Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55710 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_4q_1\tilde{q}_1$ | 0.939 | 1.1841 | 0.793 | [X:[], M:[0.6948, 0.7073, 0.7076, 0.6948], q:[0.659, 0.6462, 0.6336], qb:[0.6462, 0.6167, 0.6167], phi:[0.5454]] | [X:[], M:[[-4, -4, 0, 0, 0, 0], [-4, 0, -4, 0, 0, 0], [0, -4, 0, -4, 0, 0], [-4, 0, 0, -4, 0, 0]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] | 6 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_4$, $ M_2$, $ M_3$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2q_3$, $ q_3\tilde{q}_1$, $ M_1^2$, $ M_4^2$, $ M_1M_4$, $ M_1M_2$, $ M_3M_4$, $ M_1M_3$, $ M_2M_4$, $ M_2^2$, $ M_2M_3$, $ M_3^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ M_4\phi_1^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_2$, $ M_3\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2q_3$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_4\tilde{q}_2\tilde{q}_3$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_3\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_2$, $ M_4q_3\tilde{q}_2$, $ M_2q_3\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3q_3\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4q_3\tilde{q}_1$, $ M_4q_2q_3$, $ M_1q_3\tilde{q}_1$, $ M_3q_1\tilde{q}_2$ | . | -10 | 2*t^2.08 + 2*t^2.12 + t^3.27 + t^3.7 + 2*t^3.75 + 4*t^3.79 + 2*t^3.83 + 2*t^3.84 + 3*t^4.17 + 4*t^4.21 + 2*t^4.24 + t^4.25 + 3*t^5.34 + 2*t^5.36 + 3*t^5.39 + t^5.4 + 4*t^5.42 + t^5.44 + 2*t^5.46 + 2*t^5.48 + 4*t^5.51 + 2*t^5.55 + t^5.59 + 2*t^5.78 + 2*t^5.82 + 4*t^5.84 + 10*t^5.87 + 8*t^5.91 + 3*t^5.92 + 2*t^5.95 - 10*t^6. - 4*t^6.04 - 2*t^6.05 - t^6.08 - 4*t^6.09 - 2*t^6.13 + 4*t^6.25 + 6*t^6.29 + 6*t^6.33 + 4*t^6.37 + t^6.54 + t^6.97 + 2*t^7.02 + 4*t^7.06 + 2*t^7.1 + 2*t^7.11 + t^7.4 + 6*t^7.42 + 3*t^7.44 + 2*t^7.45 + 6*t^7.46 + 4*t^7.47 + 4*t^7.48 + 4*t^7.49 + 3*t^7.5 + 10*t^7.51 + 5*t^7.52 + 2*t^7.53 + 8*t^7.54 + 8*t^7.55 + 5*t^7.56 + 12*t^7.58 + 6*t^7.59 + 8*t^7.6 + 6*t^7.62 + 6*t^7.63 + 3*t^7.64 + 3*t^7.65 + 2*t^7.67 + 3*t^7.68 - 2*t^7.69 - 2*t^7.7 + t^7.71 - 4*t^7.72 - 3*t^7.76 + 3*t^7.87 + 4*t^7.91 + 6*t^7.92 + 2*t^7.94 + t^7.95 + 16*t^7.96 + 8*t^7.99 + 8*t^8. + 4*t^8.01 + 8*t^8.03 - t^8.05 - 3*t^8.06 + 2*t^8.07 - 20*t^8.08 - 2*t^8.11 - 24*t^8.12 - 4*t^8.14 - 4*t^8.15 - 8*t^8.16 - 11*t^8.17 - 2*t^8.19 - 3*t^8.2 - 8*t^8.21 - 4*t^8.24 - 2*t^8.25 - 2*t^8.28 + 3*t^8.3 - t^8.32 + 5*t^8.34 + 4*t^8.37 + 4*t^8.38 + 9*t^8.41 + 8*t^8.45 + 5*t^8.49 + 3*t^8.61 + 2*t^8.63 + 2*t^8.66 + 2*t^8.67 + 4*t^8.7 + t^8.71 + 2*t^8.74 + 2*t^8.75 + 4*t^8.79 + 2*t^8.82 + t^8.86 - t^4.64/y - (2*t^6.72)/y - (2*t^6.76)/y + t^7.17/y + (4*t^7.21)/y + t^7.24/y + t^7.36/y - t^7.91/y + (2*t^8.36)/y + t^8.39/y + t^8.4/y + (2*t^8.51)/y + (2*t^8.55)/y + (2*t^8.78)/y - (3*t^8.8)/y + (2*t^8.82)/y + (12*t^8.87)/y - (3*t^8.88)/y + (12*t^8.91)/y + (4*t^8.92)/y + (4*t^8.95)/y + (4*t^8.96)/y - t^4.64*y - 2*t^6.72*y - 2*t^6.76*y + t^7.17*y + 4*t^7.21*y + t^7.24*y + t^7.36*y - t^7.91*y + 2*t^8.36*y + t^8.39*y + t^8.4*y + 2*t^8.51*y + 2*t^8.55*y + 2*t^8.78*y - 3*t^8.8*y + 2*t^8.82*y + 12*t^8.87*y - 3*t^8.88*y + 12*t^8.91*y + 4*t^8.92*y + 4*t^8.95*y + 4*t^8.96*y | t^2.08/(g1^4*g2^4) + t^2.08/(g1^4*g4^4) + t^2.12/(g1^4*g3^4) + t^2.12/(g2^4*g4^4) + t^3.27/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g5^4*g6^4*t^3.7 + g3^4*g5^4*t^3.75 + g3^4*g6^4*t^3.75 + g2^4*g5^4*t^3.79 + g4^4*g5^4*t^3.79 + g2^4*g6^4*t^3.79 + g4^4*g6^4*t^3.79 + g1^4*g5^4*t^3.83 + g1^4*g6^4*t^3.83 + g2^4*g3^4*t^3.84 + g3^4*g4^4*t^3.84 + t^4.17/(g1^8*g2^8) + t^4.17/(g1^8*g4^8) + t^4.17/(g1^8*g2^4*g4^4) + t^4.21/(g1^8*g2^4*g3^4) + t^4.21/(g1^4*g2^4*g4^8) + t^4.21/(g1^4*g2^8*g4^4) + t^4.21/(g1^8*g3^4*g4^4) + t^4.24/(g1^8*g3^8) + t^4.24/(g1^4*g2^4*g3^4*g4^4) + t^4.25/(g2^8*g4^8) + (g5^7*t^5.34)/(g1*g2*g3*g4*g6) + (g5^3*g6^3*t^5.34)/(g1*g2*g3*g4) + (g6^7*t^5.34)/(g1*g2*g3*g4*g5) + t^5.36/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + t^5.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + t^5.39/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (g3^3*g5^3*t^5.39)/(g1*g2*g4*g6) + (g3^3*g6^3*t^5.39)/(g1*g2*g4*g5) + t^5.4/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (g2^3*g5^3*t^5.42)/(g1*g3*g4*g6) + (g4^3*g5^3*t^5.42)/(g1*g2*g3*g6) + (g2^3*g6^3*t^5.42)/(g1*g3*g4*g5) + (g4^3*g6^3*t^5.42)/(g1*g2*g3*g5) + (g3^7*t^5.44)/(g1*g2*g4*g5*g6) + (g1^3*g5^3*t^5.46)/(g2*g3*g4*g6) + (g1^3*g6^3*t^5.46)/(g2*g3*g4*g5) + (g2^3*g3^3*t^5.48)/(g1*g4*g5*g6) + (g3^3*g4^3*t^5.48)/(g1*g2*g5*g6) + (g2^7*t^5.51)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.51)/(g2*g4*g5*g6) + (g2^3*g4^3*t^5.51)/(g1*g3*g5*g6) + (g4^7*t^5.51)/(g1*g2*g3*g5*g6) + (g1^3*g2^3*t^5.55)/(g3*g4*g5*g6) + (g1^3*g4^3*t^5.55)/(g2*g3*g5*g6) + (g1^7*t^5.59)/(g2*g3*g4*g5*g6) + (g5^4*g6^4*t^5.78)/(g1^4*g2^4) + (g5^4*g6^4*t^5.78)/(g1^4*g4^4) + (g5^4*g6^4*t^5.82)/(g1^4*g3^4) + (g5^4*g6^4*t^5.82)/(g2^4*g4^4) + (g3^4*g5^4*t^5.84)/(g1^4*g2^4) + (g3^4*g5^4*t^5.84)/(g1^4*g4^4) + (g3^4*g6^4*t^5.84)/(g1^4*g2^4) + (g3^4*g6^4*t^5.84)/(g1^4*g4^4) + (2*g5^4*t^5.87)/g1^4 + (g2^4*g5^4*t^5.87)/(g1^4*g4^4) + (g3^4*g5^4*t^5.87)/(g2^4*g4^4) + (g4^4*g5^4*t^5.87)/(g1^4*g2^4) + (2*g6^4*t^5.87)/g1^4 + (g2^4*g6^4*t^5.87)/(g1^4*g4^4) + (g3^4*g6^4*t^5.87)/(g2^4*g4^4) + (g4^4*g6^4*t^5.87)/(g1^4*g2^4) + (g5^4*t^5.91)/g2^4 + (g2^4*g5^4*t^5.91)/(g1^4*g3^4) + (g5^4*t^5.91)/g4^4 + (g4^4*g5^4*t^5.91)/(g1^4*g3^4) + (g6^4*t^5.91)/g2^4 + (g2^4*g6^4*t^5.91)/(g1^4*g3^4) + (g6^4*t^5.91)/g4^4 + (g4^4*g6^4*t^5.91)/(g1^4*g3^4) + (g3^4*t^5.92)/g1^4 + (g2^4*g3^4*t^5.92)/(g1^4*g4^4) + (g3^4*g4^4*t^5.92)/(g1^4*g2^4) + (g1^4*g5^4*t^5.95)/(g2^4*g4^4) + (g1^4*g6^4*t^5.95)/(g2^4*g4^4) - 6*t^6. - (g2^4*t^6.)/g4^4 - (g4^4*t^6.)/g2^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.04)/g2^4 - (g2^4*t^6.04)/g3^4 - (g1^4*t^6.04)/g4^4 - (g4^4*t^6.04)/g3^4 - (g3^4*t^6.05)/g5^4 - (g3^4*t^6.05)/g6^4 - (g1^4*t^6.08)/g3^4 - (g2^4*t^6.09)/g5^4 - (g4^4*t^6.09)/g5^4 - (g2^4*t^6.09)/g6^4 - (g4^4*t^6.09)/g6^4 - (g1^4*t^6.13)/g5^4 - (g1^4*t^6.13)/g6^4 + t^6.25/(g1^12*g2^12) + t^6.25/(g1^12*g4^12) + t^6.25/(g1^12*g2^4*g4^8) + t^6.25/(g1^12*g2^8*g4^4) + t^6.29/(g1^12*g2^8*g3^4) + t^6.29/(g1^8*g2^4*g4^12) + t^6.29/(g1^8*g2^8*g4^8) + t^6.29/(g1^12*g3^4*g4^8) + t^6.29/(g1^8*g2^12*g4^4) + t^6.29/(g1^12*g2^4*g3^4*g4^4) + t^6.33/(g1^12*g2^4*g3^8) + t^6.33/(g1^4*g2^8*g4^12) + t^6.33/(g1^4*g2^12*g4^8) + t^6.33/(g1^8*g2^4*g3^4*g4^8) + t^6.33/(g1^12*g3^8*g4^4) + t^6.33/(g1^8*g2^8*g3^4*g4^4) + t^6.37/(g1^12*g3^12) + t^6.37/(g2^12*g4^12) + t^6.37/(g1^4*g2^8*g3^4*g4^8) + t^6.37/(g1^8*g2^4*g3^8*g4^4) + t^6.54/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g5^2*g6^2*t^6.97)/(g1^2*g2^2*g3^2*g4^2) + (g3^2*g5^2*t^7.02)/(g1^2*g2^2*g4^2*g6^2) + (g3^2*g6^2*t^7.02)/(g1^2*g2^2*g4^2*g5^2) + (g2^2*g5^2*t^7.06)/(g1^2*g3^2*g4^2*g6^2) + (g4^2*g5^2*t^7.06)/(g1^2*g2^2*g3^2*g6^2) + (g2^2*g6^2*t^7.06)/(g1^2*g3^2*g4^2*g5^2) + (g4^2*g6^2*t^7.06)/(g1^2*g2^2*g3^2*g5^2) + (g1^2*g5^2*t^7.1)/(g2^2*g3^2*g4^2*g6^2) + (g1^2*g6^2*t^7.1)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g3^2*t^7.11)/(g1^2*g4^2*g5^2*g6^2) + (g3^2*g4^2*t^7.11)/(g1^2*g2^2*g5^2*g6^2) + g5^8*g6^8*t^7.4 + (g5^7*t^7.42)/(g1^5*g2*g3*g4^5*g6) + (g5^7*t^7.42)/(g1^5*g2^5*g3*g4*g6) + (g5^3*g6^3*t^7.42)/(g1^5*g2*g3*g4^5) + (g5^3*g6^3*t^7.42)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.42)/(g1^5*g2*g3*g4^5*g5) + (g6^7*t^7.42)/(g1^5*g2^5*g3*g4*g5) + t^7.44/(g1^10*g2^2*g3^2*g4^10*g5^2*g6^2) + t^7.44/(g1^10*g2^6*g3^2*g4^6*g5^2*g6^2) + t^7.44/(g1^10*g2^10*g3^2*g4^2*g5^2*g6^2) + g3^4*g5^8*g6^4*t^7.45 + g3^4*g5^4*g6^8*t^7.45 + (g5^7*t^7.46)/(g1*g2^5*g3*g4^5*g6) + (g5^7*t^7.46)/(g1^5*g2*g3^5*g4*g6) + (g5^3*g6^3*t^7.46)/(g1*g2^5*g3*g4^5) + (g5^3*g6^3*t^7.46)/(g1^5*g2*g3^5*g4) + (g6^7*t^7.46)/(g1*g2^5*g3*g4^5*g5) + (g6^7*t^7.46)/(g1^5*g2*g3^5*g4*g5) + (g3^3*g5^3*t^7.47)/(g1^5*g2*g4^5*g6) + (g3^3*g5^3*t^7.47)/(g1^5*g2^5*g4*g6) + (g3^3*g6^3*t^7.47)/(g1^5*g2*g4^5*g5) + (g3^3*g6^3*t^7.47)/(g1^5*g2^5*g4*g5) + t^7.48/(g1^6*g2^6*g3^2*g4^10*g5^2*g6^2) + t^7.48/(g1^10*g2^2*g3^6*g4^6*g5^2*g6^2) + t^7.48/(g1^6*g2^10*g3^2*g4^6*g5^2*g6^2) + t^7.48/(g1^10*g2^6*g3^6*g4^2*g5^2*g6^2) + g2^4*g5^8*g6^4*t^7.49 + g4^4*g5^8*g6^4*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g4^4*g5^4*g6^8*t^7.49 + g3^8*g5^8*t^7.5 + g3^8*g5^4*g6^4*t^7.5 + g3^8*g6^8*t^7.5 + (g2^3*g5^3*t^7.51)/(g1^5*g3*g4^5*g6) + (g3^3*g5^3*t^7.51)/(g1*g2^5*g4^5*g6) + (2*g5^3*t^7.51)/(g1^5*g2*g3*g4*g6) + (g4^3*g5^3*t^7.51)/(g1^5*g2^5*g3*g6) + (g2^3*g6^3*t^7.51)/(g1^5*g3*g4^5*g5) + (g3^3*g6^3*t^7.51)/(g1*g2^5*g4^5*g5) + (2*g6^3*t^7.51)/(g1^5*g2*g3*g4*g5) + (g4^3*g6^3*t^7.51)/(g1^5*g2^5*g3*g5) + t^7.52/(g1^2*g2^10*g3^2*g4^10*g5^2*g6^2) + t^7.52/(g1^6*g2^6*g3^6*g4^6*g5^2*g6^2) + t^7.52/(g1^10*g2^2*g3^10*g4^2*g5^2*g6^2) + (g3^7*t^7.52)/(g1^5*g2*g4^5*g5*g6) + (g3^7*t^7.52)/(g1^5*g2^5*g4*g5*g6) + g1^4*g5^8*g6^4*t^7.53 + g1^4*g5^4*g6^8*t^7.53 + g2^4*g3^4*g5^8*t^7.54 + g3^4*g4^4*g5^8*t^7.54 + 2*g2^4*g3^4*g5^4*g6^4*t^7.54 + 2*g3^4*g4^4*g5^4*g6^4*t^7.54 + g2^4*g3^4*g6^8*t^7.54 + g3^4*g4^4*g6^8*t^7.54 + (g5^3*t^7.55)/(g1*g2*g3*g4^5*g6) + (g2^3*g5^3*t^7.55)/(g1^5*g3^5*g4*g6) + (g5^3*t^7.55)/(g1*g2^5*g3*g4*g6) + (g4^3*g5^3*t^7.55)/(g1^5*g2*g3^5*g6) + (g6^3*t^7.55)/(g1*g2*g3*g4^5*g5) + (g2^3*g6^3*t^7.55)/(g1^5*g3^5*g4*g5) + (g6^3*t^7.55)/(g1*g2^5*g3*g4*g5) + (g4^3*g6^3*t^7.55)/(g1^5*g2*g3^5*g5) + (g2^3*g3^3*t^7.56)/(g1^5*g4^5*g5*g6) + (g3^7*t^7.56)/(g1*g2^5*g4^5*g5*g6) + (2*g3^3*t^7.56)/(g1^5*g2*g4*g5*g6) + (g3^3*g4^3*t^7.56)/(g1^5*g2^5*g5*g6) + g2^8*g5^8*t^7.58 + g1^4*g3^4*g5^8*t^7.58 + g2^4*g4^4*g5^8*t^7.58 + g4^8*g5^8*t^7.58 + g2^8*g5^4*g6^4*t^7.58 + g1^4*g3^4*g5^4*g6^4*t^7.58 + g2^4*g4^4*g5^4*g6^4*t^7.58 + g4^8*g5^4*g6^4*t^7.58 + g2^8*g6^8*t^7.58 + g1^4*g3^4*g6^8*t^7.58 + g2^4*g4^4*g6^8*t^7.58 + g4^8*g6^8*t^7.58 + g2^4*g3^8*g5^4*t^7.59 + g3^8*g4^4*g5^4*t^7.59 + (g1^3*g5^3*t^7.59)/(g2^5*g3*g4^5*g6) + (g1^3*g6^3*t^7.59)/(g2^5*g3*g4^5*g5) + g2^4*g3^8*g6^4*t^7.59 + g3^8*g4^4*g6^4*t^7.59 + (g2^7*t^7.6)/(g1^5*g3*g4^5*g5*g6) + (g3^3*t^7.6)/(g1*g2*g4^5*g5*g6) + (2*g2^3*t^7.6)/(g1^5*g3*g4*g5*g6) + (g3^3*t^7.6)/(g1*g2^5*g4*g5*g6) + (2*g4^3*t^7.6)/(g1^5*g2*g3*g5*g6) + (g4^7*t^7.6)/(g1^5*g2^5*g3*g5*g6) + g1^4*g2^4*g5^8*t^7.62 + g1^4*g4^4*g5^8*t^7.62 + g1^4*g2^4*g5^4*g6^4*t^7.62 + g1^4*g4^4*g5^4*g6^4*t^7.62 + g1^4*g2^4*g6^8*t^7.62 + g1^4*g4^4*g6^8*t^7.62 + g2^8*g3^4*g5^4*t^7.63 + g2^4*g3^4*g4^4*g5^4*t^7.63 + g3^4*g4^8*g5^4*t^7.63 + g2^8*g3^4*g6^4*t^7.63 + g2^4*g3^4*g4^4*g6^4*t^7.63 + g3^4*g4^8*g6^4*t^7.63 - (g5^3*t^7.64)/(g1*g2*g3*g4*g6^5) + (g2^3*t^7.64)/(g1*g3*g4^5*g5*g6) + (g1^3*g3^3*t^7.64)/(g2^5*g4^5*g5*g6) + (g2^7*t^7.64)/(g1^5*g3^5*g4*g5*g6) - t^7.64/(g1*g2*g3*g4*g5*g6) + (g2^3*g4^3*t^7.64)/(g1^5*g3^5*g5*g6) + (g4^3*t^7.64)/(g1*g2^5*g3*g5*g6) + (g4^7*t^7.64)/(g1^5*g2*g3^5*g5*g6) - (g6^3*t^7.64)/(g1*g2*g3*g4*g5^5) + g1^8*g5^8*t^7.65 + g1^8*g5^4*g6^4*t^7.65 + g1^8*g6^8*t^7.65 + (g1^3*t^7.67)/(g2*g3*g4^5*g5*g6) + (g1^3*t^7.67)/(g2^5*g3*g4*g5*g6) + g2^8*g3^8*t^7.68 + g2^4*g3^8*g4^4*t^7.68 + g3^8*g4^8*t^7.68 - (g3^3*t^7.69)/(g1*g2*g4*g5*g6^5) - (g3^3*t^7.69)/(g1*g2*g4*g5^5*g6) - g1^4*g2^4*g4^4*g5^4*t^7.7 - g1^4*g2^4*g4^4*g6^4*t^7.7 + (g1^7*t^7.71)/(g2^5*g3*g4^5*g5*g6) - (g2^3*t^7.72)/(g1*g3*g4*g5*g6^5) - (g4^3*t^7.72)/(g1*g2*g3*g5*g6^5) - (g2^3*t^7.72)/(g1*g3*g4*g5^5*g6) - (g4^3*t^7.72)/(g1*g2*g3*g5^5*g6) - g1^4*g2^4*g3^4*g4^4*t^7.76 - (g1^3*t^7.76)/(g2*g3*g4*g5*g6^5) - (g1^3*t^7.76)/(g2*g3*g4*g5^5*g6) + (g5^4*g6^4*t^7.87)/(g1^8*g2^8) + (g5^4*g6^4*t^7.87)/(g1^8*g4^8) + (g5^4*g6^4*t^7.87)/(g1^8*g2^4*g4^4) + (g5^4*g6^4*t^7.91)/(g1^8*g2^4*g3^4) + (g5^4*g6^4*t^7.91)/(g1^4*g2^4*g4^8) + (g5^4*g6^4*t^7.91)/(g1^4*g2^8*g4^4) + (g5^4*g6^4*t^7.91)/(g1^8*g3^4*g4^4) + (g3^4*g5^4*t^7.92)/(g1^8*g2^8) + (g3^4*g5^4*t^7.92)/(g1^8*g4^8) + (g3^4*g5^4*t^7.92)/(g1^8*g2^4*g4^4) + (g3^4*g6^4*t^7.92)/(g1^8*g2^8) + (g3^4*g6^4*t^7.92)/(g1^8*g4^8) + (g3^4*g6^4*t^7.92)/(g1^8*g2^4*g4^4) + (g5^4*g6^4*t^7.94)/(g1^8*g3^8) + (g5^4*g6^4*t^7.94)/(g1^4*g2^4*g3^4*g4^4) + (g5^4*g6^4*t^7.95)/(g2^8*g4^8) + (2*g5^4*t^7.96)/(g1^8*g2^4) + (g2^4*g5^4*t^7.96)/(g1^8*g4^8) + (g3^4*g5^4*t^7.96)/(g1^4*g2^4*g4^8) + (2*g5^4*t^7.96)/(g1^8*g4^4) + (g3^4*g5^4*t^7.96)/(g1^4*g2^8*g4^4) + (g4^4*g5^4*t^7.96)/(g1^8*g2^8) + (2*g6^4*t^7.96)/(g1^8*g2^4) + (g2^4*g6^4*t^7.96)/(g1^8*g4^8) + (g3^4*g6^4*t^7.96)/(g1^4*g2^4*g4^8) + (2*g6^4*t^7.96)/(g1^8*g4^4) + (g3^4*g6^4*t^7.96)/(g1^4*g2^8*g4^4) + (g4^4*g6^4*t^7.96)/(g1^8*g2^8) + (2*g5^4*t^7.99)/(g1^8*g3^4) + (g2^4*g5^4*t^7.99)/(g1^8*g3^4*g4^4) + (g4^4*g5^4*t^7.99)/(g1^8*g2^4*g3^4) + (2*g6^4*t^7.99)/(g1^8*g3^4) + (g2^4*g6^4*t^7.99)/(g1^8*g3^4*g4^4) + (g4^4*g6^4*t^7.99)/(g1^8*g2^4*g3^4) + (g5^4*t^8.)/(g1^4*g2^8) + (g5^4*t^8.)/(g1^4*g4^8) + (g3^4*g5^4*t^8.)/(g2^8*g4^8) + (g5^4*t^8.)/(g1^4*g2^4*g4^4) + (g6^4*t^8.)/(g1^4*g2^8) + (g6^4*t^8.)/(g1^4*g4^8) + (g3^4*g6^4*t^8.)/(g2^8*g4^8) + (g6^4*t^8.)/(g1^4*g2^4*g4^4) + (g3^4*t^8.01)/(g1^8*g2^4) + (g2^4*g3^4*t^8.01)/(g1^8*g4^8) + (g3^4*t^8.01)/(g1^8*g4^4) + (g3^4*g4^4*t^8.01)/(g1^8*g2^8) + (g2^4*g5^4*t^8.03)/(g1^8*g3^8) + (g5^4*t^8.03)/(g2^4*g4^8) + (g5^4*t^8.03)/(g2^8*g4^4) + (g4^4*g5^4*t^8.03)/(g1^8*g3^8) + (g2^4*g6^4*t^8.03)/(g1^8*g3^8) + (g6^4*t^8.03)/(g2^4*g4^8) + (g6^4*t^8.03)/(g2^8*g4^4) + (g4^4*g6^4*t^8.03)/(g1^8*g3^8) - (g3^4*t^8.05)/(g1^4*g2^4*g4^4) - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 + (g1^4*g5^4*t^8.07)/(g2^8*g4^8) + (g1^4*g6^4*t^8.07)/(g2^8*g4^8) - (7*t^8.08)/(g1^4*g2^4) - (g2^4*t^8.08)/(g1^4*g4^8) - (7*t^8.08)/(g1^4*g4^4) - (g4^4*t^8.08)/(g1^4*g2^8) - (g5^4*t^8.08)/(g1^4*g2^4*g6^4) - (g5^4*t^8.08)/(g1^4*g4^4*g6^4) - (g6^4*t^8.08)/(g1^4*g2^4*g5^4) - (g6^4*t^8.08)/(g1^4*g4^4*g5^4) - g1*g2*g3^5*g4*g5^5*g6*t^8.11 - g1*g2*g3^5*g4*g5*g6^5*t^8.11 - t^8.12/g2^8 - (7*t^8.12)/(g1^4*g3^4) - t^8.12/g4^8 - (7*t^8.12)/(g2^4*g4^4) - (2*g2^4*t^8.12)/(g1^4*g3^4*g4^4) - (2*g4^4*t^8.12)/(g1^4*g2^4*g3^4) - (g5^4*t^8.12)/(g1^4*g3^4*g6^4) - (g5^4*t^8.12)/(g2^4*g4^4*g6^4) - (g6^4*t^8.12)/(g1^4*g3^4*g5^4) - (g6^4*t^8.12)/(g2^4*g4^4*g5^4) - (g3^4*t^8.14)/(g1^4*g2^4*g5^4) - (g3^4*t^8.14)/(g1^4*g4^4*g5^4) - (g3^4*t^8.14)/(g1^4*g2^4*g6^4) - (g3^4*t^8.14)/(g1^4*g4^4*g6^4) - g1*g2^5*g3*g4*g5^5*g6*t^8.15 - g1*g2*g3*g4^5*g5^5*g6*t^8.15 - g1*g2^5*g3*g4*g5*g6^5*t^8.15 - g1*g2*g3*g4^5*g5*g6^5*t^8.15 - (g2^4*t^8.16)/(g1^4*g3^8) - (2*t^8.16)/(g2^4*g3^4) - (g1^4*t^8.16)/(g2^4*g4^8) - (g1^4*t^8.16)/(g2^8*g4^4) - (2*t^8.16)/(g3^4*g4^4) - (g4^4*t^8.16)/(g1^4*g3^8) - (2*t^8.17)/(g1^4*g5^4) - (g2^4*t^8.17)/(g1^4*g4^4*g5^4) - (g3^4*t^8.17)/(g2^4*g4^4*g5^4) - (g4^4*t^8.17)/(g1^4*g2^4*g5^4) - (2*t^8.17)/(g1^4*g6^4) - (g2^4*t^8.17)/(g1^4*g4^4*g6^4) - (g3^4*t^8.17)/(g2^4*g4^4*g6^4) - (g4^4*t^8.17)/(g1^4*g2^4*g6^4) - g1*g2*g3^9*g4*g5*g6*t^8.17 - g1^5*g2*g3*g4*g5^5*g6*t^8.19 - g1^5*g2*g3*g4*g5*g6^5*t^8.19 - (g1^4*t^8.2)/(g2^4*g3^4*g4^4) - g1*g2^5*g3^5*g4*g5*g6*t^8.2 - g1*g2*g3^5*g4^5*g5*g6*t^8.2 - t^8.21/(g2^4*g5^4) - (g2^4*t^8.21)/(g1^4*g3^4*g5^4) - t^8.21/(g4^4*g5^4) - (g4^4*t^8.21)/(g1^4*g3^4*g5^4) - t^8.21/(g2^4*g6^4) - (g2^4*t^8.21)/(g1^4*g3^4*g6^4) - t^8.21/(g4^4*g6^4) - (g4^4*t^8.21)/(g1^4*g3^4*g6^4) - g1*g2^9*g3*g4*g5*g6*t^8.24 - g1^5*g2*g3^5*g4*g5*g6*t^8.24 - g1*g2^5*g3*g4^5*g5*g6*t^8.24 - g1*g2*g3*g4^9*g5*g6*t^8.24 - (g1^4*t^8.25)/(g2^4*g4^4*g5^4) - (g1^4*t^8.25)/(g2^4*g4^4*g6^4) - g1^5*g2^5*g3*g4*g5*g6*t^8.28 - g1^5*g2*g3*g4^5*g5*g6*t^8.28 + t^8.3/g5^8 + t^8.3/g6^8 + t^8.3/(g5^4*g6^4) - g1^9*g2*g3*g4*g5*g6*t^8.32 + t^8.34/(g1^16*g2^16) + t^8.34/(g1^16*g4^16) + t^8.34/(g1^16*g2^4*g4^12) + t^8.34/(g1^16*g2^8*g4^8) + t^8.34/(g1^16*g2^12*g4^4) + t^8.37/(g1^16*g2^12*g3^4) + t^8.37/(g1^16*g3^4*g4^12) + t^8.37/(g1^16*g2^4*g3^4*g4^8) + t^8.37/(g1^16*g2^8*g3^4*g4^4) + t^8.38/(g1^12*g2^4*g4^16) + t^8.38/(g1^12*g2^8*g4^12) + t^8.38/(g1^12*g2^12*g4^8) + t^8.38/(g1^12*g2^16*g4^4) + t^8.41/(g1^16*g2^8*g3^8) + t^8.41/(g1^8*g2^8*g4^16) + t^8.41/(g1^8*g2^12*g4^12) + t^8.41/(g1^12*g2^4*g3^4*g4^12) + t^8.41/(g1^8*g2^16*g4^8) + t^8.41/(g1^16*g3^8*g4^8) + t^8.41/(g1^12*g2^8*g3^4*g4^8) + t^8.41/(g1^16*g2^4*g3^8*g4^4) + t^8.41/(g1^12*g2^12*g3^4*g4^4) + t^8.45/(g1^16*g2^4*g3^12) + t^8.45/(g1^4*g2^12*g4^16) + t^8.45/(g1^4*g2^16*g4^12) + t^8.45/(g1^8*g2^8*g3^4*g4^12) + t^8.45/(g1^12*g2^4*g3^8*g4^8) + t^8.45/(g1^8*g2^12*g3^4*g4^8) + t^8.45/(g1^16*g3^12*g4^4) + t^8.45/(g1^12*g2^8*g3^8*g4^4) + t^8.49/(g1^16*g3^16) + t^8.49/(g2^16*g4^16) + t^8.49/(g1^4*g2^12*g3^4*g4^12) + t^8.49/(g1^8*g2^8*g3^8*g4^8) + t^8.49/(g1^12*g2^4*g3^12*g4^4) + (g5^5*t^8.61)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g5*g6*t^8.61)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.61)/(g1^3*g2^3*g3^3*g4^3*g5^3) + t^8.63/(g1^8*g2^4*g3^4*g4^8*g5^4*g6^4) + t^8.63/(g1^8*g2^8*g3^4*g4^4*g5^4*g6^4) + (g3*g5*t^8.66)/(g1^3*g2^3*g4^3*g6^3) + (g3*g6*t^8.66)/(g1^3*g2^3*g4^3*g5^3) + t^8.67/(g1^4*g2^8*g3^4*g4^8*g5^4*g6^4) + t^8.67/(g1^8*g2^4*g3^8*g4^4*g5^4*g6^4) + (g2*g5*t^8.7)/(g1^3*g3^3*g4^3*g6^3) + (g4*g5*t^8.7)/(g1^3*g2^3*g3^3*g6^3) + (g2*g6*t^8.7)/(g1^3*g3^3*g4^3*g5^3) + (g4*g6*t^8.7)/(g1^3*g2^3*g3^3*g5^3) + (g3^5*t^8.71)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g5*t^8.74)/(g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.74)/(g2^3*g3^3*g4^3*g5^3) + (g2*g3*t^8.75)/(g1^3*g4^3*g5^3*g6^3) + (g3*g4*t^8.75)/(g1^3*g2^3*g5^3*g6^3) + (g2^5*t^8.79)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.79)/(g2^3*g4^3*g5^3*g6^3) + (g2*g4*t^8.79)/(g1^3*g3^3*g5^3*g6^3) + (g4^5*t^8.79)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g2*t^8.82)/(g3^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.82)/(g2^3*g3^3*g5^3*g6^3) + (g1^5*t^8.86)/(g2^3*g3^3*g4^3*g5^3*g6^3) - t^4.64/(g1*g2*g3*g4*g5*g6*y) - t^6.72/(g1^5*g2*g3*g4^5*g5*g6*y) - t^6.72/(g1^5*g2^5*g3*g4*g5*g6*y) - t^6.76/(g1*g2^5*g3*g4^5*g5*g6*y) - t^6.76/(g1^5*g2*g3^5*g4*g5*g6*y) + t^7.17/(g1^8*g2^4*g4^4*y) + t^7.21/(g1^8*g2^4*g3^4*y) + t^7.21/(g1^4*g2^4*g4^8*y) + t^7.21/(g1^4*g2^8*g4^4*y) + t^7.21/(g1^8*g3^4*g4^4*y) + t^7.24/(g1^4*g2^4*g3^4*g4^4*y) + (g1*g2*g3*g4*g5*g6*t^7.36)/y - t^7.91/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) + t^8.36/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*y) + t^8.36/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2*y) + t^8.39/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*y) + t^8.4/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*y) + (g1^3*g3^3*t^8.51)/(g2*g4*g5*g6*y) + (g2^3*g4^3*t^8.51)/(g1*g3*g5*g6*y) + (g1^3*g2^3*t^8.55)/(g3*g4*g5*g6*y) + (g1^3*g4^3*t^8.55)/(g2*g3*g5*g6*y) + (g5^4*g6^4*t^8.78)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.78)/(g1^4*g4^4*y) - t^8.8/(g1^9*g2*g3*g4^9*g5*g6*y) - t^8.8/(g1^9*g2^5*g3*g4^5*g5*g6*y) - t^8.8/(g1^9*g2^9*g3*g4*g5*g6*y) + (g5^4*g6^4*t^8.82)/(g1^4*g3^4*y) + (g5^4*g6^4*t^8.82)/(g2^4*g4^4*y) + (g3^4*g5^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*g5^4*t^8.84)/(g1^4*g4^4*y) - t^8.84/(g1^5*g2^5*g3*g4^9*g5*g6*y) - t^8.84/(g1^9*g2*g3^5*g4^5*g5*g6*y) - t^8.84/(g1^5*g2^9*g3*g4^5*g5*g6*y) - t^8.84/(g1^9*g2^5*g3^5*g4*g5*g6*y) + (g3^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.84)/(g1^4*g4^4*y) + (3*g5^4*t^8.87)/(g1^4*y) + (g2^4*g5^4*t^8.87)/(g1^4*g4^4*y) + (g3^4*g5^4*t^8.87)/(g2^4*g4^4*y) + (g4^4*g5^4*t^8.87)/(g1^4*g2^4*y) + (3*g6^4*t^8.87)/(g1^4*y) + (g2^4*g6^4*t^8.87)/(g1^4*g4^4*y) + (g3^4*g6^4*t^8.87)/(g2^4*g4^4*y) + (g4^4*g6^4*t^8.87)/(g1^4*g2^4*y) - t^8.88/(g1*g2^9*g3*g4^9*g5*g6*y) - t^8.88/(g1^5*g2^5*g3^5*g4^5*g5*g6*y) - t^8.88/(g1^9*g2*g3^9*g4*g5*g6*y) + (2*g5^4*t^8.91)/(g2^4*y) + (g2^4*g5^4*t^8.91)/(g1^4*g3^4*y) + (2*g5^4*t^8.91)/(g4^4*y) + (g4^4*g5^4*t^8.91)/(g1^4*g3^4*y) + (2*g6^4*t^8.91)/(g2^4*y) + (g2^4*g6^4*t^8.91)/(g1^4*g3^4*y) + (2*g6^4*t^8.91)/(g4^4*y) + (g4^4*g6^4*t^8.91)/(g1^4*g3^4*y) + (2*g3^4*t^8.92)/(g1^4*y) + (g2^4*g3^4*t^8.92)/(g1^4*g4^4*y) + (g3^4*g4^4*t^8.92)/(g1^4*g2^4*y) + (g5^4*t^8.95)/(g3^4*y) + (g1^4*g5^4*t^8.95)/(g2^4*g4^4*y) + (g6^4*t^8.95)/(g3^4*y) + (g1^4*g6^4*t^8.95)/(g2^4*g4^4*y) + (g2^4*t^8.96)/(g1^4*y) + (g3^4*t^8.96)/(g2^4*y) + (g3^4*t^8.96)/(g4^4*y) + (g4^4*t^8.96)/(g1^4*y) - (t^4.64*y)/(g1*g2*g3*g4*g5*g6) - (t^6.72*y)/(g1^5*g2*g3*g4^5*g5*g6) - (t^6.72*y)/(g1^5*g2^5*g3*g4*g5*g6) - (t^6.76*y)/(g1*g2^5*g3*g4^5*g5*g6) - (t^6.76*y)/(g1^5*g2*g3^5*g4*g5*g6) + (t^7.17*y)/(g1^8*g2^4*g4^4) + (t^7.21*y)/(g1^8*g2^4*g3^4) + (t^7.21*y)/(g1^4*g2^4*g4^8) + (t^7.21*y)/(g1^4*g2^8*g4^4) + (t^7.21*y)/(g1^8*g3^4*g4^4) + (t^7.24*y)/(g1^4*g2^4*g3^4*g4^4) + g1*g2*g3*g4*g5*g6*t^7.36*y - (t^7.91*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3) + (t^8.36*y)/(g1^6*g2^2*g3^2*g4^6*g5^2*g6^2) + (t^8.36*y)/(g1^6*g2^6*g3^2*g4^2*g5^2*g6^2) + (t^8.39*y)/(g1^6*g2^2*g3^6*g4^2*g5^2*g6^2) + (t^8.4*y)/(g1^2*g2^6*g3^2*g4^6*g5^2*g6^2) + (g1^3*g3^3*t^8.51*y)/(g2*g4*g5*g6) + (g2^3*g4^3*t^8.51*y)/(g1*g3*g5*g6) + (g1^3*g2^3*t^8.55*y)/(g3*g4*g5*g6) + (g1^3*g4^3*t^8.55*y)/(g2*g3*g5*g6) + (g5^4*g6^4*t^8.78*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.78*y)/(g1^4*g4^4) - (t^8.8*y)/(g1^9*g2*g3*g4^9*g5*g6) - (t^8.8*y)/(g1^9*g2^5*g3*g4^5*g5*g6) - (t^8.8*y)/(g1^9*g2^9*g3*g4*g5*g6) + (g5^4*g6^4*t^8.82*y)/(g1^4*g3^4) + (g5^4*g6^4*t^8.82*y)/(g2^4*g4^4) + (g3^4*g5^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*g5^4*t^8.84*y)/(g1^4*g4^4) - (t^8.84*y)/(g1^5*g2^5*g3*g4^9*g5*g6) - (t^8.84*y)/(g1^9*g2*g3^5*g4^5*g5*g6) - (t^8.84*y)/(g1^5*g2^9*g3*g4^5*g5*g6) - (t^8.84*y)/(g1^9*g2^5*g3^5*g4*g5*g6) + (g3^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.84*y)/(g1^4*g4^4) + (3*g5^4*t^8.87*y)/g1^4 + (g2^4*g5^4*t^8.87*y)/(g1^4*g4^4) + (g3^4*g5^4*t^8.87*y)/(g2^4*g4^4) + (g4^4*g5^4*t^8.87*y)/(g1^4*g2^4) + (3*g6^4*t^8.87*y)/g1^4 + (g2^4*g6^4*t^8.87*y)/(g1^4*g4^4) + (g3^4*g6^4*t^8.87*y)/(g2^4*g4^4) + (g4^4*g6^4*t^8.87*y)/(g1^4*g2^4) - (t^8.88*y)/(g1*g2^9*g3*g4^9*g5*g6) - (t^8.88*y)/(g1^5*g2^5*g3^5*g4^5*g5*g6) - (t^8.88*y)/(g1^9*g2*g3^9*g4*g5*g6) + (2*g5^4*t^8.91*y)/g2^4 + (g2^4*g5^4*t^8.91*y)/(g1^4*g3^4) + (2*g5^4*t^8.91*y)/g4^4 + (g4^4*g5^4*t^8.91*y)/(g1^4*g3^4) + (2*g6^4*t^8.91*y)/g2^4 + (g2^4*g6^4*t^8.91*y)/(g1^4*g3^4) + (2*g6^4*t^8.91*y)/g4^4 + (g4^4*g6^4*t^8.91*y)/(g1^4*g3^4) + (2*g3^4*t^8.92*y)/g1^4 + (g2^4*g3^4*t^8.92*y)/(g1^4*g4^4) + (g3^4*g4^4*t^8.92*y)/(g1^4*g2^4) + (g5^4*t^8.95*y)/g3^4 + (g1^4*g5^4*t^8.95*y)/(g2^4*g4^4) + (g6^4*t^8.95*y)/g3^4 + (g1^4*g6^4*t^8.95*y)/(g2^4*g4^4) + (g2^4*t^8.96*y)/g1^4 + (g3^4*t^8.96*y)/g2^4 + (g3^4*t^8.96*y)/g4^4 + (g4^4*t^8.96*y)/g1^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55595 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.9185 | 1.1444 | 0.8026 | [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] | t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y | detail |