Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55756 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_2\tilde{q}_1\tilde{q}_2$ 0.9183 1.143 0.8034 [X:[], M:[0.7048, 0.7257, 0.7048], q:[0.6454, 0.6497, 0.6289], qb:[0.6454, 0.6289, 0.617], phi:[0.5462]] [X:[], M:[[-4, 1, -2, -2, 0], [0, 0, -2, -2, 0], [-4, 0, -2, 0, 0]], q:[[0, -1, 2, 2, 0], [4, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 4]], phi:[[-1, 0, -1, -1, -1]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ q_3\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_3^2$, $ M_1^2$, $ M_1M_3$, $ M_1M_2$, $ M_2M_3$, $ M_2^2$, $ \phi_1\tilde{q}_3^2$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_1\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_3$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_3q_3\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_3q_1\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_3q_3\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_2q_2\tilde{q}_3$ . -7 2*t^2.11 + t^2.18 + t^3.28 + 2*t^3.74 + t^3.77 + 2*t^3.79 + t^3.8 + 3*t^3.82 + 2*t^3.84 + t^3.87 + 3*t^4.23 + 2*t^4.29 + t^4.35 + t^5.34 + 2*t^5.38 + 2*t^5.39 + 3*t^5.41 + 2*t^5.43 + t^5.44 + t^5.45 + 4*t^5.46 + 2*t^5.47 + 3*t^5.51 + 2*t^5.52 + t^5.54 + 4*t^5.85 + 2*t^5.89 + 3*t^5.9 + 2*t^5.91 + 4*t^5.94 + t^5.95 + t^5.98 - 7*t^6. - 2*t^6.04 - 3*t^6.05 - 2*t^6.06 - 2*t^6.09 - t^6.1 + 4*t^6.34 + 3*t^6.41 + 2*t^6.47 + t^6.53 + t^6.55 + 2*t^7.01 + t^7.05 + 2*t^7.06 + t^7.08 + 3*t^7.1 + 2*t^7.11 + t^7.15 + 2*t^7.46 + 3*t^7.48 + 4*t^7.49 + 5*t^7.51 + 5*t^7.52 + 6*t^7.53 + 5*t^7.54 + 3*t^7.55 + 6*t^7.56 + 9*t^7.57 + 6*t^7.58 + 5*t^7.59 + 4*t^7.6 + 8*t^7.61 + 4*t^7.62 + 5*t^7.63 + t^7.64 + 8*t^7.65 + 6*t^7.66 + t^7.67 - t^7.69 + 3*t^7.7 + t^7.71 - 2*t^7.72 - t^7.74 + t^7.75 + 6*t^7.97 + 3*t^8. + 4*t^8.02 + 3*t^8.03 + 5*t^8.05 - t^8.06 - t^8.08 + 2*t^8.09 - 2*t^8.1 - 14*t^8.11 - 3*t^8.13 - 5*t^8.15 - 7*t^8.16 - 11*t^8.18 - 5*t^8.2 - 2*t^8.21 - 3*t^8.23 - 2*t^8.24 - 2*t^8.25 - t^8.26 - t^8.28 + t^8.3 + 5*t^8.46 + 4*t^8.52 + 3*t^8.58 + t^8.62 + 4*t^8.65 + 2*t^8.67 + 3*t^8.69 + 2*t^8.7 + t^8.71 + t^8.72 + t^8.73 + 4*t^8.74 + 2*t^8.75 + 3*t^8.79 + 2*t^8.8 + t^8.81 - t^4.64/y - (2*t^6.75)/y - t^6.82/y + t^7.23/y + (2*t^7.29)/y + t^7.36/y - t^7.92/y + (2*t^8.39)/y + t^8.45/y + t^8.46/y + (2*t^8.52)/y + (4*t^8.85)/y - (3*t^8.87)/y + (2*t^8.89)/y + (4*t^8.9)/y + (4*t^8.91)/y - (2*t^8.93)/y + (6*t^8.94)/y + (5*t^8.95)/y + (2*t^8.96)/y + t^8.98/y + t^8.99/y - t^4.64*y - 2*t^6.75*y - t^6.82*y + t^7.23*y + 2*t^7.29*y + t^7.36*y - t^7.92*y + 2*t^8.39*y + t^8.45*y + t^8.46*y + 2*t^8.52*y + 4*t^8.85*y - 3*t^8.87*y + 2*t^8.89*y + 4*t^8.9*y + 4*t^8.91*y - 2*t^8.93*y + 6*t^8.94*y + 5*t^8.95*y + 2*t^8.96*y + t^8.98*y + t^8.99*y t^2.11/(g1^4*g3^2) + (g2*t^2.11)/(g1^4*g3^2*g4^2) + t^2.18/(g3^2*g4^2) + t^3.28/(g1^2*g3^2*g4^2*g5^2) + g2*g5^4*t^3.74 + g4^2*g5^4*t^3.74 + g2*g4^2*t^3.77 + g3^2*g5^4*t^3.79 + (g3^2*g4^2*g5^4*t^3.79)/g2 + g1^4*g5^4*t^3.8 + g2*g3^2*t^3.82 + g3^2*g4^2*t^3.82 + (g3^2*g4^4*t^3.82)/g2 + g1^4*g2*t^3.84 + g1^4*g4^2*t^3.84 + (g3^4*g4^2*t^3.87)/g2 + t^4.23/(g1^8*g3^4) + (g2^2*t^4.23)/(g1^8*g3^4*g4^4) + (g2*t^4.23)/(g1^8*g3^4*g4^2) + (g2*t^4.29)/(g1^4*g3^4*g4^4) + t^4.29/(g1^4*g3^4*g4^2) + t^4.35/(g3^4*g4^4) + (g5^7*t^5.34)/(g1*g3*g4) + (g2*g5^3*t^5.38)/(g1*g3*g4) + (g4*g5^3*t^5.38)/(g1*g3) + (g2*t^5.39)/(g1^6*g3^4*g4^4*g5^2) + t^5.39/(g1^6*g3^4*g4^2*g5^2) + (g2^2*t^5.41)/(g1*g3*g4*g5) + (g2*g4*t^5.41)/(g1*g3*g5) + (g4^3*t^5.41)/(g1*g3*g5) + (g3*g5^3*t^5.43)/(g1*g4) + (g3*g4*g5^3*t^5.43)/(g1*g2) + (g1^3*g5^3*t^5.44)/(g3*g4) + t^5.45/(g1^2*g3^4*g4^4*g5^2) + (g2*g3*t^5.46)/(g1*g4*g5) + (2*g3*g4*t^5.46)/(g1*g5) + (g3*g4^3*t^5.46)/(g1*g2*g5) + (g1^3*g2*t^5.47)/(g3*g4*g5) + (g1^3*g4*t^5.47)/(g3*g5) + (g3^3*t^5.51)/(g1*g4*g5) + (g3^3*g4*t^5.51)/(g1*g2*g5) + (g3^3*g4^3*t^5.51)/(g1*g2^2*g5) + (g1^3*g3*t^5.52)/(g4*g5) + (g1^3*g3*g4*t^5.52)/(g2*g5) + (g1^7*t^5.54)/(g3*g4*g5) + (2*g2*g5^4*t^5.85)/(g1^4*g3^2) + (g2^2*g5^4*t^5.85)/(g1^4*g3^2*g4^2) + (g4^2*g5^4*t^5.85)/(g1^4*g3^2) + (g2^2*t^5.89)/(g1^4*g3^2) + (g2*g4^2*t^5.89)/(g1^4*g3^2) + (g5^4*t^5.9)/g1^4 + (g2*g5^4*t^5.9)/(g1^4*g4^2) + (g4^2*g5^4*t^5.9)/(g1^4*g2) + (g5^4*t^5.91)/g3^2 + (g2*g5^4*t^5.91)/(g3^2*g4^2) + (g2*t^5.94)/g1^4 + (g2^2*t^5.94)/(g1^4*g4^2) + (g4^2*t^5.94)/g1^4 + (g4^4*t^5.94)/(g1^4*g2) + (g2*t^5.95)/g3^2 + (g1^4*g5^4*t^5.98)/(g3^2*g4^2) - 5*t^6. - (g2*t^6.)/g4^2 - (g4^2*t^6.)/g2 - (g2*t^6.04)/g5^4 - (g4^2*t^6.04)/g5^4 - (g3^2*t^6.05)/g2 - (g3^2*t^6.05)/g4^2 - (g3^2*g4^2*t^6.05)/g2^2 - (g1^4*t^6.06)/g2 - (g1^4*t^6.06)/g4^2 - (g3^2*t^6.09)/g5^4 - (g3^2*g4^2*t^6.09)/(g2*g5^4) - (g1^4*t^6.1)/g5^4 + t^6.34/(g1^12*g3^6) + (g2^3*t^6.34)/(g1^12*g3^6*g4^6) + (g2^2*t^6.34)/(g1^12*g3^6*g4^4) + (g2*t^6.34)/(g1^12*g3^6*g4^2) + (g2^2*t^6.41)/(g1^8*g3^6*g4^6) + (g2*t^6.41)/(g1^8*g3^6*g4^4) + t^6.41/(g1^8*g3^6*g4^2) + (g2*t^6.47)/(g1^4*g3^6*g4^6) + t^6.47/(g1^4*g3^6*g4^4) + t^6.53/(g3^6*g4^6) + t^6.55/(g1^4*g3^4*g4^4*g5^4) + (g5^2*t^7.01)/(g1^2*g3^2) + (g2*g5^2*t^7.01)/(g1^2*g3^2*g4^2) + (g2*t^7.05)/(g1^2*g3^2*g5^2) + (g5^2*t^7.06)/(g1^2*g2) + (g5^2*t^7.06)/(g1^2*g4^2) + (g1^2*g5^2*t^7.08)/(g3^2*g4^2) + t^7.1/(g1^2*g5^2) + (g2*t^7.1)/(g1^2*g4^2*g5^2) + (g4^2*t^7.1)/(g1^2*g2*g5^2) + (g1^2*t^7.11)/(g3^2*g5^2) + (g1^2*g2*t^7.11)/(g3^2*g4^2*g5^2) + (g3^2*t^7.15)/(g1^2*g2*g5^2) + (g2*g5^7*t^7.46)/(g1^5*g3^3*g4^3) + (g5^7*t^7.46)/(g1^5*g3^3*g4) + g2^2*g5^8*t^7.48 + g2*g4^2*g5^8*t^7.48 + g4^4*g5^8*t^7.48 + (g2^2*g5^3*t^7.49)/(g1^5*g3^3*g4^3) + (2*g2*g5^3*t^7.49)/(g1^5*g3^3*g4) + (g4*g5^3*t^7.49)/(g1^5*g3^3) + (g2^2*t^7.51)/(g1^10*g3^6*g4^6*g5^2) + (g2*t^7.51)/(g1^10*g3^6*g4^4*g5^2) + t^7.51/(g1^10*g3^6*g4^2*g5^2) + g2^2*g4^2*g5^4*t^7.51 + g2*g4^4*g5^4*t^7.51 + (g5^7*t^7.52)/(g1*g3^3*g4^3) + g2*g3^2*g5^8*t^7.52 + 2*g3^2*g4^2*g5^8*t^7.52 + (g3^2*g4^4*g5^8*t^7.52)/g2 + (g2^3*t^7.53)/(g1^5*g3^3*g4^3*g5) + (2*g2^2*t^7.53)/(g1^5*g3^3*g4*g5) + (2*g2*g4*t^7.53)/(g1^5*g3^3*g5) + (g4^3*t^7.53)/(g1^5*g3^3*g5) + (g2*g5^3*t^7.54)/(g1^5*g3*g4^3) + (g5^3*t^7.54)/(g1^5*g3*g4) + (g4*g5^3*t^7.54)/(g1^5*g2*g3) + g1^4*g2*g5^8*t^7.54 + g1^4*g4^2*g5^8*t^7.54 + g2^2*g4^4*t^7.55 + (g2*g5^3*t^7.55)/(g1*g3^3*g4^3) + (g5^3*t^7.55)/(g1*g3^3*g4) + g2^2*g3^2*g5^4*t^7.56 + 2*g2*g3^2*g4^2*g5^4*t^7.56 + 2*g3^2*g4^4*g5^4*t^7.56 + (g3^2*g4^6*g5^4*t^7.56)/g2 + (g2*t^7.57)/(g1^6*g3^6*g4^6*g5^2) + t^7.57/(g1^6*g3^6*g4^4*g5^2) + g1^4*g2^2*g5^4*t^7.57 + 2*g1^4*g2*g4^2*g5^4*t^7.57 + g1^4*g4^4*g5^4*t^7.57 + g3^4*g5^8*t^7.57 + (g3^4*g4^2*g5^8*t^7.57)/g2 + (g3^4*g4^4*g5^8*t^7.57)/g2^2 + (g2^2*t^7.58)/(g1^5*g3*g4^3*g5) + (2*g2*t^7.58)/(g1^5*g3*g4*g5) + (2*g4*t^7.58)/(g1^5*g3*g5) + (g4^3*t^7.58)/(g1^5*g2*g3*g5) + (g2^2*t^7.59)/(g1*g3^3*g4^3*g5) + (g2*t^7.59)/(g1*g3^3*g4*g5) + (g4*t^7.59)/(g1*g3^3*g5) + g1^4*g3^2*g5^8*t^7.59 + (g1^4*g3^2*g4^2*g5^8*t^7.59)/g2 + g2^2*g3^2*g4^2*t^7.6 + g2*g3^2*g4^4*t^7.6 + g3^2*g4^6*t^7.6 + g1^8*g5^8*t^7.6 + g1^4*g2^2*g4^2*t^7.61 + g1^4*g2*g4^4*t^7.61 + g2*g3^4*g5^4*t^7.61 + 2*g3^4*g4^2*g5^4*t^7.61 + (2*g3^4*g4^4*g5^4*t^7.61)/g2 + (g3^4*g4^6*g5^4*t^7.61)/g2^2 + (g1^3*g5^3*t^7.62)/(g3^3*g4^3) + g1^4*g2*g3^2*g5^4*t^7.62 + g1^4*g3^2*g4^2*g5^4*t^7.62 + (g1^4*g3^2*g4^4*g5^4*t^7.62)/g2 + t^7.63/(g1^2*g3^6*g4^6*g5^2) + (g2*g3*t^7.63)/(g1^5*g4^3*g5) + (g3*t^7.63)/(g1^5*g4*g5) + (g3*g4*t^7.63)/(g1^5*g2*g5) + (g3*g4^3*t^7.63)/(g1^5*g2^2*g5) - t^7.64/(g1*g3*g4*g5) + g1^8*g2*g5^4*t^7.64 + g1^8*g4^2*g5^4*t^7.64 + g2^2*g3^4*t^7.65 + g2*g3^4*g4^2*t^7.65 + 2*g3^4*g4^4*t^7.65 + (g3^4*g4^6*t^7.65)/g2 + (g3^4*g4^8*t^7.65)/g2^2 + (g1^3*g2*t^7.65)/(g3^3*g4^3*g5) + (g1^3*t^7.65)/(g3^3*g4*g5) + g1^4*g2^2*g3^2*t^7.66 + g1^4*g2*g3^2*g4^2*t^7.66 + g1^4*g3^2*g4^4*t^7.66 + (g1^4*g3^2*g4^6*t^7.66)/g2 + (g3^6*g4^2*g5^4*t^7.66)/g2 + (g3^6*g4^4*g5^4*t^7.66)/g2^2 + g1^8*g2^2*t^7.67 + g1^8*g2*g4^2*t^7.67 + g1^8*g4^4*t^7.67 - (g2*t^7.67)/(g1*g3*g4*g5^5) - (g4*t^7.67)/(g1*g3*g5^5) - (g3*t^7.69)/(g1*g2*g4*g5) + g3^6*g4^2*t^7.7 + (g3^6*g4^4*t^7.7)/g2 + (g3^6*g4^6*t^7.7)/g2^2 + (g1^7*t^7.71)/(g3^3*g4^3*g5) - (g3*t^7.72)/(g1*g4*g5^5) - (g3*g4*t^7.72)/(g1*g2*g5^5) - (g1^3*t^7.74)/(g3*g4*g5^5) + (g3^8*g4^4*t^7.75)/g2^2 + (2*g2*g5^4*t^7.97)/(g1^8*g3^4) + (g2^3*g5^4*t^7.97)/(g1^8*g3^4*g4^4) + (2*g2^2*g5^4*t^7.97)/(g1^8*g3^4*g4^2) + (g4^2*g5^4*t^7.97)/(g1^8*g3^4) + (g2^2*t^8.)/(g1^8*g3^4) + (g2^3*t^8.)/(g1^8*g3^4*g4^2) + (g2*g4^2*t^8.)/(g1^8*g3^4) + (g5^4*t^8.02)/(g1^8*g3^2) + (g2^2*g5^4*t^8.02)/(g1^8*g3^2*g4^4) + (g2*g5^4*t^8.02)/(g1^8*g3^2*g4^2) + (g4^2*g5^4*t^8.02)/(g1^8*g2*g3^2) + (g5^4*t^8.03)/(g1^4*g3^4) + (g2^2*g5^4*t^8.03)/(g1^4*g3^4*g4^4) + (g2*g5^4*t^8.03)/(g1^4*g3^4*g4^2) + (g2*t^8.05)/(g1^8*g3^2) + (g2^3*t^8.05)/(g1^8*g3^2*g4^4) + (g2^2*t^8.05)/(g1^8*g3^2*g4^2) + (g4^2*t^8.05)/(g1^8*g3^2) + (g4^4*t^8.05)/(g1^8*g2*g3^2) - g1*g3*g4*g5^9*t^8.06 - (g5^4*t^8.08)/(g1^4*g3^2*g4^2) + (g2*g5^4*t^8.09)/(g3^4*g4^4) + (g5^4*t^8.09)/(g3^4*g4^2) - g1*g2*g3*g4*g5^5*t^8.1 - g1*g3*g4^3*g5^5*t^8.1 - (6*t^8.11)/(g1^4*g3^2) - (g2^2*t^8.11)/(g1^4*g3^2*g4^4) - (6*g2*t^8.11)/(g1^4*g3^2*g4^2) - (g4^2*t^8.11)/(g1^4*g2*g3^2) - g1*g2^2*g3*g4*g5*t^8.13 - g1*g2*g3*g4^3*g5*t^8.13 - g1*g3*g4^5*g5*t^8.13 - (2*g2*t^8.15)/(g1^4*g3^2*g5^4) - (g2^2*t^8.15)/(g1^4*g3^2*g4^2*g5^4) - (g4^2*t^8.15)/(g1^4*g3^2*g5^4) + (g1^4*g5^4*t^8.15)/(g3^4*g4^4) - g1*g3^3*g4*g5^5*t^8.15 - (g1*g3^3*g4^3*g5^5*t^8.15)/g2 - (2*t^8.16)/(g1^4*g2) - (g2*t^8.16)/(g1^4*g4^4) - (2*t^8.16)/(g1^4*g4^2) - (g4^2*t^8.16)/(g1^4*g2^2) - g1^5*g3*g4*g5^5*t^8.16 - t^8.18/(g2*g3^2) - (g2*t^8.18)/(g3^2*g4^4) - (5*t^8.18)/(g3^2*g4^2) - g1*g2*g3^3*g4*g5*t^8.18 - 2*g1*g3^3*g4^3*g5*t^8.18 - (g1*g3^3*g4^5*g5*t^8.18)/g2 - t^8.2/(g1^4*g5^4) - (g2*t^8.2)/(g1^4*g4^2*g5^4) - (g4^2*t^8.2)/(g1^4*g2*g5^4) - g1^5*g2*g3*g4*g5*t^8.2 - g1^5*g3*g4^3*g5*t^8.2 - t^8.21/(g3^2*g5^4) - (g2*t^8.21)/(g3^2*g4^2*g5^4) - g1*g3^5*g4*g5*t^8.23 - (g1*g3^5*g4^3*g5*t^8.23)/g2 - (g1*g3^5*g4^5*g5*t^8.23)/g2^2 - (g1^4*t^8.24)/(g3^2*g4^4) - (g1^4*t^8.24)/(g2*g3^2*g4^2) - g1^5*g3^3*g4*g5*t^8.25 - (g1^5*g3^3*g4^3*g5*t^8.25)/g2 - g1^9*g3*g4*g5*t^8.26 - (g1^4*t^8.28)/(g3^2*g4^2*g5^4) + t^8.3/g5^8 + t^8.46/(g1^16*g3^8) + (g2^4*t^8.46)/(g1^16*g3^8*g4^8) + (g2^3*t^8.46)/(g1^16*g3^8*g4^6) + (g2^2*t^8.46)/(g1^16*g3^8*g4^4) + (g2*t^8.46)/(g1^16*g3^8*g4^2) + (g2^3*t^8.52)/(g1^12*g3^8*g4^8) + (g2^2*t^8.52)/(g1^12*g3^8*g4^6) + (g2*t^8.52)/(g1^12*g3^8*g4^4) + t^8.52/(g1^12*g3^8*g4^2) + (g2^2*t^8.58)/(g1^8*g3^8*g4^8) + (g2*t^8.58)/(g1^8*g3^8*g4^6) + t^8.58/(g1^8*g3^8*g4^4) + (g5^5*t^8.62)/(g1^3*g3^3*g4^3) + (g2*t^8.65)/(g1^4*g3^8*g4^8) + t^8.65/(g1^4*g3^8*g4^6) + (g2*g5*t^8.65)/(g1^3*g3^3*g4^3) + (g5*t^8.65)/(g1^3*g3^3*g4) + (g2*t^8.67)/(g1^8*g3^6*g4^6*g5^4) + t^8.67/(g1^8*g3^6*g4^4*g5^4) + (g2^2*t^8.69)/(g1^3*g3^3*g4^3*g5^3) + (g2*t^8.69)/(g1^3*g3^3*g4*g5^3) + (g4*t^8.69)/(g1^3*g3^3*g5^3) + (g5*t^8.7)/(g1^3*g3*g4^3) + (g5*t^8.7)/(g1^3*g2*g3*g4) + t^8.71/(g3^8*g4^8) + (g1*g5*t^8.72)/(g3^3*g4^3) + t^8.73/(g1^4*g3^6*g4^6*g5^4) + (g2*t^8.74)/(g1^3*g3*g4^3*g5^3) + (2*t^8.74)/(g1^3*g3*g4*g5^3) + (g4*t^8.74)/(g1^3*g2*g3*g5^3) + (g1*g2*t^8.75)/(g3^3*g4^3*g5^3) + (g1*t^8.75)/(g3^3*g4*g5^3) + (g3*t^8.79)/(g1^3*g4^3*g5^3) + (g3*t^8.79)/(g1^3*g2*g4*g5^3) + (g3*g4*t^8.79)/(g1^3*g2^2*g5^3) + (g1*t^8.8)/(g3*g4^3*g5^3) + (g1*t^8.8)/(g2*g3*g4*g5^3) + (g1^5*t^8.81)/(g3^3*g4^3*g5^3) - t^4.64/(g1*g3*g4*g5*y) - (g2*t^6.75)/(g1^5*g3^3*g4^3*g5*y) - t^6.75/(g1^5*g3^3*g4*g5*y) - t^6.82/(g1*g3^3*g4^3*g5*y) + (g2*t^7.23)/(g1^8*g3^4*g4^2*y) + (g2*t^7.29)/(g1^4*g3^4*g4^4*y) + t^7.29/(g1^4*g3^4*g4^2*y) + (g1*g3*g4*g5*t^7.36)/y - t^7.92/(g1^3*g3^3*g4^3*g5^3*y) + (g2*t^8.39)/(g1^6*g3^4*g4^4*g5^2*y) + t^8.39/(g1^6*g3^4*g4^2*g5^2*y) + t^8.45/(g1^2*g3^4*g4^4*g5^2*y) + (g3*g4*t^8.46)/(g1*g5*y) + (g1^3*g3*t^8.52)/(g4*g5*y) + (g1^3*g3*g4*t^8.52)/(g2*g5*y) + (2*g2*g5^4*t^8.85)/(g1^4*g3^2*y) + (g2^2*g5^4*t^8.85)/(g1^4*g3^2*g4^2*y) + (g4^2*g5^4*t^8.85)/(g1^4*g3^2*y) - (g2^2*t^8.87)/(g1^9*g3^5*g4^5*g5*y) - (g2*t^8.87)/(g1^9*g3^5*g4^3*g5*y) - t^8.87/(g1^9*g3^5*g4*g5*y) + (g2^2*t^8.89)/(g1^4*g3^2*y) + (g2*g4^2*t^8.89)/(g1^4*g3^2*y) + (2*g5^4*t^8.9)/(g1^4*y) + (g2*g5^4*t^8.9)/(g1^4*g4^2*y) + (g4^2*g5^4*t^8.9)/(g1^4*g2*y) + (2*g5^4*t^8.91)/(g3^2*y) + (2*g2*g5^4*t^8.91)/(g3^2*g4^2*y) - (g2*t^8.93)/(g1^5*g3^5*g4^5*g5*y) - t^8.93/(g1^5*g3^5*g4^3*g5*y) + (2*g2*t^8.94)/(g1^4*y) + (g2^2*t^8.94)/(g1^4*g4^2*y) + (2*g4^2*t^8.94)/(g1^4*y) + (g4^4*t^8.94)/(g1^4*g2*y) + (3*g2*t^8.95)/(g3^2*y) + (g2^2*t^8.95)/(g3^2*g4^2*y) + (g4^2*t^8.95)/(g3^2*y) + (g5^4*t^8.96)/(g2*y) + (g5^4*t^8.96)/(g4^2*y) + (g1^4*g5^4*t^8.98)/(g3^2*g4^2*y) + (g3^2*t^8.99)/(g1^4*y) + (g3^2*g4^2*t^8.99)/(g1^4*g2*y) - t^8.99/(g1*g3^5*g4^5*g5*y) - (t^4.64*y)/(g1*g3*g4*g5) - (g2*t^6.75*y)/(g1^5*g3^3*g4^3*g5) - (t^6.75*y)/(g1^5*g3^3*g4*g5) - (t^6.82*y)/(g1*g3^3*g4^3*g5) + (g2*t^7.23*y)/(g1^8*g3^4*g4^2) + (g2*t^7.29*y)/(g1^4*g3^4*g4^4) + (t^7.29*y)/(g1^4*g3^4*g4^2) + g1*g3*g4*g5*t^7.36*y - (t^7.92*y)/(g1^3*g3^3*g4^3*g5^3) + (g2*t^8.39*y)/(g1^6*g3^4*g4^4*g5^2) + (t^8.39*y)/(g1^6*g3^4*g4^2*g5^2) + (t^8.45*y)/(g1^2*g3^4*g4^4*g5^2) + (g3*g4*t^8.46*y)/(g1*g5) + (g1^3*g3*t^8.52*y)/(g4*g5) + (g1^3*g3*g4*t^8.52*y)/(g2*g5) + (2*g2*g5^4*t^8.85*y)/(g1^4*g3^2) + (g2^2*g5^4*t^8.85*y)/(g1^4*g3^2*g4^2) + (g4^2*g5^4*t^8.85*y)/(g1^4*g3^2) - (g2^2*t^8.87*y)/(g1^9*g3^5*g4^5*g5) - (g2*t^8.87*y)/(g1^9*g3^5*g4^3*g5) - (t^8.87*y)/(g1^9*g3^5*g4*g5) + (g2^2*t^8.89*y)/(g1^4*g3^2) + (g2*g4^2*t^8.89*y)/(g1^4*g3^2) + (2*g5^4*t^8.9*y)/g1^4 + (g2*g5^4*t^8.9*y)/(g1^4*g4^2) + (g4^2*g5^4*t^8.9*y)/(g1^4*g2) + (2*g5^4*t^8.91*y)/g3^2 + (2*g2*g5^4*t^8.91*y)/(g3^2*g4^2) - (g2*t^8.93*y)/(g1^5*g3^5*g4^5*g5) - (t^8.93*y)/(g1^5*g3^5*g4^3*g5) + (2*g2*t^8.94*y)/g1^4 + (g2^2*t^8.94*y)/(g1^4*g4^2) + (2*g4^2*t^8.94*y)/g1^4 + (g4^4*t^8.94*y)/(g1^4*g2) + (3*g2*t^8.95*y)/g3^2 + (g2^2*t^8.95*y)/(g3^2*g4^2) + (g4^2*t^8.95*y)/g3^2 + (g5^4*t^8.96*y)/g2 + (g5^4*t^8.96*y)/g4^2 + (g1^4*g5^4*t^8.98*y)/(g3^2*g4^2) + (g3^2*t^8.99*y)/g1^4 + (g3^2*g4^2*t^8.99*y)/(g1^4*g2) - (t^8.99*y)/(g1*g3^5*g4^5*g5)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55595 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ 0.9185 1.1444 0.8026 [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y detail