8*y - t^8.83*y + 2*t^8.84*y + 4*t^8.86*y - 2*t^8.88*y + 12*t^8.9*y - 2*t^8.92*y + 8*t^8.94*y + 4*t^8.96*y t^2.1/(g1^4*g2^4) + t^2.14/(g1^4*g3^4) + t^2.14/(g2^4*g4^4) + t^3.28/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g5^4*g6^4*t^3.71 + g3^4*g5^4*t^3.76 + g4^4*g5^4*t^3.76 + g3^4*g6^4*t^3.76 + g4^4*g6^4*t^3.76 + g1^4*g5^4*t^3.81 + g2^4*g5^4*t^3.81 + g1^4*g6^4*t^3.81 + g2^4*g6^4*t^3.81 + g3^4*g4^4*t^3.82 + g2^4*g3^4*t^3.86 + g1^4*g4^4*t^3.86 + t^4.19/(g1^8*g2^8) + t^4.23/(g1^8*g2^4*g3^4) + t^4.23/(g1^4*g2^8*g4^4) + t^4.28/(g1^8*g3^8) + t^4.28/(g2^8*g4^8) + t^4.28/(g1^4*g2^4*g3^4*g4^4) + (g5^7*t^5.35)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.35)/(g1*g2*g3*g4) + (g6^7*t^5.35)/(g1*g2*g3*g4*g5) + t^5.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g3^3*g5^3*t^5.41)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.41)/(g1*g2*g3*g6) + (g3^3*g6^3*t^5.41)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.41)/(g1*g2*g3*g5) + t^5.42/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + t^5.42/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (g1^3*g5^3*t^5.45)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.45)/(g1*g3*g4*g6) + (g1^3*g6^3*t^5.45)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.45)/(g1*g3*g4*g5) + (g3^7*t^5.46)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.46)/(g1*g2*g5*g6) + (g4^7*t^5.46)/(g1*g2*g3*g5*g6) + (g1^3*g3^3*t^5.5)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.5)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.5)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.5)/(g1*g3*g5*g6) + (g1^7*t^5.55)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.55)/(g3*g4*g5*g6) + (g2^7*t^5.55)/(g1*g3*g4*g5*g6) + (g5^4*g6^4*t^5.8)/(g1^4*g2^4) + (g5^4*g6^4*t^5.84)/(g1^4*g3^4) + (g5^4*g6^4*t^5.84)/(g2^4*g4^4) + (g3^4*g5^4*t^5.86)/(g1^4*g2^4) + (g4^4*g5^4*t^5.86)/(g1^4*g2^4) + (g3^4*g6^4*t^5.86)/(g1^4*g2^4) + (g4^4*g6^4*t^5.86)/(g1^4*g2^4) + (g5^4*t^5.9)/g1^4 + (g5^4*t^5.9)/g2^4 + (g3^4*g5^4*t^5.9)/(g2^4*g4^4) + (g4^4*g5^4*t^5.9)/(g1^4*g3^4) + (g6^4*t^5.9)/g1^4 + (g6^4*t^5.9)/g2^4 + (g3^4*g6^4*t^5.9)/(g2^4*g4^4) + (g4^4*g6^4*t^5.9)/(g1^4*g3^4) + (g3^4*g4^4*t^5.92)/(g1^4*g2^4) + (g2^4*g5^4*t^5.94)/(g1^4*g3^4) + (g1^4*g5^4*t^5.94)/(g2^4*g4^4) + (g2^4*g6^4*t^5.94)/(g1^4*g3^4) + (g1^4*g6^4*t^5.94)/(g2^4*g4^4) - 6*t^6. - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.04)/g3^4 - (g2^4*t^6.04)/g3^4 - (g1^4*t^6.04)/g4^4 - (g2^4*t^6.04)/g4^4 - (g3^4*t^6.06)/g5^4 - (g4^4*t^6.06)/g5^4 - (g3^4*t^6.06)/g6^4 - (g4^4*t^6.06)/g6^4 - (g1^4*t^6.1)/g5^4 - (g2^4*t^6.1)/g5^4 - (g1^4*t^6.1)/g6^4 - (g2^4*t^6.1)/g6^4 + t^6.29/(g1^12*g2^12) + t^6.33/(g1^12*g2^8*g3^4) + t^6.33/(g1^8*g2^12*g4^4) + t^6.37/(g1^12*g2^4*g3^8) + t^6.37/(g1^4*g2^12*g4^8) + t^6.37/(g1^8*g2^8*g3^4*g4^4) + t^6.41/(g1^12*g3^12) + t^6.41/(g2^12*g4^12) + t^6.41/(g1^4*g2^8*g3^4*g4^8) + t^6.41/(g1^8*g2^4*g3^8*g4^4) + t^6.57/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g5^2*g6^2*t^6.99)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g5^2*t^7.05)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.05)/(g1^2*g2^2*g3^2*g6^2) + (g3^2*g6^2*t^7.05)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.05)/(g1^2*g2^2*g3^2*g5^2) + (g1^2*g5^2*t^7.09)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.09)/(g1^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.09)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.09)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g4^2*t^7.1)/(g1^2*g2^2*g5^2*g6^2) + (g2^2*g3^2*t^7.15)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.15)/(g2^2*g3^2*g5^2*g6^2) + g5^8*g6^8*t^7.41 + (g5^7*t^7.44)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.44)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.44)/(g1^5*g2^5*g3*g4*g5) + g3^4*g5^8*g6^4*t^7.47 + g4^4*g5^8*g6^4*t^7.47 + g3^4*g5^4*g6^8*t^7.47 + g4^4*g5^4*g6^8*t^7.47 + t^7.48/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g5^7*t^7.49)/(g1*g2^5*g3*g4^5*g6) + (g5^7*t^7.49)/(g1^5*g2*g3^5*g4*g6) + (g5^3*g6^3*t^7.49)/(g1*g2^5*g3*g4^5) + (g5^3*g6^3*t^7.49)/(g1^5*g2*g3^5*g4) + (g6^7*t^7.49)/(g1*g2^5*g3*g4^5*g5) + (g6^7*t^7.49)/(g1^5*g2*g3^5*g4*g5) + (g3^3*g5^3*t^7.5)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.5)/(g1^5*g2^5*g3*g6) + (g3^3*g6^3*t^7.5)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.5)/(g1^5*g2^5*g3*g5) + g1^4*g5^8*g6^4*t^7.51 + g2^4*g5^8*g6^4*t^7.51 + g1^4*g5^4*g6^8*t^7.51 + g2^4*g5^4*g6^8*t^7.51 + t^7.52/(g1^6*g2^10*g3^2*g4^6*g5^2*g6^2) + t^7.52/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + g3^8*g5^8*t^7.53 + g3^4*g4^4*g5^8*t^7.53 + g4^8*g5^8*t^7.53 + g3^8*g5^4*g6^4*t^7.53 + 2*g3^4*g4^4*g5^4*g6^4*t^7.53 + g4^8*g5^4*g6^4*t^7.53 + g3^8*g6^8*t^7.53 + g3^4*g4^4*g6^8*t^7.53 + g4^8*g6^8*t^7.53 + (g3^3*g5^3*t^7.54)/(g1*g2^5*g4^5*g6) + (g5^3*t^7.54)/(g1*g2^5*g3*g4*g6) + (g5^3*t^7.54)/(g1^5*g2*g3*g4*g6) + (g4^3*g5^3*t^7.54)/(g1^5*g2*g3^5*g6) + (g3^3*g6^3*t^7.54)/(g1*g2^5*g4^5*g5) + (g6^3*t^7.54)/(g1*g2^5*g3*g4*g5) + (g6^3*t^7.54)/(g1^5*g2*g3*g4*g5) + (g4^3*g6^3*t^7.54)/(g1^5*g2*g3^5*g5) + t^7.56/(g1^2*g2^10*g3^2*g4^10*g5^2*g6^2) + t^7.56/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.56/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + (g3^7*t^7.56)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.56)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.56)/(g1^5*g2^5*g3*g5*g6) + g1^4*g3^4*g5^8*t^7.57 + g2^4*g3^4*g5^8*t^7.57 + g1^4*g4^4*g5^8*t^7.57 + g2^4*g4^4*g5^8*t^7.57 + g1^4*g3^4*g5^4*g6^4*t^7.57 + 2*g2^4*g3^4*g5^4*g6^4*t^7.57 + 2*g1^4*g4^4*g5^4*g6^4*t^7.57 + g2^4*g4^4*g5^4*g6^4*t^7.57 + g1^4*g3^4*g6^8*t^7.57 + g2^4*g3^4*g6^8*t^7.57 + g1^4*g4^4*g6^8*t^7.57 + g2^4*g4^4*g6^8*t^7.57 + g3^8*g4^4*g5^4*t^7.58 + g3^4*g4^8*g5^4*t^7.58 + g3^8*g4^4*g6^4*t^7.58 + g3^4*g4^8*g6^4*t^7.58 + (g1^3*g5^3*t^7.59)/(g2^5*g3*g4^5*g6) + (g2^3*g5^3*t^7.59)/(g1^5*g3^5*g4*g6) + (g1^3*g6^3*t^7.59)/(g2^5*g3*g4^5*g5) + (g2^3*g6^3*t^7.59)/(g1^5*g3^5*g4*g5) + (g3^7*t^7.6)/(g1*g2^5*g4^5*g5*g6) + (g3^3*t^7.6)/(g1*g2^5*g4*g5*g6) + (g3^3*t^7.6)/(g1^5*g2*g4*g5*g6) + (g4^3*t^7.6)/(g1*g2^5*g3*g5*g6) + (g4^3*t^7.6)/(g1^5*g2*g3*g5*g6) + (g4^7*t^7.6)/(g1^5*g2*g3^5*g5*g6) + g1^8*g5^8*t^7.61 + g1^4*g2^4*g5^8*t^7.61 + g2^8*g5^8*t^7.61 + g1^8*g5^4*g6^4*t^7.61 + g1^4*g2^4*g5^4*g6^4*t^7.61 + g2^8*g5^4*g6^4*t^7.61 + g1^8*g6^8*t^7.61 + g1^4*g2^4*g6^8*t^7.61 + g2^8*g6^8*t^7.61 + g2^4*g3^8*g5^4*t^7.63 + g1^4*g3^4*g4^4*g5^4*t^7.63 + g2^4*g3^4*g4^4*g5^4*t^7.63 + g1^4*g4^8*g5^4*t^7.63 + g2^4*g3^8*g6^4*t^7.63 + g1^4*g3^4*g4^4*g6^4*t^7.63 + g2^4*g3^4*g4^4*g6^4*t^7.63 + g1^4*g4^8*g6^4*t^7.63 + g3^8*g4^8*t^7.64 - (g5^3*t^7.64)/(g1*g2*g3*g4*g6^5) + (g1^3*g3^3*t^7.64)/(g2^5*g4^5*g5*g6) + (g1^3*t^7.64)/(g2^5*g3*g4*g5*g6) - (2*t^7.64)/(g1*g2*g3*g4*g5*g6) + (g2^3*t^7.64)/(g1^5*g3*g4*g5*g6) + (g2^3*g4^3*t^7.64)/(g1^5*g3^5*g5*g6) - (g6^3*t^7.64)/(g1*g2*g3*g4*g5^5) + g2^8*g3^4*g5^4*t^7.67 + g1^8*g4^4*g5^4*t^7.67 + g2^8*g3^4*g6^4*t^7.67 + g1^8*g4^4*g6^4*t^7.67 + g2^4*g3^8*g4^4*t^7.68 + g1^4*g3^4*g4^8*t^7.68 + (g1^7*t^7.68)/(g2^5*g3*g4^5*g5*g6) + (g2^7*t^7.68)/(g1^5*g3^5*g4*g5*g6) - (g3^3*t^7.7)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.7)/(g1*g2*g3*g5*g6^5) - (g3^3*t^7.7)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.7)/(g1*g2*g3*g5^5*g6) + g2^8*g3^8*t^7.72 + g1^8*g4^8*t^7.72 - (g1^3*t^7.74)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.74)/(g1*g3*g4*g5*g6^5) - (g1^3*t^7.74)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.74)/(g1*g3*g4*g5^5*g6) + (g5^4*g6^4*t^7.9)/(g1^8*g2^8) + (g5^4*g6^4*t^7.94)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.94)/(g1^4*g2^8*g4^4) + (g3^4*g5^4*t^7.95)/(g1^8*g2^8) + (g4^4*g5^4*t^7.95)/(g1^8*g2^8) + (g3^4*g6^4*t^7.95)/(g1^8*g2^8) + (g4^4*g6^4*t^7.95)/(g1^8*g2^8) + (g5^4*g6^4*t^7.98)/(g1^8*g3^8) + (g5^4*g6^4*t^7.98)/(g2^8*g4^8) + (g5^4*g6^4*t^7.98)/(g1^4*g2^4*g3^4*g4^4) + (g5^4*t^8.)/(g1^4*g2^8) + (g5^4*t^8.)/(g1^8*g2^4) + (g3^4*g5^4*t^8.)/(g1^4*g2^8*g4^4) + (g4^4*g5^4*t^8.)/(g1^8*g2^4*g3^4) + (g6^4*t^8.)/(g1^4*g2^8) + (g6^4*t^8.)/(g1^8*g2^4) + (g3^4*g6^4*t^8.)/(g1^4*g2^8*g4^4) + (g4^4*g6^4*t^8.)/(g1^8*g2^4*g3^4) + (g3^4*g4^4*t^8.01)/(g1^8*g2^8) + (g5^4*t^8.04)/(g1^8*g3^4) + (g3^4*g5^4*t^8.04)/(g2^8*g4^8) + (g5^4*t^8.04)/(g2^8*g4^4) + (g4^4*g5^4*t^8.04)/(g1^8*g3^8) + (g6^4*t^8.04)/(g1^8*g3^4) + (g3^4*g6^4*t^8.04)/(g2^8*g4^8) + (g6^4*t^8.04)/(g2^8*g4^4) + (g4^4*g6^4*t^8.04)/(g1^8*g3^8) - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 + (g2^4*g5^4*t^8.08)/(g1^8*g3^8) + (g1^4*g5^4*t^8.08)/(g2^8*g4^8) + (g2^4*g6^4*t^8.08)/(g1^8*g3^8) + (g1^4*g6^4*t^8.08)/(g2^8*g4^8) - (6*t^8.1)/(g1^4*g2^4) - (g3^4*t^8.1)/(g1^4*g2^4*g4^4) - (g4^4*t^8.1)/(g1^4*g2^4*g3^4) - (g5^4*t^8.1)/(g1^4*g2^4*g6^4) - (g6^4*t^8.1)/(g1^4*g2^4*g5^4) - g1*g2*g3^5*g4*g5^5*g6*t^8.12 - g1*g2*g3*g4^5*g5^5*g6*t^8.12 - g1*g2*g3^5*g4*g5*g6^5*t^8.12 - g1*g2*g3*g4^5*g5*g6^5*t^8.12 - (6*t^8.14)/(g1^4*g3^4) - t^8.14/(g2^4*g3^4) - t^8.14/(g1^4*g4^4) - (6*t^8.14)/(g2^4*g4^4) - (g5^4*t^8.14)/(g1^4*g3^4*g6^4) - (g5^4*t^8.14)/(g2^4*g4^4*g6^4) - (g6^4*t^8.14)/(g1^4*g3^4*g5^4) - (g6^4*t^8.14)/(g2^4*g4^4*g5^4) - (g3^4*t^8.15)/(g1^4*g2^4*g5^4) - (g4^4*t^8.15)/(g1^4*g2^4*g5^4) - (g3^4*t^8.15)/(g1^4*g2^4*g6^4) - (g4^4*t^8.15)/(g1^4*g2^4*g6^4) - g1^5*g2*g3*g4*g5^5*g6*t^8.16 - g1*g2^5*g3*g4*g5^5*g6*t^8.16 - g1^5*g2*g3*g4*g5*g6^5*t^8.16 - g1*g2^5*g3*g4*g5*g6^5*t^8.16 - (g2^4*t^8.18)/(g1^4*g3^8) - (g1^4*t^8.18)/(g2^4*g4^8) - t^8.18/(g3^4*g4^4) - (g1^4*t^8.18)/(g2^4*g3^4*g4^4) - (g2^4*t^8.18)/(g1^4*g3^4*g4^4) - g1*g2*g3^9*g4*g5*g6*t^8.18 - g1*g2*g3^5*g4^5*g5*g6*t^8.18 - g1*g2*g3*g4^9*g5*g6*t^8.18 - t^8.19/(g1^4*g5^4) - t^8.19/(g2^4*g5^4) - (g3^4*t^8.19)/(g2^4*g4^4*g5^4) - (g4^4*t^8.19)/(g1^4*g3^4*g5^4) - t^8.19/(g1^4*g6^4) - t^8.19/(g2^4*g6^4) - (g3^4*t^8.19)/(g2^4*g4^4*g6^4) - (g4^4*t^8.19)/(g1^4*g3^4*g6^4) - g1^5*g2*g3^5*g4*g5*g6*t^8.22 - g1*g2^5*g3^5*g4*g5*g6*t^8.22 - g1^5*g2*g3*g4^5*g5*g6*t^8.22 - g1*g2^5*g3*g4^5*g5*g6*t^8.22 - (g2^4*t^8.24)/(g1^4*g3^4*g5^4) - (g1^4*t^8.24)/(g2^4*g4^4*g5^4) - (g2^4*t^8.24)/(g1^4*g3^4*g6^4) - (g1^4*t^8.24)/(g2^4*g4^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.26 - g1^5*g2^5*g3*g4*g5*g6*t^8.26 - g1*g2^9*g3*g4*g5*g6*t^8.26 + t^8.29/g5^8 + t^8.29/g6^8 + t^8.29/(g5^4*g6^4) + t^8.38/(g1^16*g2^16) + t^8.42/(g1^16*g2^12*g3^4) + t^8.42/(g1^12*g2^16*g4^4) + t^8.47/(g1^16*g2^8*g3^8) + t^8.47/(g1^8*g2^16*g4^8) + t^8.47/(g1^12*g2^12*g3^4*g4^4) + t^8.51/(g1^16*g2^4*g3^12) + t^8.51/(g1^4*g2^16*g4^12) + t^8.51/(g1^8*g2^12*g3^4*g4^8) + t^8.51/(g1^12*g2^8*g3^8*g4^4) + t^8.55/(g1^16*g3^16) + t^8.55/(g2^16*g4^16) + t^8.55/(g1^4*g2^12*g3^4*g4^12) + t^8.55/(g1^8*g2^8*g3^8*g4^8) + t^8.55/(g1^12*g2^4*g3^12*g4^4) + (g5^5*t^8.63)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g5*g6*t^8.63)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.63)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.66/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g3*g5*t^8.69)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.69)/(g1^3*g2^3*g3^3*g6^3) + (g3*g6*t^8.69)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.69)/(g1^3*g2^3*g3^3*g5^3) + t^8.71/(g1^4*g2^8*g3^4*g4^8*g5^4*g6^4) + t^8.71/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + (g1*g5*t^8.73)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.73)/(g1^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.73)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.73)/(g1^3*g3^3*g4^3*g5^3) + (g3^5*t^8.75)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.75)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.75)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g3*t^8.79)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.79)/(g1^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.79)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.79)/(g1^3*g3^3*g5^3*g6^3) + (g1^5*t^8.83)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.83)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.83)/(g1^3*g3^3*g4^3*g5^3*g6^3) - t^4.64/(g1*g2*g3*g4*g5*g6*y) - t^6.74/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.78/(g1*g2^5*g3*g4^5*g5*g6*y) - t^6.78/(g1^5*g2*g3^5*g4*g5*g6*y) + t^7.23/(g1^8*g2^4*g3^4*y) + t^7.23/(g1^4*g2^8*g4^4*y) + t^7.28/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*g6*t^7.36)/y - t^7.93/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.42/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*y) + t^8.42/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + (g1^3*g3^3*t^8.5)/(g2*g4*g5*g6*y) + (g2^3*g4^3*t^8.5)/(g1*g3*g5*g6*y) + (g1^3*g2^3*t^8.55)/(g3*g4*g5*g6*y) + (g5^4*g6^4*t^8.8)/(g1^4*g2^4*y) - t^8.83/(g1^9*g2^9*g3*g4*g5*g6*y) + (g5^4*g6^4*t^8.84)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.84)/(g2^4*g4^4*y) + (g3^4*g5^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.86)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g2^4*y) - t^8.88/(g1^5*g2^9*g3*g4^5*g5*g6*y) - t^8.88/(g1^9*g2^5*g3^5*g4*g5*g6*y) + (2*g5^4*t^8.9)/(g1^4*y) + (2*g5^4*t^8.9)/(g2^4*y) + (g3^4*g5^4*t^8.9)/(g2^4*g4^4*y) + (g4^4*g5^4*t^8.9)/(g1^4*g3^4*y) + (2*g6^4*t^8.9)/(g1^4*y) + (2*g6^4*t^8.9)/(g2^4*y) + (g3^4*g6^4*t^8.9)/(g2^4*g4^4*y) + (g4^4*g6^4*t^8.9)/(g1^4*g3^4*y) + (g3^4*g4^4*t^8.92)/(g1^4*g2^4*y) - t^8.92/(g1*g2^9*g3*g4^9*g5*g6*y) - t^8.92/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.92/(g1^9*g2*g3^9*g4*g5*g6*y) + (g5^4*t^8.94)/(g3^4*y) + (g2^4*g5^4*t^8.94)/(g1^4*g3^4*y) + (g5^4*t^8.94)/(g4^4*y) + (g1^4*g5^4*t^8.94)/(g2^4*g4^4*y) + (g6^4*t^8.94)/(g3^4*y) + (g2^4*g6^4*t^8.94)/(g1^4*g3^4*y) + (g6^4*t^8.94)/(g4^4*y) + (g1^4*g6^4*t^8.94)/(g2^4*g4^4*y) + (g3^4*t^8.96)/(g1^4*y) + (g3^4*t^8.96)/(g2^4*y) + (g4^4*t^8.96)/(g1^4*y) + (g4^4*t^8.96)/(g2^4*y) - (t^4.64*y)/(g1*g2*g3*g4*g5*g6) - (t^6.74*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.78*y)/(g1*g2^5*g3*g4^5*g5*g6) - (t^6.78*y)/(g1^5*g2*g3^5*g4*g5*g6) + (t^7.23*y)/(g1^8*g2^4*g3^4) + (t^7.23*y)/(g1^4*g2^8*g4^4) + (t^7.28*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*g5*g6*t^7.36*y - (t^7.93*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.38*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.42*y)/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (t^8.42*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (g1^3*g3^3*t^8.5*y)/(g2*g4*g5*g6) + (g2^3*g4^3*t^8.5*y)/(g1*g3*g5*g6) + (g1^3*g2^3*t^8.55*y)/(g3*g4*g5*g6) + (g5^4*g6^4*t^8.8*y)/(g1^4*g2^4) - (t^8.83*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g5^4*g6^4*t^8.84*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.84*y)/(g2^4*g4^4) + (g3^4*g5^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.86*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g2^4) - (t^8.88*y)/(g1^5*g2^9*g3*g4^5*g5*g6) - (t^8.88*y)/(g1^9*g2^5*g3^5*g4*g5*g6) + (2*g5^4*t^8.9*y)/g1^4 + (2*g5^4*t^8.9*y)/g2^4 + (g3^4*g5^4*t^8.9*y)/(g2^4*g4^4) + (g4^4*g5^4*t^8.9*y)/(g1^4*g3^4) + (2*g6^4*t^8.9*y)/g1^4 + (2*g6^4*t^8.9*y)/g2^4 + (g3^4*g6^4*t^8.9*y)/(g2^4*g4^4) + (g4^4*g6^4*t^8.9*y)/(g1^4*g3^4) + (g3^4*g4^4*t^8.92*y)/(g1^4*g2^4) - (t^8.92*y)/(g1*g2^9*g3*g4^9*g5*g6) - (t^8.92*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.92*y)/(g1^9*g2*g3^9*g4*g5*g6) + (g5^4*t^8.94*y)/g3^4 + (g2^4*g5^4*t^8.94*y)/(g1^4*g3^4) + (g5^4*t^8.94*y)/g4^4 + (g1^4*g5^4*t^8.94*y)/(g2^4*g4^4) + (g6^4*t^8.94*y)/g3^4 + (g2^4*g6^4*t^8.94*y)/(g1^4*g3^4) + (g6^4*t^8.94*y)/g4^4 + (g1^4*g6^4*t^8.94*y)/(g2^4*g4^4) + (g3^4*t^8.96*y)/g1^4 + (g3^4*t^8.96*y)/g2^4 + (g4^4*t^8.96*y)/g1^4 + (g4^4*t^8.96*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55756 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.9183 1.143 0.8034 [X:[], M:[0.7048, 0.7257, 0.7048], q:[0.6454, 0.6497, 0.6289], qb:[0.6454, 0.6289, 0.617], phi:[0.5462]] 2*t^2.11 + t^2.18 + t^3.28 + 2*t^3.74 + t^3.77 + 2*t^3.79 + t^3.8 + 3*t^3.82 + 2*t^3.84 + t^3.87 + 3*t^4.23 + 2*t^4.29 + t^4.35 + t^5.34 + 2*t^5.38 + 2*t^5.39 + 3*t^5.41 + 2*t^5.43 + t^5.44 + t^5.45 + 4*t^5.46 + 2*t^5.47 + 3*t^5.51 + 2*t^5.52 + t^5.54 + 4*t^5.85 + 2*t^5.89 + 3*t^5.9 + 2*t^5.91 + 4*t^5.94 + t^5.95 + t^5.98 - 7*t^6. - t^4.64/y - t^4.64*y detail
55752 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ 0.9179 1.1412 0.8044 [X:[], M:[0.7056, 0.7124, 0.7328], q:[0.6524, 0.642, 0.6352], qb:[0.6253, 0.6336, 0.6336], phi:[0.5445]] t^2.12 + t^2.14 + t^2.2 + t^3.27 + 3*t^3.78 + t^3.8 + 2*t^3.81 + 4*t^3.83 + 2*t^3.86 + t^4.23 + t^4.25 + t^4.27 + t^4.32 + t^4.34 + t^4.4 + t^5.38 + t^5.39 + t^5.4 + 3*t^5.41 + 7*t^5.44 + 3*t^5.46 + 2*t^5.47 + 3*t^5.49 + t^5.5 + t^5.52 + t^5.55 + 2*t^5.89 + t^5.9 + 2*t^5.91 + 3*t^5.92 + 3*t^5.94 + 2*t^5.96 - 7*t^6. - t^4.63/y - t^4.63*y detail
55710 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_1$ 0.939 1.1841 0.793 [X:[], M:[0.6948, 0.7073, 0.7076, 0.6948], q:[0.659, 0.6462, 0.6336], qb:[0.6462, 0.6167, 0.6167], phi:[0.5454]] 2*t^2.08 + 2*t^2.12 + t^3.27 + t^3.7 + 2*t^3.75 + 4*t^3.79 + 2*t^3.83 + 2*t^3.84 + 3*t^4.17 + 4*t^4.21 + 2*t^4.24 + t^4.25 + 3*t^5.34 + 2*t^5.36 + 3*t^5.39 + t^5.4 + 4*t^5.42 + t^5.44 + 2*t^5.46 + 2*t^5.48 + 4*t^5.51 + 2*t^5.55 + t^5.59 + 2*t^5.78 + 2*t^5.82 + 4*t^5.84 + 10*t^5.87 + 8*t^5.91 + 3*t^5.92 + 2*t^5.95 - 10*t^6. - t^4.64/y - t^4.64*y detail
55810 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_3\tilde{q}_1$ 0.9387 1.1827 0.7937 [X:[], M:[0.704, 0.704, 0.704, 0.704], q:[0.648, 0.648, 0.648], qb:[0.648, 0.616, 0.616], phi:[0.544]] 4*t^2.11 + t^3.26 + t^3.7 + 8*t^3.79 + 2*t^3.89 + 10*t^4.22 + 3*t^5.33 + 4*t^5.38 + 8*t^5.42 + 10*t^5.52 + 4*t^5.81 + 24*t^5.9 - 12*t^6. - t^4.63/y - t^4.63*y detail
55807 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_3\tilde{q}_2$ 0.9383 1.1805 0.7949 [X:[], M:[0.703, 0.703, 0.7144, 0.7144], q:[0.6461, 0.6508, 0.6508], qb:[0.6348, 0.6348, 0.6151], phi:[0.5419]] 2*t^2.11 + 2*t^2.14 + t^3.25 + 2*t^3.75 + t^3.78 + 2*t^3.8 + t^3.81 + 2*t^3.84 + 2*t^3.86 + t^3.9 + 3*t^4.22 + 4*t^4.25 + 3*t^4.29 + t^5.32 + 2*t^5.36 + 2*t^5.38 + 2*t^5.39 + t^5.41 + 2*t^5.42 + 3*t^5.43 + 2*t^5.47 + 4*t^5.48 + t^5.5 + 2*t^5.52 + 3*t^5.53 + 4*t^5.86 + 4*t^5.89 + 3*t^5.91 + 2*t^5.92 + 2*t^5.93 + 2*t^5.94 + 2*t^5.95 + 2*t^5.97 + 2*t^5.99 - 6*t^6. - t^4.63/y - t^4.63*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55444 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ 0.8986 1.1079 0.8111 [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y detail