Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55810 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_3\tilde{q}_1$ | 0.9387 | 1.1827 | 0.7937 | [X:[], M:[0.704, 0.704, 0.704, 0.704], q:[0.648, 0.648, 0.648], qb:[0.648, 0.616, 0.616], phi:[0.544]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [0, -4, 0, -4, 0, 0], [0, 0, -4, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_3\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_2q_3$, $ q_1\tilde{q}_1$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_3^2$, $ M_4^2$, $ M_3M_4$, $ M_1M_3$, $ M_2M_4$, $ M_2M_3$, $ M_1M_4$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1q_3\tilde{q}_2$, $ M_4q_3\tilde{q}_2$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$ | $M_2q_2q_3$, $ M_4q_2q_3$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$ | -12 | 4*t^2.11 + t^3.26 + t^3.7 + 8*t^3.79 + 2*t^3.89 + 10*t^4.22 + 3*t^5.33 + 4*t^5.38 + 8*t^5.42 + 10*t^5.52 + 4*t^5.81 + 24*t^5.9 - 12*t^6. - 8*t^6.1 + 20*t^6.34 + t^6.53 + t^6.96 + 8*t^7.06 + 2*t^7.15 + t^7.39 + 12*t^7.44 + 18*t^7.49 + 24*t^7.54 + 32*t^7.58 + 21*t^7.63 + 8*t^7.68 - 8*t^7.73 + 2*t^7.78 + 10*t^7.92 + 48*t^8.02 - 3*t^8.06 - 50*t^8.11 - 8*t^8.16 - 24*t^8.21 - 10*t^8.26 + 3*t^8.3 + 35*t^8.45 + 3*t^8.59 + 4*t^8.64 + 8*t^8.69 + 10*t^8.78 - t^4.63/y - (4*t^6.74)/y + (6*t^7.22)/y + t^7.37/y - t^7.9/y + (4*t^8.38)/y + (4*t^8.52)/y + (4*t^8.81)/y - (10*t^8.86)/y + (32*t^8.9)/y - t^4.63*y - 4*t^6.74*y + 6*t^7.22*y + t^7.37*y - t^7.9*y + 4*t^8.38*y + 4*t^8.52*y + 4*t^8.81*y - 10*t^8.86*y + 32*t^8.9*y | t^2.11/(g1^4*g2^4) + t^2.11/(g1^4*g3^4) + t^2.11/(g2^4*g4^4) + t^2.11/(g3^4*g4^4) + t^3.26/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g5^4*g6^4*t^3.7 + g1^4*g5^4*t^3.79 + g2^4*g5^4*t^3.79 + g3^4*g5^4*t^3.79 + g4^4*g5^4*t^3.79 + g1^4*g6^4*t^3.79 + g2^4*g6^4*t^3.79 + g3^4*g6^4*t^3.79 + g4^4*g6^4*t^3.79 + g2^4*g3^4*t^3.89 + g1^4*g4^4*t^3.89 + t^4.22/(g1^8*g2^8) + t^4.22/(g1^8*g3^8) + t^4.22/(g1^8*g2^4*g3^4) + t^4.22/(g2^8*g4^8) + t^4.22/(g3^8*g4^8) + t^4.22/(g2^4*g3^4*g4^8) + t^4.22/(g1^4*g2^8*g4^4) + t^4.22/(g1^4*g3^8*g4^4) + (2*t^4.22)/(g1^4*g2^4*g3^4*g4^4) + (g5^7*t^5.33)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.33)/(g1*g2*g3*g4) + (g6^7*t^5.33)/(g1*g2*g3*g4*g5) + t^5.38/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + t^5.38/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + t^5.38/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g5^3*t^5.42)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.42)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.42)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.42)/(g1*g2*g3*g6) + (g1^3*g6^3*t^5.42)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.42)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.42)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.42)/(g1*g2*g3*g5) + (g1^7*t^5.52)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.52)/(g3*g4*g5*g6) + (g2^7*t^5.52)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.52)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.52)/(g1*g4*g5*g6) + (g3^7*t^5.52)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.52)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.52)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.52)/(g1*g2*g5*g6) + (g4^7*t^5.52)/(g1*g2*g3*g5*g6) + (g5^4*g6^4*t^5.81)/(g1^4*g2^4) + (g5^4*g6^4*t^5.81)/(g1^4*g3^4) + (g5^4*g6^4*t^5.81)/(g2^4*g4^4) + (g5^4*g6^4*t^5.81)/(g3^4*g4^4) + (g5^4*t^5.9)/g1^4 + (g5^4*t^5.9)/g2^4 + (g5^4*t^5.9)/g3^4 + (g2^4*g5^4*t^5.9)/(g1^4*g3^4) + (g3^4*g5^4*t^5.9)/(g1^4*g2^4) + (g5^4*t^5.9)/g4^4 + (g1^4*g5^4*t^5.9)/(g2^4*g4^4) + (g1^4*g5^4*t^5.9)/(g3^4*g4^4) + (g2^4*g5^4*t^5.9)/(g3^4*g4^4) + (g3^4*g5^4*t^5.9)/(g2^4*g4^4) + (g4^4*g5^4*t^5.9)/(g1^4*g2^4) + (g4^4*g5^4*t^5.9)/(g1^4*g3^4) + (g6^4*t^5.9)/g1^4 + (g6^4*t^5.9)/g2^4 + (g6^4*t^5.9)/g3^4 + (g2^4*g6^4*t^5.9)/(g1^4*g3^4) + (g3^4*g6^4*t^5.9)/(g1^4*g2^4) + (g6^4*t^5.9)/g4^4 + (g1^4*g6^4*t^5.9)/(g2^4*g4^4) + (g1^4*g6^4*t^5.9)/(g3^4*g4^4) + (g2^4*g6^4*t^5.9)/(g3^4*g4^4) + (g3^4*g6^4*t^5.9)/(g2^4*g4^4) + (g4^4*g6^4*t^5.9)/(g1^4*g2^4) + (g4^4*g6^4*t^5.9)/(g1^4*g3^4) - 6*t^6. - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.1)/g5^4 - (g2^4*t^6.1)/g5^4 - (g3^4*t^6.1)/g5^4 - (g4^4*t^6.1)/g5^4 - (g1^4*t^6.1)/g6^4 - (g2^4*t^6.1)/g6^4 - (g3^4*t^6.1)/g6^4 - (g4^4*t^6.1)/g6^4 + t^6.34/(g1^12*g2^12) + t^6.34/(g1^12*g3^12) + t^6.34/(g1^12*g2^4*g3^8) + t^6.34/(g1^12*g2^8*g3^4) + t^6.34/(g2^12*g4^12) + t^6.34/(g3^12*g4^12) + t^6.34/(g2^4*g3^8*g4^12) + t^6.34/(g2^8*g3^4*g4^12) + t^6.34/(g1^4*g2^12*g4^8) + t^6.34/(g1^4*g3^12*g4^8) + (2*t^6.34)/(g1^4*g2^4*g3^8*g4^8) + (2*t^6.34)/(g1^4*g2^8*g3^4*g4^8) + t^6.34/(g1^8*g2^12*g4^4) + t^6.34/(g1^8*g3^12*g4^4) + (2*t^6.34)/(g1^8*g2^4*g3^8*g4^4) + (2*t^6.34)/(g1^8*g2^8*g3^4*g4^4) + t^6.53/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g5^2*g6^2*t^6.96)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g5^2*t^7.06)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.06)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.06)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.06)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.06)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.06)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.06)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.06)/(g1^2*g2^2*g3^2*g5^2) + (g2^2*g3^2*t^7.15)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.15)/(g2^2*g3^2*g5^2*g6^2) + g5^8*g6^8*t^7.39 + (g5^7*t^7.44)/(g1*g2*g3^5*g4^5*g6) + (g5^7*t^7.44)/(g1*g2^5*g3*g4^5*g6) + (g5^7*t^7.44)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.44)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.44)/(g1*g2*g3^5*g4^5) + (g5^3*g6^3*t^7.44)/(g1*g2^5*g3*g4^5) + (g5^3*g6^3*t^7.44)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.44)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.44)/(g1*g2*g3^5*g4^5*g5) + (g6^7*t^7.44)/(g1*g2^5*g3*g4^5*g5) + (g6^7*t^7.44)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.44)/(g1^5*g2^5*g3*g4*g5) + t^7.49/(g1^2*g2^2*g3^10*g4^10*g5^2*g6^2) + t^7.49/(g1^2*g2^6*g3^6*g4^10*g5^2*g6^2) + t^7.49/(g1^2*g2^10*g3^2*g4^10*g5^2*g6^2) + t^7.49/(g1^6*g2^2*g3^10*g4^6*g5^2*g6^2) + (2*t^7.49)/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.49/(g1^6*g2^10*g3^2*g4^6*g5^2*g6^2) + t^7.49/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + t^7.49/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + t^7.49/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + g1^4*g5^8*g6^4*t^7.49 + g2^4*g5^8*g6^4*t^7.49 + g3^4*g5^8*g6^4*t^7.49 + g4^4*g5^8*g6^4*t^7.49 + g1^4*g5^4*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g3^4*g5^4*g6^8*t^7.49 + g4^4*g5^4*g6^8*t^7.49 + (g1^3*g5^3*t^7.54)/(g2*g3^5*g4^5*g6) + (g2^3*g5^3*t^7.54)/(g1*g3^5*g4^5*g6) + (g1^3*g5^3*t^7.54)/(g2^5*g3*g4^5*g6) + (g5^3*t^7.54)/(g1*g2*g3*g4^5*g6) + (g3^3*g5^3*t^7.54)/(g1*g2^5*g4^5*g6) + (g5^3*t^7.54)/(g1*g2*g3^5*g4*g6) + (g2^3*g5^3*t^7.54)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.54)/(g1*g2^5*g3*g4*g6) + (g5^3*t^7.54)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.54)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.54)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.54)/(g1^5*g2^5*g3*g6) + (g1^3*g6^3*t^7.54)/(g2*g3^5*g4^5*g5) + (g2^3*g6^3*t^7.54)/(g1*g3^5*g4^5*g5) + (g1^3*g6^3*t^7.54)/(g2^5*g3*g4^5*g5) + (g6^3*t^7.54)/(g1*g2*g3*g4^5*g5) + (g3^3*g6^3*t^7.54)/(g1*g2^5*g4^5*g5) + (g6^3*t^7.54)/(g1*g2*g3^5*g4*g5) + (g2^3*g6^3*t^7.54)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.54)/(g1*g2^5*g3*g4*g5) + (g6^3*t^7.54)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.54)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.54)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.54)/(g1^5*g2^5*g3*g5) + g1^8*g5^8*t^7.58 + g1^4*g2^4*g5^8*t^7.58 + g2^8*g5^8*t^7.58 + g1^4*g3^4*g5^8*t^7.58 + g2^4*g3^4*g5^8*t^7.58 + g3^8*g5^8*t^7.58 + g1^4*g4^4*g5^8*t^7.58 + g2^4*g4^4*g5^8*t^7.58 + g3^4*g4^4*g5^8*t^7.58 + g4^8*g5^8*t^7.58 + g1^8*g5^4*g6^4*t^7.58 + g1^4*g2^4*g5^4*g6^4*t^7.58 + g2^8*g5^4*g6^4*t^7.58 + g1^4*g3^4*g5^4*g6^4*t^7.58 + 2*g2^4*g3^4*g5^4*g6^4*t^7.58 + g3^8*g5^4*g6^4*t^7.58 + 2*g1^4*g4^4*g5^4*g6^4*t^7.58 + g2^4*g4^4*g5^4*g6^4*t^7.58 + g3^4*g4^4*g5^4*g6^4*t^7.58 + g4^8*g5^4*g6^4*t^7.58 + g1^8*g6^8*t^7.58 + g1^4*g2^4*g6^8*t^7.58 + g2^8*g6^8*t^7.58 + g1^4*g3^4*g6^8*t^7.58 + g2^4*g3^4*g6^8*t^7.58 + g3^8*g6^8*t^7.58 + g1^4*g4^4*g6^8*t^7.58 + g2^4*g4^4*g6^8*t^7.58 + g3^4*g4^4*g6^8*t^7.58 + g4^8*g6^8*t^7.58 - (g5^3*t^7.63)/(g1*g2*g3*g4*g6^5) + (g1^7*t^7.63)/(g2*g3^5*g4^5*g5*g6) + (g1^3*g2^3*t^7.63)/(g3^5*g4^5*g5*g6) + (g2^7*t^7.63)/(g1*g3^5*g4^5*g5*g6) + (g1^7*t^7.63)/(g2^5*g3*g4^5*g5*g6) + (g1^3*t^7.63)/(g2*g3*g4^5*g5*g6) + (g2^3*t^7.63)/(g1*g3*g4^5*g5*g6) + (g1^3*g3^3*t^7.63)/(g2^5*g4^5*g5*g6) + (g3^3*t^7.63)/(g1*g2*g4^5*g5*g6) + (g3^7*t^7.63)/(g1*g2^5*g4^5*g5*g6) + (g1^3*t^7.63)/(g2*g3^5*g4*g5*g6) + (g2^3*t^7.63)/(g1*g3^5*g4*g5*g6) + (g2^7*t^7.63)/(g1^5*g3^5*g4*g5*g6) + (g1^3*t^7.63)/(g2^5*g3*g4*g5*g6) - t^7.63/(g1*g2*g3*g4*g5*g6) + (g2^3*t^7.63)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.63)/(g1*g2^5*g4*g5*g6) + (g3^3*t^7.63)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.63)/(g1^5*g2^5*g4*g5*g6) + (g4^3*t^7.63)/(g1*g2*g3^5*g5*g6) + (g2^3*g4^3*t^7.63)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.63)/(g1*g2^5*g3*g5*g6) + (g4^3*t^7.63)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.63)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.63)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.63)/(g1^5*g2^5*g3*g5*g6) - (g6^3*t^7.63)/(g1*g2*g3*g4*g5^5) + g2^8*g3^4*g5^4*t^7.68 + g2^4*g3^8*g5^4*t^7.68 + g1^8*g4^4*g5^4*t^7.68 + g1^4*g4^8*g5^4*t^7.68 + g2^8*g3^4*g6^4*t^7.68 + g2^4*g3^8*g6^4*t^7.68 + g1^8*g4^4*g6^4*t^7.68 + g1^4*g4^8*g6^4*t^7.68 - (g1^3*t^7.73)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.73)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.73)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.73)/(g1*g2*g3*g5*g6^5) - (g1^3*t^7.73)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.73)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.73)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.73)/(g1*g2*g3*g5^5*g6) + g2^8*g3^8*t^7.78 + g1^8*g4^8*t^7.78 + (g5^4*g6^4*t^7.92)/(g1^8*g2^8) + (g5^4*g6^4*t^7.92)/(g1^8*g3^8) + (g5^4*g6^4*t^7.92)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.92)/(g2^8*g4^8) + (g5^4*g6^4*t^7.92)/(g3^8*g4^8) + (g5^4*g6^4*t^7.92)/(g2^4*g3^4*g4^8) + (g5^4*g6^4*t^7.92)/(g1^4*g2^8*g4^4) + (g5^4*g6^4*t^7.92)/(g1^4*g3^8*g4^4) + (2*g5^4*g6^4*t^7.92)/(g1^4*g2^4*g3^4*g4^4) + (g5^4*t^8.02)/(g1^4*g2^8) + (g5^4*t^8.02)/(g1^8*g2^4) + (g5^4*t^8.02)/(g1^4*g3^8) + (g2^4*g5^4*t^8.02)/(g1^8*g3^8) + (g5^4*t^8.02)/(g1^8*g3^4) + (g5^4*t^8.02)/(g1^4*g2^4*g3^4) + (g3^4*g5^4*t^8.02)/(g1^8*g2^8) + (g1^4*g5^4*t^8.02)/(g2^8*g4^8) + (g5^4*t^8.02)/(g2^4*g4^8) + (g1^4*g5^4*t^8.02)/(g3^8*g4^8) + (g2^4*g5^4*t^8.02)/(g3^8*g4^8) + (g5^4*t^8.02)/(g3^4*g4^8) + (g1^4*g5^4*t^8.02)/(g2^4*g3^4*g4^8) + (g3^4*g5^4*t^8.02)/(g2^8*g4^8) + (g5^4*t^8.02)/(g2^8*g4^4) + (g5^4*t^8.02)/(g1^4*g2^4*g4^4) + (g5^4*t^8.02)/(g3^8*g4^4) + (g2^4*g5^4*t^8.02)/(g1^4*g3^8*g4^4) + (g5^4*t^8.02)/(g1^4*g3^4*g4^4) + (g5^4*t^8.02)/(g2^4*g3^4*g4^4) + (g3^4*g5^4*t^8.02)/(g1^4*g2^8*g4^4) + (g4^4*g5^4*t^8.02)/(g1^8*g2^8) + (g4^4*g5^4*t^8.02)/(g1^8*g3^8) + (g4^4*g5^4*t^8.02)/(g1^8*g2^4*g3^4) + (g6^4*t^8.02)/(g1^4*g2^8) + (g6^4*t^8.02)/(g1^8*g2^4) + (g6^4*t^8.02)/(g1^4*g3^8) + (g2^4*g6^4*t^8.02)/(g1^8*g3^8) + (g6^4*t^8.02)/(g1^8*g3^4) + (g6^4*t^8.02)/(g1^4*g2^4*g3^4) + (g3^4*g6^4*t^8.02)/(g1^8*g2^8) + (g1^4*g6^4*t^8.02)/(g2^8*g4^8) + (g6^4*t^8.02)/(g2^4*g4^8) + (g1^4*g6^4*t^8.02)/(g3^8*g4^8) + (g2^4*g6^4*t^8.02)/(g3^8*g4^8) + (g6^4*t^8.02)/(g3^4*g4^8) + (g1^4*g6^4*t^8.02)/(g2^4*g3^4*g4^8) + (g3^4*g6^4*t^8.02)/(g2^8*g4^8) + (g6^4*t^8.02)/(g2^8*g4^4) + (g6^4*t^8.02)/(g1^4*g2^4*g4^4) + (g6^4*t^8.02)/(g3^8*g4^4) + (g2^4*g6^4*t^8.02)/(g1^4*g3^8*g4^4) + (g6^4*t^8.02)/(g1^4*g3^4*g4^4) + (g6^4*t^8.02)/(g2^4*g3^4*g4^4) + (g3^4*g6^4*t^8.02)/(g1^4*g2^8*g4^4) + (g4^4*g6^4*t^8.02)/(g1^8*g2^8) + (g4^4*g6^4*t^8.02)/(g1^8*g3^8) + (g4^4*g6^4*t^8.02)/(g1^8*g2^4*g3^4) - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 - (7*t^8.11)/(g1^4*g2^4) - (g2^4*t^8.11)/(g1^4*g3^8) - (7*t^8.11)/(g1^4*g3^4) - t^8.11/(g2^4*g3^4) - (g3^4*t^8.11)/(g1^4*g2^8) - (g1^4*t^8.11)/(g2^4*g4^8) - (g1^4*t^8.11)/(g3^4*g4^8) - t^8.11/(g1^4*g4^4) - (7*t^8.11)/(g2^4*g4^4) - (g2^4*t^8.11)/(g3^8*g4^4) - (7*t^8.11)/(g3^4*g4^4) - (g1^4*t^8.11)/(g2^4*g3^4*g4^4) - (g2^4*t^8.11)/(g1^4*g3^4*g4^4) - (g3^4*t^8.11)/(g2^8*g4^4) - (g3^4*t^8.11)/(g1^4*g2^4*g4^4) - (g4^4*t^8.11)/(g1^8*g2^4) - (g4^4*t^8.11)/(g1^8*g3^4) - (g4^4*t^8.11)/(g1^4*g2^4*g3^4) - (g5^4*t^8.11)/(g1^4*g2^4*g6^4) - (g5^4*t^8.11)/(g1^4*g3^4*g6^4) - (g5^4*t^8.11)/(g2^4*g4^4*g6^4) - (g5^4*t^8.11)/(g3^4*g4^4*g6^4) - (g6^4*t^8.11)/(g1^4*g2^4*g5^4) - (g6^4*t^8.11)/(g1^4*g3^4*g5^4) - (g6^4*t^8.11)/(g2^4*g4^4*g5^4) - (g6^4*t^8.11)/(g3^4*g4^4*g5^4) - g1^5*g2*g3*g4*g5^5*g6*t^8.16 - g1*g2^5*g3*g4*g5^5*g6*t^8.16 - g1*g2*g3^5*g4*g5^5*g6*t^8.16 - g1*g2*g3*g4^5*g5^5*g6*t^8.16 - g1^5*g2*g3*g4*g5*g6^5*t^8.16 - g1*g2^5*g3*g4*g5*g6^5*t^8.16 - g1*g2*g3^5*g4*g5*g6^5*t^8.16 - g1*g2*g3*g4^5*g5*g6^5*t^8.16 - t^8.21/(g1^4*g5^4) - t^8.21/(g2^4*g5^4) - t^8.21/(g3^4*g5^4) - (g2^4*t^8.21)/(g1^4*g3^4*g5^4) - (g3^4*t^8.21)/(g1^4*g2^4*g5^4) - t^8.21/(g4^4*g5^4) - (g1^4*t^8.21)/(g2^4*g4^4*g5^4) - (g1^4*t^8.21)/(g3^4*g4^4*g5^4) - (g2^4*t^8.21)/(g3^4*g4^4*g5^4) - (g3^4*t^8.21)/(g2^4*g4^4*g5^4) - (g4^4*t^8.21)/(g1^4*g2^4*g5^4) - (g4^4*t^8.21)/(g1^4*g3^4*g5^4) - t^8.21/(g1^4*g6^4) - t^8.21/(g2^4*g6^4) - t^8.21/(g3^4*g6^4) - (g2^4*t^8.21)/(g1^4*g3^4*g6^4) - (g3^4*t^8.21)/(g1^4*g2^4*g6^4) - t^8.21/(g4^4*g6^4) - (g1^4*t^8.21)/(g2^4*g4^4*g6^4) - (g1^4*t^8.21)/(g3^4*g4^4*g6^4) - (g2^4*t^8.21)/(g3^4*g4^4*g6^4) - (g3^4*t^8.21)/(g2^4*g4^4*g6^4) - (g4^4*t^8.21)/(g1^4*g2^4*g6^4) - (g4^4*t^8.21)/(g1^4*g3^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.26 - g1^5*g2^5*g3*g4*g5*g6*t^8.26 - g1*g2^9*g3*g4*g5*g6*t^8.26 - g1^5*g2*g3^5*g4*g5*g6*t^8.26 - g1*g2^5*g3^5*g4*g5*g6*t^8.26 - g1*g2*g3^9*g4*g5*g6*t^8.26 - g1^5*g2*g3*g4^5*g5*g6*t^8.26 - g1*g2^5*g3*g4^5*g5*g6*t^8.26 - g1*g2*g3^5*g4^5*g5*g6*t^8.26 - g1*g2*g3*g4^9*g5*g6*t^8.26 + t^8.3/g5^8 + t^8.3/g6^8 + t^8.3/(g5^4*g6^4) + t^8.45/(g1^16*g2^16) + t^8.45/(g1^16*g3^16) + t^8.45/(g1^16*g2^4*g3^12) + t^8.45/(g1^16*g2^8*g3^8) + t^8.45/(g1^16*g2^12*g3^4) + t^8.45/(g2^16*g4^16) + t^8.45/(g3^16*g4^16) + t^8.45/(g2^4*g3^12*g4^16) + t^8.45/(g2^8*g3^8*g4^16) + t^8.45/(g2^12*g3^4*g4^16) + t^8.45/(g1^4*g2^16*g4^12) + t^8.45/(g1^4*g3^16*g4^12) + (2*t^8.45)/(g1^4*g2^4*g3^12*g4^12) + (2*t^8.45)/(g1^4*g2^8*g3^8*g4^12) + (2*t^8.45)/(g1^4*g2^12*g3^4*g4^12) + t^8.45/(g1^8*g2^16*g4^8) + t^8.45/(g1^8*g3^16*g4^8) + (2*t^8.45)/(g1^8*g2^4*g3^12*g4^8) + (3*t^8.45)/(g1^8*g2^8*g3^8*g4^8) + (2*t^8.45)/(g1^8*g2^12*g3^4*g4^8) + t^8.45/(g1^12*g2^16*g4^4) + t^8.45/(g1^12*g3^16*g4^4) + (2*t^8.45)/(g1^12*g2^4*g3^12*g4^4) + (2*t^8.45)/(g1^12*g2^8*g3^8*g4^4) + (2*t^8.45)/(g1^12*g2^12*g3^4*g4^4) + (g5^5*t^8.59)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g5*g6*t^8.59)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.59)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.64/(g1^4*g2^4*g3^8*g4^8*g5^4*g6^4) + t^8.64/(g1^4*g2^8*g3^4*g4^8*g5^4*g6^4) + t^8.64/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.64/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g1*g5*t^8.69)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.69)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.69)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.69)/(g1^3*g2^3*g3^3*g6^3) + (g1*g6*t^8.69)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.69)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.69)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.69)/(g1^3*g2^3*g3^3*g5^3) + (g1^5*t^8.78)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.78)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.78)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.78)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.78)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.78)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.78)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.78)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.78)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.78)/(g1^3*g2^3*g3^3*g5^3*g6^3) - t^4.63/(g1*g2*g3*g4*g5*g6*y) - t^6.74/(g1*g2*g3^5*g4^5*g5*g6*y) - t^6.74/(g1*g2^5*g3*g4^5*g5*g6*y) - t^6.74/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.74/(g1^5*g2^5*g3*g4*g5*g6*y) + t^7.22/(g1^8*g2^4*g3^4*y) + t^7.22/(g2^4*g3^4*g4^8*y) + t^7.22/(g1^4*g2^8*g4^4*y) + t^7.22/(g1^4*g3^8*g4^4*y) + (2*t^7.22)/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*g6*t^7.37)/y - t^7.9/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.38/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*y) + t^8.38/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*y) + t^8.38/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.38/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + (g1^3*g2^3*t^8.52)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.52)/(g2*g4*g5*g6*y) + (g2^3*g4^3*t^8.52)/(g1*g3*g5*g6*y) + (g3^3*g4^3*t^8.52)/(g1*g2*g5*g6*y) + (g5^4*g6^4*t^8.81)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.81)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.81)/(g2^4*g4^4*y) + (g5^4*g6^4*t^8.81)/(g3^4*g4^4*y) - t^8.86/(g1*g2*g3^9*g4^9*g5*g6*y) - t^8.86/(g1*g2^5*g3^5*g4^9*g5*g6*y) - t^8.86/(g1*g2^9*g3*g4^9*g5*g6*y) - t^8.86/(g1^5*g2*g3^9*g4^5*g5*g6*y) - (2*t^8.86)/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.86/(g1^5*g2^9*g3*g4^5*g5*g6*y) - t^8.86/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.86/(g1^9*g2^5*g3^5*g4*g5*g6*y) - t^8.86/(g1^9*g2^9*g3*g4*g5*g6*y) + (2*g5^4*t^8.9)/(g1^4*y) + (2*g5^4*t^8.9)/(g2^4*y) + (2*g5^4*t^8.9)/(g3^4*y) + (g2^4*g5^4*t^8.9)/(g1^4*g3^4*y) + (g3^4*g5^4*t^8.9)/(g1^4*g2^4*y) + (2*g5^4*t^8.9)/(g4^4*y) + (g1^4*g5^4*t^8.9)/(g2^4*g4^4*y) + (g1^4*g5^4*t^8.9)/(g3^4*g4^4*y) + (g2^4*g5^4*t^8.9)/(g3^4*g4^4*y) + (g3^4*g5^4*t^8.9)/(g2^4*g4^4*y) + (g4^4*g5^4*t^8.9)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.9)/(g1^4*g3^4*y) + (2*g6^4*t^8.9)/(g1^4*y) + (2*g6^4*t^8.9)/(g2^4*y) + (2*g6^4*t^8.9)/(g3^4*y) + (g2^4*g6^4*t^8.9)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.9)/(g1^4*g2^4*y) + (2*g6^4*t^8.9)/(g4^4*y) + (g1^4*g6^4*t^8.9)/(g2^4*g4^4*y) + (g1^4*g6^4*t^8.9)/(g3^4*g4^4*y) + (g2^4*g6^4*t^8.9)/(g3^4*g4^4*y) + (g3^4*g6^4*t^8.9)/(g2^4*g4^4*y) + (g4^4*g6^4*t^8.9)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.9)/(g1^4*g3^4*y) - (t^4.63*y)/(g1*g2*g3*g4*g5*g6) - (t^6.74*y)/(g1*g2*g3^5*g4^5*g5*g6) - (t^6.74*y)/(g1*g2^5*g3*g4^5*g5*g6) - (t^6.74*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.74*y)/(g1^5*g2^5*g3*g4*g5*g6) + (t^7.22*y)/(g1^8*g2^4*g3^4) + (t^7.22*y)/(g2^4*g3^4*g4^8) + (t^7.22*y)/(g1^4*g2^8*g4^4) + (t^7.22*y)/(g1^4*g3^8*g4^4) + (2*t^7.22*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*g5*g6*t^7.37*y - (t^7.9*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.38*y)/(g1^2*g2^2*g3^6*g4^6*g5^2*g6^2) + (t^8.38*y)/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (t^8.38*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.38*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g1^3*g2^3*t^8.52*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.52*y)/(g2*g4*g5*g6) + (g2^3*g4^3*t^8.52*y)/(g1*g3*g5*g6) + (g3^3*g4^3*t^8.52*y)/(g1*g2*g5*g6) + (g5^4*g6^4*t^8.81*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.81*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.81*y)/(g2^4*g4^4) + (g5^4*g6^4*t^8.81*y)/(g3^4*g4^4) - (t^8.86*y)/(g1*g2*g3^9*g4^9*g5*g6) - (t^8.86*y)/(g1*g2^5*g3^5*g4^9*g5*g6) - (t^8.86*y)/(g1*g2^9*g3*g4^9*g5*g6) - (t^8.86*y)/(g1^5*g2*g3^9*g4^5*g5*g6) - (2*t^8.86*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.86*y)/(g1^5*g2^9*g3*g4^5*g5*g6) - (t^8.86*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.86*y)/(g1^9*g2^5*g3^5*g4*g5*g6) - (t^8.86*y)/(g1^9*g2^9*g3*g4*g5*g6) + (2*g5^4*t^8.9*y)/g1^4 + (2*g5^4*t^8.9*y)/g2^4 + (2*g5^4*t^8.9*y)/g3^4 + (g2^4*g5^4*t^8.9*y)/(g1^4*g3^4) + (g3^4*g5^4*t^8.9*y)/(g1^4*g2^4) + (2*g5^4*t^8.9*y)/g4^4 + (g1^4*g5^4*t^8.9*y)/(g2^4*g4^4) + (g1^4*g5^4*t^8.9*y)/(g3^4*g4^4) + (g2^4*g5^4*t^8.9*y)/(g3^4*g4^4) + (g3^4*g5^4*t^8.9*y)/(g2^4*g4^4) + (g4^4*g5^4*t^8.9*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.9*y)/(g1^4*g3^4) + (2*g6^4*t^8.9*y)/g1^4 + (2*g6^4*t^8.9*y)/g2^4 + (2*g6^4*t^8.9*y)/g3^4 + (g2^4*g6^4*t^8.9*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.9*y)/(g1^4*g2^4) + (2*g6^4*t^8.9*y)/g4^4 + (g1^4*g6^4*t^8.9*y)/(g2^4*g4^4) + (g1^4*g6^4*t^8.9*y)/(g3^4*g4^4) + (g2^4*g6^4*t^8.9*y)/(g3^4*g4^4) + (g3^4*g6^4*t^8.9*y)/(g2^4*g4^4) + (g4^4*g6^4*t^8.9*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.9*y)/(g1^4*g3^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55595 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.9185 | 1.1444 | 0.8026 | [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] | t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y | detail |