Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55807 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_3\tilde{q}_2$ | 0.9383 | 1.1805 | 0.7949 | [X:[], M:[0.703, 0.703, 0.7144, 0.7144], q:[0.6461, 0.6508, 0.6508], qb:[0.6348, 0.6348, 0.6151], phi:[0.5419]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [0, -4, 0, -4, 0, 0], [0, 0, -4, 0, -4, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ M_4$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_3$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_3$, $ q_3\tilde{q}_3$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ q_3\tilde{q}_1$, $ q_2\tilde{q}_2$, $ q_2q_3$, $ M_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1M_3$, $ M_2M_3$, $ M_2M_4$, $ M_1M_4$, $ M_3^2$, $ M_4^2$, $ M_3M_4$, $ \phi_1\tilde{q}_3^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_3$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_4\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2\tilde{q}_3$, $ \phi_1q_3\tilde{q}_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1q_3$, $ \phi_1q_2^2$, $ \phi_1q_2q_3$, $ \phi_1q_3^2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_2\tilde{q}_1\tilde{q}_3$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_1\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_1\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_2q_3\tilde{q}_3$, $ M_2q_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3q_1\tilde{q}_3$, $ M_4q_1\tilde{q}_3$, $ M_3q_3\tilde{q}_3$, $ M_4q_2\tilde{q}_3$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1q_3\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$ | $M_3q_3\tilde{q}_1$, $ M_4q_2\tilde{q}_2$ | -6 | 2*t^2.11 + 2*t^2.14 + t^3.25 + 2*t^3.75 + t^3.78 + 2*t^3.8 + t^3.81 + 2*t^3.84 + 2*t^3.86 + t^3.9 + 3*t^4.22 + 4*t^4.25 + 3*t^4.29 + t^5.32 + 2*t^5.36 + 2*t^5.38 + 2*t^5.39 + t^5.41 + 2*t^5.42 + 3*t^5.43 + 2*t^5.47 + 4*t^5.48 + t^5.5 + 2*t^5.52 + 3*t^5.53 + 4*t^5.86 + 4*t^5.89 + 3*t^5.91 + 2*t^5.92 + 2*t^5.93 + 2*t^5.94 + 2*t^5.95 + 2*t^5.97 + 2*t^5.99 - 6*t^6. - 2*t^6.03 - 2*t^6.05 - 2*t^6.06 - t^6.09 - 2*t^6.11 + 4*t^6.33 + 6*t^6.36 + 6*t^6.4 + 4*t^6.43 + t^6.5 + 2*t^7. + t^7.03 + 2*t^7.05 + t^7.06 + 2*t^7.09 + 2*t^7.11 + t^7.16 + 2*t^7.43 + 2*t^7.46 + 3*t^7.47 + 4*t^7.48 + 7*t^7.5 + 4*t^7.52 + 5*t^7.53 + 9*t^7.54 + 6*t^7.55 + 2*t^7.56 + 3*t^7.57 + 8*t^7.58 + 10*t^7.59 + 3*t^7.6 + 8*t^7.61 + t^7.62 + 5*t^7.63 + 6*t^7.64 + 8*t^7.65 + 2*t^7.66 + 4*t^7.67 - 2*t^7.68 + 3*t^7.69 + 4*t^7.7 + 3*t^7.71 - t^7.72 - 2*t^7.73 + 2*t^7.76 + t^7.81 + 6*t^7.97 + 7*t^8. + 4*t^8.02 + 3*t^8.03 + 6*t^8.04 + 2*t^8.05 + t^8.06 + 3*t^8.07 + 4*t^8.08 + 2*t^8.1 - 14*t^8.11 - 2*t^8.12 + 2*t^8.13 - 14*t^8.14 - 7*t^8.16 - 6*t^8.17 - 7*t^8.18 - 2*t^8.19 - 4*t^8.2 - 5*t^8.22 - 4*t^8.23 - 2*t^8.24 - 3*t^8.25 - 2*t^8.27 - 3*t^8.28 + t^8.31 + 5*t^8.44 + 8*t^8.47 + 9*t^8.5 + 8*t^8.54 + 6*t^8.57 + 2*t^8.61 + 2*t^8.63 + 2*t^8.65 + t^8.66 + 2*t^8.67 + 3*t^8.69 + 2*t^8.72 + 4*t^8.73 + t^8.75 + 2*t^8.77 + 3*t^8.78 - t^4.63/y - (2*t^6.73)/y - (2*t^6.77)/y + t^7.22/y + (4*t^7.25)/y + t^7.29/y + t^7.37/y - t^7.88/y + (2*t^8.36)/y + (2*t^8.39)/y + (2*t^8.48)/y + (2*t^8.52)/y - (3*t^8.84)/y + (4*t^8.86)/y - (4*t^8.88)/y + (6*t^8.89)/y + t^8.91/y + (2*t^8.92)/y + (2*t^8.93)/y + (4*t^8.94)/y + (6*t^8.95)/y + (4*t^8.97)/y + (4*t^8.99)/y - t^4.63*y - 2*t^6.73*y - 2*t^6.77*y + t^7.22*y + 4*t^7.25*y + t^7.29*y + t^7.37*y - t^7.88*y + 2*t^8.36*y + 2*t^8.39*y + 2*t^8.48*y + 2*t^8.52*y - 3*t^8.84*y + 4*t^8.86*y - 4*t^8.88*y + 6*t^8.89*y + t^8.91*y + 2*t^8.92*y + 2*t^8.93*y + 4*t^8.94*y + 6*t^8.95*y + 4*t^8.97*y + 4*t^8.99*y | t^2.11/(g1^4*g2^4) + t^2.11/(g1^4*g3^4) + t^2.14/(g2^4*g4^4) + t^2.14/(g3^4*g5^4) + t^3.25/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g4^4*g6^4*t^3.75 + g5^4*g6^4*t^3.75 + g1^4*g6^4*t^3.78 + g2^4*g6^4*t^3.8 + g3^4*g6^4*t^3.8 + g4^4*g5^4*t^3.81 + g1^4*g4^4*t^3.84 + g1^4*g5^4*t^3.84 + g3^4*g4^4*t^3.86 + g2^4*g5^4*t^3.86 + g2^4*g3^4*t^3.9 + t^4.22/(g1^8*g2^8) + t^4.22/(g1^8*g3^8) + t^4.22/(g1^8*g2^4*g3^4) + t^4.25/(g1^4*g2^8*g4^4) + t^4.25/(g1^4*g2^4*g3^4*g4^4) + t^4.25/(g1^4*g3^8*g5^4) + t^4.25/(g1^4*g2^4*g3^4*g5^4) + t^4.29/(g2^8*g4^8) + t^4.29/(g3^8*g5^8) + t^4.29/(g2^4*g3^4*g4^4*g5^4) + (g6^7*t^5.32)/(g1*g2*g3*g4*g5) + t^5.36/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + t^5.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (g4^3*g6^3*t^5.38)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.38)/(g1*g2*g3*g4) + t^5.39/(g1^2*g2^2*g3^6*g4^2*g5^6*g6^2) + t^5.39/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (g1^3*g6^3*t^5.41)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.42)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.42)/(g1*g2*g4*g5) + (g4^7*t^5.43)/(g1*g2*g3*g5*g6) + (g4^3*g5^3*t^5.43)/(g1*g2*g3*g6) + (g5^7*t^5.43)/(g1*g2*g3*g4*g6) + (g1^3*g4^3*t^5.47)/(g2*g3*g5*g6) + (g1^3*g5^3*t^5.47)/(g2*g3*g4*g6) + (g2^3*g4^3*t^5.48)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.48)/(g1*g2*g5*g6) + (g2^3*g5^3*t^5.48)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.48)/(g1*g2*g4*g6) + (g1^7*t^5.5)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.52)/(g3*g4*g5*g6) + (g1^3*g3^3*t^5.52)/(g2*g4*g5*g6) + (g2^7*t^5.53)/(g1*g3*g4*g5*g6) + (g2^3*g3^3*t^5.53)/(g1*g4*g5*g6) + (g3^7*t^5.53)/(g1*g2*g4*g5*g6) + (g4^4*g6^4*t^5.86)/(g1^4*g2^4) + (g4^4*g6^4*t^5.86)/(g1^4*g3^4) + (g5^4*g6^4*t^5.86)/(g1^4*g2^4) + (g5^4*g6^4*t^5.86)/(g1^4*g3^4) + (g6^4*t^5.89)/g2^4 + (g6^4*t^5.89)/g3^4 + (g4^4*g6^4*t^5.89)/(g3^4*g5^4) + (g5^4*g6^4*t^5.89)/(g2^4*g4^4) + (g6^4*t^5.91)/g1^4 + (g2^4*g6^4*t^5.91)/(g1^4*g3^4) + (g3^4*g6^4*t^5.91)/(g1^4*g2^4) + (g4^4*g5^4*t^5.92)/(g1^4*g2^4) + (g4^4*g5^4*t^5.92)/(g1^4*g3^4) + (g1^4*g6^4*t^5.93)/(g2^4*g4^4) + (g1^4*g6^4*t^5.93)/(g3^4*g5^4) + (g3^4*g6^4*t^5.94)/(g2^4*g4^4) + (g2^4*g6^4*t^5.94)/(g3^4*g5^4) + (g4^4*t^5.95)/g3^4 + (g5^4*t^5.95)/g2^4 + (g3^4*g4^4*t^5.97)/(g1^4*g2^4) + (g2^4*g5^4*t^5.97)/(g1^4*g3^4) + (g1^4*g4^4*t^5.99)/(g3^4*g5^4) + (g1^4*g5^4*t^5.99)/(g2^4*g4^4) - 6*t^6. - (g1^4*t^6.03)/g4^4 - (g1^4*t^6.03)/g5^4 - (g2^4*t^6.05)/g4^4 - (g3^4*t^6.05)/g5^4 - (g4^4*t^6.06)/g6^4 - (g5^4*t^6.06)/g6^4 - (g1^4*t^6.09)/g6^4 - (g2^4*t^6.11)/g6^4 - (g3^4*t^6.11)/g6^4 + t^6.33/(g1^12*g2^12) + t^6.33/(g1^12*g3^12) + t^6.33/(g1^12*g2^4*g3^8) + t^6.33/(g1^12*g2^8*g3^4) + t^6.36/(g1^8*g2^12*g4^4) + t^6.36/(g1^8*g2^4*g3^8*g4^4) + t^6.36/(g1^8*g2^8*g3^4*g4^4) + t^6.36/(g1^8*g3^12*g5^4) + t^6.36/(g1^8*g2^4*g3^8*g5^4) + t^6.36/(g1^8*g2^8*g3^4*g5^4) + t^6.4/(g1^4*g2^12*g4^8) + t^6.4/(g1^4*g2^8*g3^4*g4^8) + t^6.4/(g1^4*g3^12*g5^8) + t^6.4/(g1^4*g2^4*g3^8*g5^8) + t^6.4/(g1^4*g2^4*g3^8*g4^4*g5^4) + t^6.4/(g1^4*g2^8*g3^4*g4^4*g5^4) + t^6.43/(g2^12*g4^12) + t^6.43/(g3^12*g5^12) + t^6.43/(g2^4*g3^8*g4^4*g5^8) + t^6.43/(g2^8*g3^4*g4^8*g5^4) + t^6.5/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g4^2*g6^2*t^7.)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.)/(g1^2*g2^2*g3^2*g4^2) + (g1^2*g6^2*t^7.03)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.05)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.05)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g5^2*t^7.06)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g4^2*t^7.09)/(g2^2*g3^2*g5^2*g6^2) + (g1^2*g5^2*t^7.09)/(g2^2*g3^2*g4^2*g6^2) + (g3^2*g4^2*t^7.11)/(g1^2*g2^2*g5^2*g6^2) + (g2^2*g5^2*t^7.11)/(g1^2*g3^2*g4^2*g6^2) + (g2^2*g3^2*t^7.16)/(g1^2*g4^2*g5^2*g6^2) + (g6^7*t^7.43)/(g1^5*g2*g3^5*g4*g5) + (g6^7*t^7.43)/(g1^5*g2^5*g3*g4*g5) + (g6^7*t^7.46)/(g1*g2*g3^5*g4*g5^5) + (g6^7*t^7.46)/(g1*g2^5*g3*g4^5*g5) + t^7.47/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + t^7.47/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + t^7.47/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + (g4^3*g6^3*t^7.48)/(g1^5*g2*g3^5*g5) + (g4^3*g6^3*t^7.48)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.48)/(g1^5*g2*g3^5*g4) + (g5^3*g6^3*t^7.48)/(g1^5*g2^5*g3*g4) + t^7.5/(g1^6*g2^2*g3^10*g4^2*g5^6*g6^2) + t^7.5/(g1^6*g2^6*g3^6*g4^2*g5^6*g6^2) + t^7.5/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.5/(g1^6*g2^10*g3^2*g4^6*g5^2*g6^2) + g4^8*g6^8*t^7.5 + g4^4*g5^4*g6^8*t^7.5 + g5^8*g6^8*t^7.5 + (g4^3*g6^3*t^7.52)/(g1*g2*g3^5*g5^5) + (g6^3*t^7.52)/(g1*g2*g3^5*g4*g5) + (g6^3*t^7.52)/(g1*g2^5*g3*g4*g5) + (g5^3*g6^3*t^7.52)/(g1*g2^5*g3*g4^5) + (g2^3*g6^3*t^7.53)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.53)/(g1^5*g2*g3*g4*g5) + (g3^3*g6^3*t^7.53)/(g1^5*g2^5*g4*g5) + g1^4*g4^4*g6^8*t^7.53 + g1^4*g5^4*g6^8*t^7.53 + t^7.54/(g1^2*g2^2*g3^10*g4^2*g5^10*g6^2) + t^7.54/(g1^2*g2^6*g3^6*g4^6*g5^6*g6^2) + t^7.54/(g1^2*g2^10*g3^2*g4^10*g5^2*g6^2) + (g4^7*t^7.54)/(g1^5*g2*g3^5*g5*g6) + (g4^7*t^7.54)/(g1^5*g2^5*g3*g5*g6) + (g4^3*g5^3*t^7.54)/(g1^5*g2*g3^5*g6) + (g4^3*g5^3*t^7.54)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.54)/(g1^5*g2*g3^5*g4*g6) + (g5^7*t^7.54)/(g1^5*g2^5*g3*g4*g6) + (g1^3*g6^3*t^7.55)/(g2*g3^5*g4*g5^5) + (g1^3*g6^3*t^7.55)/(g2^5*g3*g4^5*g5) + g2^4*g4^4*g6^8*t^7.55 + g3^4*g4^4*g6^8*t^7.55 + g2^4*g5^4*g6^8*t^7.55 + g3^4*g5^4*g6^8*t^7.55 + g4^8*g5^4*g6^4*t^7.56 + g4^4*g5^8*g6^4*t^7.56 + (g2^3*g6^3*t^7.57)/(g1*g3^5*g4*g5^5) + (g3^3*g6^3*t^7.57)/(g1*g2^5*g4^5*g5) + g1^8*g6^8*t^7.57 + (g4^7*t^7.58)/(g1*g2*g3^5*g5^5*g6) + (g4^3*t^7.58)/(g1*g2*g3^5*g5*g6) + (g4^3*t^7.58)/(g1*g2^5*g3*g5*g6) + (g5^3*t^7.58)/(g1*g2*g3^5*g4*g6) + (g5^3*t^7.58)/(g1*g2^5*g3*g4*g6) + (g5^7*t^7.58)/(g1*g2^5*g3*g4^5*g6) + g1^4*g2^4*g6^8*t^7.58 + g1^4*g3^4*g6^8*t^7.58 + (g2^3*g4^3*t^7.59)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.59)/(g1^5*g2*g3*g5*g6) + (g3^3*g4^3*t^7.59)/(g1^5*g2^5*g5*g6) + (g2^3*g5^3*t^7.59)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.59)/(g1^5*g2*g3*g4*g6) + (g3^3*g5^3*t^7.59)/(g1^5*g2^5*g4*g6) + g1^4*g4^8*g6^4*t^7.59 + 2*g1^4*g4^4*g5^4*g6^4*t^7.59 + g1^4*g5^8*g6^4*t^7.59 + g2^8*g6^8*t^7.6 + g2^4*g3^4*g6^8*t^7.6 + g3^8*g6^8*t^7.6 + (g1^3*g4^3*t^7.61)/(g2*g3^5*g5^5*g6) + (g1^3*t^7.61)/(g2*g3^5*g4*g5*g6) + (g1^3*t^7.61)/(g2^5*g3*g4*g5*g6) + (g1^3*g5^3*t^7.61)/(g2^5*g3*g4^5*g6) + g3^4*g4^8*g6^4*t^7.61 + g2^4*g4^4*g5^4*g6^4*t^7.61 + g3^4*g4^4*g5^4*g6^4*t^7.61 + g2^4*g5^8*g6^4*t^7.61 + g4^8*g5^8*t^7.62 + (g2^3*g4^3*t^7.63)/(g1*g3^5*g5^5*g6) + (g2^3*t^7.63)/(g1*g3^5*g4*g5*g6) - t^7.63/(g1*g2*g3*g4*g5*g6) + (g3^3*t^7.63)/(g1*g2^5*g4*g5*g6) + (g3^3*g5^3*t^7.63)/(g1*g2^5*g4^5*g6) + g1^8*g4^4*g6^4*t^7.63 + g1^8*g5^4*g6^4*t^7.63 + (g2^7*t^7.64)/(g1^5*g3^5*g4*g5*g6) + (g2^3*t^7.64)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.64)/(g1^5*g2*g4*g5*g6) + (g3^7*t^7.64)/(g1^5*g2^5*g4*g5*g6) + g1^4*g3^4*g4^4*g6^4*t^7.64 + g1^4*g2^4*g5^4*g6^4*t^7.64 + g1^4*g4^8*g5^4*t^7.65 + g1^4*g4^4*g5^8*t^7.65 + (g1^7*t^7.65)/(g2*g3^5*g4*g5^5*g6) + (g1^7*t^7.65)/(g2^5*g3*g4^5*g5*g6) + g2^4*g3^4*g4^4*g6^4*t^7.65 + g3^8*g4^4*g6^4*t^7.65 + g2^8*g5^4*g6^4*t^7.65 + g2^4*g3^4*g5^4*g6^4*t^7.65 + (g1^3*g2^3*t^7.66)/(g3^5*g4*g5^5*g6) + (g1^3*g3^3*t^7.66)/(g2^5*g4^5*g5*g6) + g3^4*g4^8*g5^4*t^7.67 + g2^4*g4^4*g5^8*t^7.67 + (g2^7*t^7.67)/(g1*g3^5*g4*g5^5*g6) + (g3^7*t^7.67)/(g1*g2^5*g4^5*g5*g6) - (g4^3*t^7.68)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.68)/(g1*g2*g3*g4*g6^5) + g1^8*g4^8*t^7.69 + g1^8*g4^4*g5^4*t^7.69 + g1^8*g5^8*t^7.69 + g1^4*g3^4*g4^8*t^7.7 + g1^4*g2^4*g5^8*t^7.7 + g2^8*g3^4*g6^4*t^7.7 + g2^4*g3^8*g6^4*t^7.7 + g3^8*g4^8*t^7.71 + g2^4*g3^4*g4^4*g5^4*t^7.71 + g2^8*g5^8*t^7.71 - (g1^3*t^7.72)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.73)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.73)/(g1*g2*g4*g5*g6^5) + g2^4*g3^8*g4^4*t^7.76 + g2^8*g3^4*g5^4*t^7.76 + g2^8*g3^8*t^7.81 + (g4^4*g6^4*t^7.97)/(g1^8*g2^8) + (g4^4*g6^4*t^7.97)/(g1^8*g3^8) + (g4^4*g6^4*t^7.97)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.97)/(g1^8*g2^8) + (g5^4*g6^4*t^7.97)/(g1^8*g3^8) + (g5^4*g6^4*t^7.97)/(g1^8*g2^4*g3^4) + (g6^4*t^8.)/(g1^4*g2^8) + (g6^4*t^8.)/(g1^4*g3^8) + (g6^4*t^8.)/(g1^4*g2^4*g3^4) + (g4^4*g6^4*t^8.)/(g1^4*g3^8*g5^4) + (g4^4*g6^4*t^8.)/(g1^4*g2^4*g3^4*g5^4) + (g5^4*g6^4*t^8.)/(g1^4*g2^8*g4^4) + (g5^4*g6^4*t^8.)/(g1^4*g2^4*g3^4*g4^4) + (g6^4*t^8.02)/(g1^8*g2^4) + (g2^4*g6^4*t^8.02)/(g1^8*g3^8) + (g6^4*t^8.02)/(g1^8*g3^4) + (g3^4*g6^4*t^8.02)/(g1^8*g2^8) + (g4^4*g5^4*t^8.03)/(g1^8*g2^8) + (g4^4*g5^4*t^8.03)/(g1^8*g3^8) + (g4^4*g5^4*t^8.03)/(g1^8*g2^4*g3^4) + (g6^4*t^8.04)/(g2^8*g4^4) + (g6^4*t^8.04)/(g2^4*g3^4*g4^4) + (g4^4*g6^4*t^8.04)/(g3^8*g5^8) + (g6^4*t^8.04)/(g3^8*g5^4) + (g6^4*t^8.04)/(g2^4*g3^4*g5^4) + (g5^4*g6^4*t^8.04)/(g2^8*g4^8) + (g3^4*g6^4*t^8.05)/(g1^4*g2^8*g4^4) + (g2^4*g6^4*t^8.05)/(g1^4*g3^8*g5^4) + (g4^4*t^8.06)/(g1^4*g3^8) + (g5^4*t^8.06)/(g1^4*g2^8) - g1*g2*g3*g4*g5*g6^9*t^8.06 + (g1^4*g6^4*t^8.07)/(g2^8*g4^8) + (g1^4*g6^4*t^8.07)/(g3^8*g5^8) + (g1^4*g6^4*t^8.07)/(g2^4*g3^4*g4^4*g5^4) + (g3^4*g4^4*t^8.08)/(g1^8*g2^8) + (g2^4*g5^4*t^8.08)/(g1^8*g3^8) + (g3^4*g6^4*t^8.08)/(g2^8*g4^8) + (g2^4*g6^4*t^8.08)/(g3^8*g5^8) + (g4^4*t^8.1)/(g3^8*g5^4) + (g5^4*t^8.1)/(g2^8*g4^4) - (6*t^8.11)/(g1^4*g2^4) - (6*t^8.11)/(g1^4*g3^4) - (g4^4*t^8.11)/(g1^4*g3^4*g5^4) - (g5^4*t^8.11)/(g1^4*g2^4*g4^4) - g1*g2*g3*g4^5*g5*g6^5*t^8.12 - g1*g2*g3*g4*g5^5*g6^5*t^8.12 + (g1^4*g4^4*t^8.13)/(g3^8*g5^8) + (g1^4*g5^4*t^8.13)/(g2^8*g4^8) - (6*t^8.14)/(g2^4*g4^4) - t^8.14/(g3^4*g4^4) - t^8.14/(g2^4*g5^4) - (6*t^8.14)/(g3^4*g5^4) - t^8.16/(g1^4*g4^4) - (g2^4*t^8.16)/(g1^4*g3^4*g4^4) - (g3^4*t^8.16)/(g1^4*g2^4*g4^4) - t^8.16/(g1^4*g5^4) - (g2^4*t^8.16)/(g1^4*g3^4*g5^4) - (g3^4*t^8.16)/(g1^4*g2^4*g5^4) - g1^5*g2*g3*g4*g5*g6^5*t^8.16 - (g4^4*t^8.17)/(g1^4*g2^4*g6^4) - (g4^4*t^8.17)/(g1^4*g3^4*g6^4) - (g5^4*t^8.17)/(g1^4*g2^4*g6^4) - (g5^4*t^8.17)/(g1^4*g3^4*g6^4) - g1*g2^5*g3*g4*g5*g6^5*t^8.17 - g1*g2*g3^5*g4*g5*g6^5*t^8.17 - (g1^4*t^8.18)/(g2^4*g4^8) - (g1^4*t^8.18)/(g3^4*g5^8) - (g1^4*t^8.18)/(g2^4*g4^4*g5^4) - (g1^4*t^8.18)/(g3^4*g4^4*g5^4) - g1*g2*g3*g4^9*g5*g6*t^8.18 - g1*g2*g3*g4^5*g5^5*g6*t^8.18 - g1*g2*g3*g4*g5^9*g6*t^8.18 - (g2^4*t^8.19)/(g3^4*g4^4*g5^4) - (g3^4*t^8.19)/(g2^4*g4^4*g5^4) - t^8.2/(g2^4*g6^4) - t^8.2/(g3^4*g6^4) - (g4^4*t^8.2)/(g3^4*g5^4*g6^4) - (g5^4*t^8.2)/(g2^4*g4^4*g6^4) - t^8.22/(g1^4*g6^4) - (g2^4*t^8.22)/(g1^4*g3^4*g6^4) - (g3^4*t^8.22)/(g1^4*g2^4*g6^4) - g1^5*g2*g3*g4^5*g5*g6*t^8.22 - g1^5*g2*g3*g4*g5^5*g6*t^8.22 - g1*g2^5*g3*g4^5*g5*g6*t^8.23 - g1*g2*g3^5*g4^5*g5*g6*t^8.23 - g1*g2^5*g3*g4*g5^5*g6*t^8.23 - g1*g2*g3^5*g4*g5^5*g6*t^8.23 - (g1^4*t^8.24)/(g2^4*g4^4*g6^4) - (g1^4*t^8.24)/(g3^4*g5^4*g6^4) - (g3^4*t^8.25)/(g2^4*g4^4*g6^4) - (g2^4*t^8.25)/(g3^4*g5^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.25 - g1^5*g2^5*g3*g4*g5*g6*t^8.27 - g1^5*g2*g3^5*g4*g5*g6*t^8.27 - g1*g2^9*g3*g4*g5*g6*t^8.28 - g1*g2^5*g3^5*g4*g5*g6*t^8.28 - g1*g2*g3^9*g4*g5*g6*t^8.28 + t^8.31/g6^8 + t^8.44/(g1^16*g2^16) + t^8.44/(g1^16*g3^16) + t^8.44/(g1^16*g2^4*g3^12) + t^8.44/(g1^16*g2^8*g3^8) + t^8.44/(g1^16*g2^12*g3^4) + t^8.47/(g1^12*g2^16*g4^4) + t^8.47/(g1^12*g2^4*g3^12*g4^4) + t^8.47/(g1^12*g2^8*g3^8*g4^4) + t^8.47/(g1^12*g2^12*g3^4*g4^4) + t^8.47/(g1^12*g3^16*g5^4) + t^8.47/(g1^12*g2^4*g3^12*g5^4) + t^8.47/(g1^12*g2^8*g3^8*g5^4) + t^8.47/(g1^12*g2^12*g3^4*g5^4) + t^8.5/(g1^8*g2^16*g4^8) + t^8.5/(g1^8*g2^8*g3^8*g4^8) + t^8.5/(g1^8*g2^12*g3^4*g4^8) + t^8.5/(g1^8*g3^16*g5^8) + t^8.5/(g1^8*g2^4*g3^12*g5^8) + t^8.5/(g1^8*g2^8*g3^8*g5^8) + t^8.5/(g1^8*g2^4*g3^12*g4^4*g5^4) + t^8.5/(g1^8*g2^8*g3^8*g4^4*g5^4) + t^8.5/(g1^8*g2^12*g3^4*g4^4*g5^4) + t^8.54/(g1^4*g2^16*g4^12) + t^8.54/(g1^4*g2^12*g3^4*g4^12) + t^8.54/(g1^4*g3^16*g5^12) + t^8.54/(g1^4*g2^4*g3^12*g5^12) + t^8.54/(g1^4*g2^4*g3^12*g4^4*g5^8) + t^8.54/(g1^4*g2^8*g3^8*g4^4*g5^8) + t^8.54/(g1^4*g2^8*g3^8*g4^8*g5^4) + t^8.54/(g1^4*g2^12*g3^4*g4^8*g5^4) + t^8.57/(g2^16*g4^16) + t^8.57/(g3^16*g5^16) + t^8.57/(g2^4*g3^12*g4^4*g5^12) + t^8.57/(g2^8*g3^8*g4^8*g5^8) + t^8.57/(g2^12*g3^4*g4^12*g5^4) + (g6^5*t^8.57)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.61/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + t^8.61/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g4*g6*t^8.63)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.63)/(g1^3*g2^3*g3^3*g4^3) + t^8.65/(g1^4*g2^4*g3^8*g4^4*g5^8*g6^4) + t^8.65/(g1^4*g2^8*g3^4*g4^8*g5^4*g6^4) + (g1*g6*t^8.66)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.67)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.67)/(g1^3*g2^3*g4^3*g5^3) + (g4^5*t^8.69)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g4*g5*t^8.69)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.69)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g1*g4*t^8.72)/(g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.72)/(g2^3*g3^3*g4^3*g6^3) + (g2*g4*t^8.73)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.73)/(g1^3*g2^3*g5^3*g6^3) + (g2*g5*t^8.73)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.73)/(g1^3*g2^3*g4^3*g6^3) + (g1^5*t^8.75)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.77)/(g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.77)/(g2^3*g4^3*g5^3*g6^3) + (g2^5*t^8.78)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.78)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.78)/(g1^3*g2^3*g4^3*g5^3*g6^3) - t^4.63/(g1*g2*g3*g4*g5*g6*y) - t^6.73/(g1^5*g2*g3^5*g4*g5*g6*y) - t^6.73/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.77/(g1*g2*g3^5*g4*g5^5*g6*y) - t^6.77/(g1*g2^5*g3*g4^5*g5*g6*y) + t^7.22/(g1^8*g2^4*g3^4*y) + t^7.25/(g1^4*g2^8*g4^4*y) + t^7.25/(g1^4*g2^4*g3^4*g4^4*y) + t^7.25/(g1^4*g3^8*g5^4*y) + t^7.25/(g1^4*g2^4*g3^4*g5^4*y) + t^7.29/(g2^4*g3^4*g4^4*g5^4*y) + (g1*g2*g3*g4*g5*g6*t^7.37)/y - t^7.88/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.36/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.39/(g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*y) + t^8.39/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*y) + (g2^3*g4^3*t^8.48)/(g1*g3*g5*g6*y) + (g3^3*g5^3*t^8.48)/(g1*g2*g4*g6*y) + (g1^3*g2^3*t^8.52)/(g3*g4*g5*g6*y) + (g1^3*g3^3*t^8.52)/(g2*g4*g5*g6*y) - t^8.84/(g1^9*g2*g3^9*g4*g5*g6*y) - t^8.84/(g1^9*g2^5*g3^5*g4*g5*g6*y) - t^8.84/(g1^9*g2^9*g3*g4*g5*g6*y) + (g4^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.86)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.86)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.86)/(g1^4*g3^4*y) - t^8.88/(g1^5*g2*g3^9*g4*g5^5*g6*y) - t^8.88/(g1^5*g2^5*g3^5*g4*g5^5*g6*y) - t^8.88/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.88/(g1^5*g2^9*g3*g4^5*g5*g6*y) + (2*g6^4*t^8.89)/(g2^4*y) + (2*g6^4*t^8.89)/(g3^4*y) + (g4^4*g6^4*t^8.89)/(g3^4*g5^4*y) + (g5^4*g6^4*t^8.89)/(g2^4*g4^4*y) - t^8.91/(g1*g2*g3^9*g4*g5^9*g6*y) - t^8.91/(g1*g2^5*g3^5*g4^5*g5^5*g6*y) - t^8.91/(g1*g2^9*g3*g4^9*g5*g6*y) + (2*g6^4*t^8.91)/(g1^4*y) + (g2^4*g6^4*t^8.91)/(g1^4*g3^4*y) + (g3^4*g6^4*t^8.91)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.92)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.92)/(g1^4*g3^4*y) + (g1^4*g6^4*t^8.93)/(g2^4*g4^4*y) + (g1^4*g6^4*t^8.93)/(g3^4*g5^4*y) + (g6^4*t^8.94)/(g4^4*y) + (g3^4*g6^4*t^8.94)/(g2^4*g4^4*y) + (g6^4*t^8.94)/(g5^4*y) + (g2^4*g6^4*t^8.94)/(g3^4*g5^4*y) + (g4^4*t^8.95)/(g2^4*y) + (2*g4^4*t^8.95)/(g3^4*y) + (2*g5^4*t^8.95)/(g2^4*y) + (g5^4*t^8.95)/(g3^4*y) + (g4^4*t^8.97)/(g1^4*y) + (g3^4*g4^4*t^8.97)/(g1^4*g2^4*y) + (g5^4*t^8.97)/(g1^4*y) + (g2^4*g5^4*t^8.97)/(g1^4*g3^4*y) + (g1^4*t^8.99)/(g2^4*y) + (g1^4*t^8.99)/(g3^4*y) + (g1^4*g4^4*t^8.99)/(g3^4*g5^4*y) + (g1^4*g5^4*t^8.99)/(g2^4*g4^4*y) - (t^4.63*y)/(g1*g2*g3*g4*g5*g6) - (t^6.73*y)/(g1^5*g2*g3^5*g4*g5*g6) - (t^6.73*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.77*y)/(g1*g2*g3^5*g4*g5^5*g6) - (t^6.77*y)/(g1*g2^5*g3*g4^5*g5*g6) + (t^7.22*y)/(g1^8*g2^4*g3^4) + (t^7.25*y)/(g1^4*g2^8*g4^4) + (t^7.25*y)/(g1^4*g2^4*g3^4*g4^4) + (t^7.25*y)/(g1^4*g3^8*g5^4) + (t^7.25*y)/(g1^4*g2^4*g3^4*g5^4) + (t^7.29*y)/(g2^4*g3^4*g4^4*g5^4) + g1*g2*g3*g4*g5*g6*t^7.37*y - (t^7.88*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.36*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.36*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.39*y)/(g1^2*g2^2*g3^6*g4^2*g5^6*g6^2) + (t^8.39*y)/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (g2^3*g4^3*t^8.48*y)/(g1*g3*g5*g6) + (g3^3*g5^3*t^8.48*y)/(g1*g2*g4*g6) + (g1^3*g2^3*t^8.52*y)/(g3*g4*g5*g6) + (g1^3*g3^3*t^8.52*y)/(g2*g4*g5*g6) - (t^8.84*y)/(g1^9*g2*g3^9*g4*g5*g6) - (t^8.84*y)/(g1^9*g2^5*g3^5*g4*g5*g6) - (t^8.84*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g4^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.86*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.86*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.86*y)/(g1^4*g3^4) - (t^8.88*y)/(g1^5*g2*g3^9*g4*g5^5*g6) - (t^8.88*y)/(g1^5*g2^5*g3^5*g4*g5^5*g6) - (t^8.88*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.88*y)/(g1^5*g2^9*g3*g4^5*g5*g6) + (2*g6^4*t^8.89*y)/g2^4 + (2*g6^4*t^8.89*y)/g3^4 + (g4^4*g6^4*t^8.89*y)/(g3^4*g5^4) + (g5^4*g6^4*t^8.89*y)/(g2^4*g4^4) - (t^8.91*y)/(g1*g2*g3^9*g4*g5^9*g6) - (t^8.91*y)/(g1*g2^5*g3^5*g4^5*g5^5*g6) - (t^8.91*y)/(g1*g2^9*g3*g4^9*g5*g6) + (2*g6^4*t^8.91*y)/g1^4 + (g2^4*g6^4*t^8.91*y)/(g1^4*g3^4) + (g3^4*g6^4*t^8.91*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.92*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.92*y)/(g1^4*g3^4) + (g1^4*g6^4*t^8.93*y)/(g2^4*g4^4) + (g1^4*g6^4*t^8.93*y)/(g3^4*g5^4) + (g6^4*t^8.94*y)/g4^4 + (g3^4*g6^4*t^8.94*y)/(g2^4*g4^4) + (g6^4*t^8.94*y)/g5^4 + (g2^4*g6^4*t^8.94*y)/(g3^4*g5^4) + (g4^4*t^8.95*y)/g2^4 + (2*g4^4*t^8.95*y)/g3^4 + (2*g5^4*t^8.95*y)/g2^4 + (g5^4*t^8.95*y)/g3^4 + (g4^4*t^8.97*y)/g1^4 + (g3^4*g4^4*t^8.97*y)/(g1^4*g2^4) + (g5^4*t^8.97*y)/g1^4 + (g2^4*g5^4*t^8.97*y)/(g1^4*g3^4) + (g1^4*t^8.99*y)/g2^4 + (g1^4*t^8.99*y)/g3^4 + (g1^4*g4^4*t^8.99*y)/(g3^4*g5^4) + (g1^4*g5^4*t^8.99*y)/(g2^4*g4^4) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55595 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.9185 | 1.1444 | 0.8026 | [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] | t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y | detail |