Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55752 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ + $ M_3\tilde{q}_2\tilde{q}_3$ | 0.9179 | 1.1412 | 0.8044 | [X:[], M:[0.7056, 0.7124, 0.7328], q:[0.6524, 0.642, 0.6352], qb:[0.6253, 0.6336, 0.6336], phi:[0.5445]] | [X:[], M:[[-4, 0, 1, -2, -2], [-4, -4, 0, 0, 0], [0, 0, 0, -2, -2]], q:[[4, 0, 0, 0, 0], [0, 0, -1, 2, 2], [0, 4, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 2]], phi:[[-1, -1, 0, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_1$, $ M_2$, $ M_3$, $ \phi_1^2$, $ q_3\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \tilde{q}_2\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2q_3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ M_1\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_2\phi_1^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_2q_3$, $ \phi_1q_2\tilde{q}_2$, $ M_3\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_1q_3$, $ \phi_1q_1q_2$, $ \phi_1q_1^2$, $ M_1\tilde{q}_1\tilde{q}_3$, $ M_1q_3\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_3\tilde{q}_1$, $ M_1\tilde{q}_2\tilde{q}_3$, $ M_1q_3\tilde{q}_3$, $ M_2q_3\tilde{q}_2$, $ M_2\tilde{q}_2\tilde{q}_3$, $ M_2q_2\tilde{q}_2$ | . | -7 | t^2.12 + t^2.14 + t^2.2 + t^3.27 + 3*t^3.78 + t^3.8 + 2*t^3.81 + 4*t^3.83 + 2*t^3.86 + t^4.23 + t^4.25 + t^4.27 + t^4.32 + t^4.34 + t^4.4 + t^5.38 + t^5.39 + t^5.4 + 3*t^5.41 + 7*t^5.44 + 3*t^5.46 + 2*t^5.47 + 3*t^5.49 + t^5.5 + t^5.52 + t^5.55 + 2*t^5.89 + t^5.9 + 2*t^5.91 + 3*t^5.92 + 3*t^5.94 + 2*t^5.96 - 7*t^6. - t^6.02 - 2*t^6.03 - 2*t^6.05 - t^6.08 + t^6.35 + t^6.37 + t^6.39 + t^6.41 + t^6.43 + t^6.45 + t^6.47 + t^6.51 + 2*t^6.53 + t^6.59 + 2*t^7.04 + t^7.05 + 3*t^7.07 + 2*t^7.09 + 2*t^7.1 + 2*t^7.12 + 2*t^7.5 + 2*t^7.52 + 3*t^7.53 + t^7.54 + 9*t^7.55 + 6*t^7.56 + 4*t^7.57 + 11*t^7.58 + 2*t^7.59 + 8*t^7.6 + 12*t^7.61 + t^7.62 + 9*t^7.63 + 5*t^7.64 + 3*t^7.65 + 8*t^7.66 + t^7.67 + 3*t^7.68 + 3*t^7.69 + 3*t^7.72 + t^7.75 + 2*t^8.01 + t^8.02 + 2*t^8.03 + 3*t^8.04 + 2*t^8.05 + 3*t^8.06 + 3*t^8.08 - t^8.09 + 2*t^8.1 - 2*t^8.11 - 8*t^8.12 - 11*t^8.14 - 2*t^8.15 - 3*t^8.16 - 8*t^8.17 - t^8.18 - 3*t^8.19 - 6*t^8.2 - 4*t^8.22 - t^8.23 - 2*t^8.25 - 2*t^8.28 + t^8.47 + t^8.49 + t^8.51 + t^8.53 + 2*t^8.55 + t^8.57 + t^8.59 + t^8.61 + t^8.63 + 3*t^8.65 + 2*t^8.67 + 3*t^8.68 + 4*t^8.7 + 4*t^8.71 + 6*t^8.73 + t^8.75 + 3*t^8.76 + t^8.78 + t^8.79 + t^8.81 - t^4.63/y - t^6.75/y - t^6.77/y - t^6.83/y + t^7.25/y + t^7.32/y + t^7.34/y + t^7.37/y - t^7.9/y + t^8.38/y + t^8.4/y + t^8.44/y + t^8.47/y + t^8.5/y + t^8.52/y - t^8.87/y + t^8.89/y + t^8.9/y + t^8.91/y + (4*t^8.92)/y + (5*t^8.94)/y + t^8.95/y + (2*t^8.96)/y + (5*t^8.97)/y + t^8.98/y - t^4.63*y - t^6.75*y - t^6.77*y - t^6.83*y + t^7.25*y + t^7.32*y + t^7.34*y + t^7.37*y - t^7.9*y + t^8.38*y + t^8.4*y + t^8.44*y + t^8.47*y + t^8.5*y + t^8.52*y - t^8.87*y + t^8.89*y + t^8.9*y + t^8.91*y + 4*t^8.92*y + 5*t^8.94*y + t^8.95*y + 2*t^8.96*y + 5*t^8.97*y + t^8.98*y | (g3*t^2.12)/(g1^4*g4^2*g5^2) + t^2.14/(g1^4*g2^4) + t^2.2/(g4^2*g5^2) + t^3.27/(g1^2*g2^2*g4^2*g5^2) + g2^4*g3*t^3.78 + g3*g4^2*t^3.78 + g3*g5^2*t^3.78 + g4^2*g5^2*t^3.8 + g2^4*g4^2*t^3.81 + g2^4*g5^2*t^3.81 + g1^4*g3*t^3.83 + (g2^4*g4^2*g5^2*t^3.83)/g3 + (g4^4*g5^2*t^3.83)/g3 + (g4^2*g5^4*t^3.83)/g3 + g1^4*g4^2*t^3.86 + g1^4*g5^2*t^3.86 + (g3^2*t^4.23)/(g1^8*g4^4*g5^4) + (g3*t^4.25)/(g1^8*g2^4*g4^2*g5^2) + t^4.27/(g1^8*g2^8) + (g3*t^4.32)/(g1^4*g4^4*g5^4) + t^4.34/(g1^4*g2^4*g4^2*g5^2) + t^4.4/(g4^4*g5^4) + (g3*t^5.38)/(g1^6*g2^2*g4^4*g5^4) + (g3^2*t^5.39)/(g1*g2*g4*g5) + t^5.4/(g1^6*g2^6*g4^2*g5^2) + (g2^3*g3*t^5.41)/(g1*g4*g5) + (g3*g4*t^5.41)/(g1*g2*g5) + (g3*g5*t^5.41)/(g1*g2*g4) + (g2^7*t^5.44)/(g1*g4*g5) + (g2^3*g4*t^5.44)/(g1*g5) + (g4^3*t^5.44)/(g1*g2*g5) + (g2^3*g5*t^5.44)/(g1*g4) + (2*g4*g5*t^5.44)/(g1*g2) + (g5^3*t^5.44)/(g1*g2*g4) + (g2^3*g4*g5*t^5.46)/(g1*g3) + (g4^3*g5*t^5.46)/(g1*g2*g3) + (g4*g5^3*t^5.46)/(g1*g2*g3) + t^5.47/(g1^2*g2^2*g4^4*g5^4) + (g1^3*g3*t^5.47)/(g2*g4*g5) + (g1^3*g4*t^5.49)/(g2*g5) + (g1^3*g5*t^5.49)/(g2*g4) + (g4^3*g5^3*t^5.49)/(g1*g2*g3^2) + (g1^3*g2^3*t^5.5)/(g4*g5) + (g1^3*g4*g5*t^5.52)/(g2*g3) + (g1^7*t^5.55)/(g2*g4*g5) + (g3^2*t^5.89)/(g1^4*g4^2) + (g3^2*t^5.89)/(g1^4*g5^2) + (g2^4*g3^2*t^5.9)/(g1^4*g4^2*g5^2) + (g3*g4^2*t^5.91)/(g1^4*g2^4) + (g3*g5^2*t^5.91)/(g1^4*g2^4) + (g3*t^5.92)/g1^4 + (g2^4*g3*t^5.92)/(g1^4*g4^2) + (g2^4*g3*t^5.92)/(g1^4*g5^2) + (g4^2*t^5.94)/g1^4 + (g5^2*t^5.94)/g1^4 + (g4^2*g5^2*t^5.94)/(g1^4*g2^4) + (g4^4*g5^2*t^5.96)/(g1^4*g2^4*g3) + (g4^2*g5^4*t^5.96)/(g1^4*g2^4*g3) - 5*t^6. - (g4^2*t^6.)/g5^2 - (g5^2*t^6.)/g4^2 - (g4^2*g5^2*t^6.02)/(g2^4*g3) - (g4^2*t^6.03)/g3 - (g5^2*t^6.03)/g3 - (g1^4*t^6.05)/g2^4 - (g4^2*g5^2*t^6.05)/g3^2 - (g1^4*t^6.08)/g3 + (g3^3*t^6.35)/(g1^12*g4^6*g5^6) + (g3^2*t^6.37)/(g1^12*g2^4*g4^4*g5^4) + (g3*t^6.39)/(g1^12*g2^8*g4^2*g5^2) + t^6.41/(g1^12*g2^12) + (g3^2*t^6.43)/(g1^8*g4^6*g5^6) + (g3*t^6.45)/(g1^8*g2^4*g4^4*g5^4) + t^6.47/(g1^8*g2^8*g4^2*g5^2) + (g3*t^6.51)/(g1^4*g4^6*g5^6) + (2*t^6.53)/(g1^4*g2^4*g4^4*g5^4) + t^6.59/(g4^6*g5^6) + (g3*t^7.04)/(g1^2*g2^2*g4^2) + (g3*t^7.04)/(g1^2*g2^2*g5^2) + (g2^2*g3*t^7.05)/(g1^2*g4^2*g5^2) + t^7.07/(g1^2*g2^2) + (g2^2*t^7.07)/(g1^2*g4^2) + (g2^2*t^7.07)/(g1^2*g5^2) + (g4^2*t^7.09)/(g1^2*g2^2*g3) + (g5^2*t^7.09)/(g1^2*g2^2*g3) + (g2^2*t^7.1)/(g1^2*g3) + (g1^2*g3*t^7.1)/(g2^2*g4^2*g5^2) + (g1^2*t^7.12)/(g2^2*g4^2) + (g1^2*t^7.12)/(g2^2*g5^2) + (g3^2*t^7.5)/(g1^10*g2^2*g4^6*g5^6) + (g3^3*t^7.5)/(g1^5*g2*g4^3*g5^3) + (g3*t^7.52)/(g1^10*g2^6*g4^4*g5^4) + (g3^2*t^7.52)/(g1^5*g2^5*g4*g5) + (g2^3*g3^2*t^7.53)/(g1^5*g4^3*g5^3) + (g3^2*t^7.53)/(g1^5*g2*g4*g5^3) + (g3^2*t^7.53)/(g1^5*g2*g4^3*g5) + t^7.54/(g1^10*g2^10*g4^2*g5^2) + g3^2*g4^4*t^7.55 + (g3*g4*t^7.55)/(g1^5*g2*g5^3) + (2*g3*t^7.55)/(g1^5*g2*g4*g5) + (g3*g4*t^7.55)/(g1^5*g2^5*g5) + (g3*g5*t^7.55)/(g1^5*g2*g4^3) + (g3*g5*t^7.55)/(g1^5*g2^5*g4) + g3^2*g4^2*g5^2*t^7.55 + g3^2*g5^4*t^7.55 + g2^8*g3^2*t^7.56 + g2^4*g3^2*g4^2*t^7.56 + (g2^7*g3*t^7.56)/(g1^5*g4^3*g5^3) + (g2^3*g3*t^7.56)/(g1^5*g4*g5^3) + (g2^3*g3*t^7.56)/(g1^5*g4^3*g5) + g2^4*g3^2*g5^2*t^7.56 + (g4^3*t^7.57)/(g1^5*g2^5*g5) + (2*g4*g5*t^7.57)/(g1^5*g2^5) + (g5^3*t^7.57)/(g1^5*g2^5*g4) + g2^4*g3*g4^4*t^7.58 + (g3*t^7.58)/(g1^6*g2^2*g4^6*g5^6) + (g3^2*t^7.58)/(g1*g2*g4^3*g5^3) + (g2^3*t^7.58)/(g1^5*g4*g5) + (g4*t^7.58)/(g1^5*g2*g5) + (g5*t^7.58)/(g1^5*g2*g4) + 2*g2^4*g3*g4^2*g5^2*t^7.58 + g3*g4^4*g5^2*t^7.58 + g2^4*g3*g5^4*t^7.58 + g3*g4^2*g5^4*t^7.58 + g2^8*g3*g4^2*t^7.59 + g2^8*g3*g5^2*t^7.59 + t^7.6/(g1^6*g2^6*g4^4*g5^4) + (g4*g5*t^7.6)/(g1^5*g2*g3) + (g4^3*g5*t^7.6)/(g1^5*g2^5*g3) + g4^6*g5^2*t^7.6 + (g4*g5^3*t^7.6)/(g1^5*g2^5*g3) + 2*g4^4*g5^4*t^7.6 + g4^2*g5^6*t^7.6 + g1^4*g2^4*g3^2*t^7.61 + g1^4*g3^2*g4^2*t^7.61 + g2^8*g4^4*t^7.61 + (g2^3*g3*t^7.61)/(g1*g4^3*g5^3) + g1^4*g3^2*g5^2*t^7.61 + 2*g2^8*g4^2*g5^2*t^7.61 + 2*g2^4*g4^4*g5^2*t^7.61 + g2^8*g5^4*t^7.61 + 2*g2^4*g4^2*g5^4*t^7.61 + (g4^3*g5^3*t^7.62)/(g1^5*g2^5*g3^2) + g1^4*g3*g4^4*t^7.63 - t^7.63/(g1*g2*g4*g5) + 2*g1^4*g3*g4^2*g5^2*t^7.63 + (g2^4*g4^6*g5^2*t^7.63)/g3 + g1^4*g3*g5^4*t^7.63 + (2*g2^4*g4^4*g5^4*t^7.63)/g3 + (g4^6*g5^4*t^7.63)/g3 + (g2^4*g4^2*g5^6*t^7.63)/g3 + (g4^4*g5^6*t^7.63)/g3 + g1^4*g2^4*g3*g4^2*t^7.64 + (g2^7*t^7.64)/(g1*g4^3*g5^3) + g1^4*g2^4*g3*g5^2*t^7.64 + (g2^8*g4^4*g5^2*t^7.64)/g3 + (g2^8*g4^2*g5^4*t^7.64)/g3 + (g4^8*g5^4*t^7.65)/g3^2 + (g4^6*g5^6*t^7.65)/g3^2 + (g4^4*g5^8*t^7.65)/g3^2 + g1^4*g2^4*g4^4*t^7.66 + t^7.66/(g1^2*g2^2*g4^6*g5^6) + (g1^3*g3*t^7.66)/(g2*g4^3*g5^3) - (g4*t^7.66)/(g1*g2*g3*g5) - (g5*t^7.66)/(g1*g2*g3*g4) + g1^4*g2^4*g4^2*g5^2*t^7.66 + g1^4*g4^4*g5^2*t^7.66 + g1^4*g2^4*g5^4*t^7.66 + g1^4*g4^2*g5^4*t^7.66 + (g2^8*g4^4*g5^4*t^7.66)/g3^2 + (g2^4*g4^6*g5^4*t^7.66)/g3^2 + (g2^4*g4^4*g5^6*t^7.66)/g3^2 + g1^8*g3^2*t^7.67 + (g1^4*g4^6*g5^2*t^7.68)/g3 + (g1^4*g4^4*g5^4*t^7.68)/g3 + (g1^4*g4^2*g5^6*t^7.68)/g3 + g1^8*g3*g4^2*t^7.69 + (g1^3*g2^3*t^7.69)/(g4^3*g5^3) + g1^8*g3*g5^2*t^7.69 + g1^8*g4^4*t^7.72 + g1^8*g4^2*g5^2*t^7.72 + g1^8*g5^4*t^7.72 + (g1^7*t^7.75)/(g2*g4^3*g5^3) + (g3^3*t^8.01)/(g1^8*g4^2*g5^4) + (g3^3*t^8.01)/(g1^8*g4^4*g5^2) + (g2^4*g3^3*t^8.02)/(g1^8*g4^4*g5^4) + (g3^2*t^8.03)/(g1^8*g2^4*g4^2) + (g3^2*t^8.03)/(g1^8*g2^4*g5^2) + (g2^4*g3^2*t^8.04)/(g1^8*g4^2*g5^4) + (g2^4*g3^2*t^8.04)/(g1^8*g4^4*g5^2) + (g3^2*t^8.04)/(g1^8*g4^2*g5^2) + (g3*g4^2*t^8.05)/(g1^8*g2^8) + (g3*g5^2*t^8.05)/(g1^8*g2^8) + (g3*t^8.06)/(g1^8*g2^4) + (g3*t^8.06)/(g1^8*g4^2) + (g3*t^8.06)/(g1^8*g5^2) + (g4^2*t^8.08)/(g1^8*g2^4) + (g5^2*t^8.08)/(g1^8*g2^4) + (g4^2*g5^2*t^8.08)/(g1^8*g2^8) - (g3^2*t^8.09)/(g1^4*g2^4*g4^2*g5^2) + (g4^4*g5^2*t^8.1)/(g1^8*g2^8*g3) + (g4^2*g5^4*t^8.1)/(g1^8*g2^8*g3) - (g3*t^8.11)/(g1^4*g2^4*g4^2) - (g3*t^8.11)/(g1^4*g2^4*g5^2) - (g3*t^8.12)/(g1^4*g4^4) - (g3*t^8.12)/(g1^4*g5^4) - (5*g3*t^8.12)/(g1^4*g4^2*g5^2) - g1*g2*g3^2*g4*g5*t^8.12 - (5*t^8.14)/(g1^4*g2^4) - t^8.14/(g1^4*g4^2) - t^8.14/(g1^4*g5^2) - (g4^2*t^8.14)/(g1^4*g2^4*g5^2) - g1*g2*g3*g4^3*g5*t^8.14 - (g5^2*t^8.14)/(g1^4*g2^4*g4^2) - g1*g2*g3*g4*g5^3*t^8.14 - (g2^4*t^8.15)/(g1^4*g4^2*g5^2) - g1*g2^5*g3*g4*g5*t^8.15 - (g4^2*t^8.16)/(g1^4*g2^4*g3) - (g5^2*t^8.16)/(g1^4*g2^4*g3) - (g4^2*g5^2*t^8.16)/(g1^4*g2^8*g3) - t^8.17/(g1^4*g3) - (g3*t^8.17)/(g2^4*g4^2*g5^2) - g1*g2^5*g4^3*g5*t^8.17 - g1*g2*g4^5*g5*t^8.17 - g1*g2^5*g4*g5^3*t^8.17 - 2*g1*g2*g4^3*g5^3*t^8.17 - g1*g2*g4*g5^5*t^8.17 - g1*g2^9*g4*g5*t^8.18 - (g4^2*g5^2*t^8.19)/(g1^4*g2^4*g3^2) - (g1*g2*g4^5*g5^3*t^8.19)/g3 - (g1*g2*g4^3*g5^5*t^8.19)/g3 - (4*t^8.2)/(g4^2*g5^2) - g1^5*g2*g3*g4*g5*t^8.2 - (g1*g2^5*g4^3*g5^3*t^8.2)/g3 - t^8.22/(g2^4*g3) - g1^5*g2*g4^3*g5*t^8.22 - g1^5*g2*g4*g5^3*t^8.22 - (g1*g2*g4^5*g5^5*t^8.22)/g3^2 - g1^5*g2^5*g4*g5*t^8.23 - (g1^4*t^8.25)/(g2^4*g4^2*g5^2) - (g1^5*g2*g4^3*g5^3*t^8.25)/g3 - (g1^4*t^8.28)/(g3*g4^2*g5^2) - g1^9*g2*g4*g5*t^8.28 + (g3^4*t^8.47)/(g1^16*g4^8*g5^8) + (g3^3*t^8.49)/(g1^16*g2^4*g4^6*g5^6) + (g3^2*t^8.51)/(g1^16*g2^8*g4^4*g5^4) + (g3*t^8.53)/(g1^16*g2^12*g4^2*g5^2) + t^8.55/(g1^16*g2^16) + (g3^3*t^8.55)/(g1^12*g4^8*g5^8) + (g3^2*t^8.57)/(g1^12*g2^4*g4^6*g5^6) + (g3*t^8.59)/(g1^12*g2^8*g4^4*g5^4) + t^8.61/(g1^12*g2^12*g4^2*g5^2) + (g3^2*t^8.63)/(g1^8*g4^8*g5^8) + (2*g3*t^8.65)/(g1^8*g2^4*g4^6*g5^6) + (g3^2*t^8.65)/(g1^3*g2^3*g4^3*g5^3) + (2*t^8.67)/(g1^8*g2^8*g4^4*g5^4) + (g2*g3*t^8.68)/(g1^3*g4^3*g5^3) + (g3*t^8.68)/(g1^3*g2^3*g4*g5^3) + (g3*t^8.68)/(g1^3*g2^3*g4^3*g5) + (g4*t^8.7)/(g1^3*g2^3*g5^3) + (2*t^8.7)/(g1^3*g2^3*g4*g5) + (g5*t^8.7)/(g1^3*g2^3*g4^3) + (g3*t^8.71)/(g1^4*g4^8*g5^8) + (g2^5*t^8.71)/(g1^3*g4^3*g5^3) + (g2*t^8.71)/(g1^3*g4*g5^3) + (g2*t^8.71)/(g1^3*g4^3*g5) + (2*t^8.73)/(g1^4*g2^4*g4^6*g5^6) + (g1*g3*t^8.73)/(g2^3*g4^3*g5^3) + (g2*t^8.73)/(g1^3*g3*g4*g5) + (g4*t^8.73)/(g1^3*g2^3*g3*g5) + (g5*t^8.73)/(g1^3*g2^3*g3*g4) + (g4*g5*t^8.75)/(g1^3*g2^3*g3^2) + (g1*g2*t^8.76)/(g4^3*g5^3) + (g1*t^8.76)/(g2^3*g4*g5^3) + (g1*t^8.76)/(g2^3*g4^3*g5) + (g1*t^8.78)/(g2^3*g3*g4*g5) + t^8.79/(g4^8*g5^8) + (g1^5*t^8.81)/(g2^3*g4^3*g5^3) - t^4.63/(g1*g2*g4*g5*y) - (g3*t^6.75)/(g1^5*g2*g4^3*g5^3*y) - t^6.77/(g1^5*g2^5*g4*g5*y) - t^6.83/(g1*g2*g4^3*g5^3*y) + (g3*t^7.25)/(g1^8*g2^4*g4^2*g5^2*y) + (g3*t^7.32)/(g1^4*g4^4*g5^4*y) + t^7.34/(g1^4*g2^4*g4^2*g5^2*y) + (g1*g2*g4*g5*t^7.37)/y - t^7.9/(g1^3*g2^3*g4^3*g5^3*y) + (g3*t^8.38)/(g1^6*g2^2*g4^4*g5^4*y) + t^8.4/(g1^6*g2^6*g4^2*g5^2*y) + (g4*g5*t^8.44)/(g1*g2*y) + t^8.47/(g1^2*g2^2*g4^4*g5^4*y) + (g1^3*g2^3*t^8.5)/(g4*g5*y) + (g1^3*g4*g5*t^8.52)/(g2*g3*y) - (g3^2*t^8.87)/(g1^9*g2*g4^5*g5^5*y) + (g3^2*t^8.89)/(g1^4*g4^2*y) - (g3*t^8.89)/(g1^9*g2^5*g4^3*g5^3*y) + (g3^2*t^8.89)/(g1^4*g5^2*y) + (g2^4*g3^2*t^8.9)/(g1^4*g4^2*g5^2*y) + (g3*g4^2*t^8.91)/(g1^4*g2^4*y) - t^8.91/(g1^9*g2^9*g4*g5*y) + (g3*g5^2*t^8.91)/(g1^4*g2^4*y) + (2*g3*t^8.92)/(g1^4*y) + (g2^4*g3*t^8.92)/(g1^4*g4^2*y) + (g2^4*g3*t^8.92)/(g1^4*g5^2*y) + (2*g4^2*t^8.94)/(g1^4*y) + (2*g5^2*t^8.94)/(g1^4*y) + (g4^2*g5^2*t^8.94)/(g1^4*g2^4*y) + (g2^4*t^8.95)/(g1^4*y) - (g3*t^8.95)/(g1^5*g2*g4^5*g5^5*y) + (g3^2*t^8.95)/(g4^2*g5^2*y) + (g4^4*g5^2*t^8.96)/(g1^4*g2^4*g3*y) + (g4^2*g5^4*t^8.96)/(g1^4*g2^4*g3*y) + (g3*t^8.97)/(g2^4*y) + (2*g3*t^8.97)/(g4^2*y) - t^8.97/(g1^5*g2^5*g4^3*g5^3*y) + (2*g3*t^8.97)/(g5^2*y) + (g4^2*g5^2*t^8.97)/(g1^4*g3*y) + (g2^4*g3*t^8.98)/(g4^2*g5^2*y) - (t^4.63*y)/(g1*g2*g4*g5) - (g3*t^6.75*y)/(g1^5*g2*g4^3*g5^3) - (t^6.77*y)/(g1^5*g2^5*g4*g5) - (t^6.83*y)/(g1*g2*g4^3*g5^3) + (g3*t^7.25*y)/(g1^8*g2^4*g4^2*g5^2) + (g3*t^7.32*y)/(g1^4*g4^4*g5^4) + (t^7.34*y)/(g1^4*g2^4*g4^2*g5^2) + g1*g2*g4*g5*t^7.37*y - (t^7.9*y)/(g1^3*g2^3*g4^3*g5^3) + (g3*t^8.38*y)/(g1^6*g2^2*g4^4*g5^4) + (t^8.4*y)/(g1^6*g2^6*g4^2*g5^2) + (g4*g5*t^8.44*y)/(g1*g2) + (t^8.47*y)/(g1^2*g2^2*g4^4*g5^4) + (g1^3*g2^3*t^8.5*y)/(g4*g5) + (g1^3*g4*g5*t^8.52*y)/(g2*g3) - (g3^2*t^8.87*y)/(g1^9*g2*g4^5*g5^5) + (g3^2*t^8.89*y)/(g1^4*g4^2) - (g3*t^8.89*y)/(g1^9*g2^5*g4^3*g5^3) + (g3^2*t^8.89*y)/(g1^4*g5^2) + (g2^4*g3^2*t^8.9*y)/(g1^4*g4^2*g5^2) + (g3*g4^2*t^8.91*y)/(g1^4*g2^4) - (t^8.91*y)/(g1^9*g2^9*g4*g5) + (g3*g5^2*t^8.91*y)/(g1^4*g2^4) + (2*g3*t^8.92*y)/g1^4 + (g2^4*g3*t^8.92*y)/(g1^4*g4^2) + (g2^4*g3*t^8.92*y)/(g1^4*g5^2) + (2*g4^2*t^8.94*y)/g1^4 + (2*g5^2*t^8.94*y)/g1^4 + (g4^2*g5^2*t^8.94*y)/(g1^4*g2^4) + (g2^4*t^8.95*y)/g1^4 - (g3*t^8.95*y)/(g1^5*g2*g4^5*g5^5) + (g3^2*t^8.95*y)/(g4^2*g5^2) + (g4^4*g5^2*t^8.96*y)/(g1^4*g2^4*g3) + (g4^2*g5^4*t^8.96*y)/(g1^4*g2^4*g3) + (g3*t^8.97*y)/g2^4 + (2*g3*t^8.97*y)/g4^2 - (t^8.97*y)/(g1^5*g2^5*g4^3*g5^3) + (2*g3*t^8.97*y)/g5^2 + (g4^2*g5^2*t^8.97*y)/(g1^4*g3) + (g2^4*g3*t^8.98*y)/(g4^2*g5^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55595 | SU2adj1nf3 | $M_1q_1q_2$ + $ M_2q_1q_3$ + $ M_3q_2\tilde{q}_1$ | 0.9185 | 1.1444 | 0.8026 | [X:[], M:[0.6984, 0.7125, 0.7125], q:[0.6508, 0.6508, 0.6367], qb:[0.6367, 0.6176, 0.6176], phi:[0.5475]] | t^2.1 + 2*t^2.14 + t^3.28 + t^3.71 + 4*t^3.76 + 4*t^3.81 + t^3.82 + 2*t^3.86 + t^4.19 + 2*t^4.23 + 3*t^4.28 + 3*t^5.35 + t^5.38 + 4*t^5.41 + 2*t^5.42 + 4*t^5.45 + 3*t^5.46 + 4*t^5.5 + 3*t^5.55 + t^5.8 + 2*t^5.84 + 4*t^5.86 + 8*t^5.9 + t^5.92 + 4*t^5.94 - 8*t^6. - t^4.64/y - t^4.64*y | detail |