Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55597 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ 0.8849 1.096 0.8074 [X:[], M:[0.6768, 0.6768], q:[0.5964, 0.7269, 0.7269], qb:[0.5882, 0.5882, 0.5882], phi:[0.5463]] [X:[], M:[[-4, -3, 1, 1, 1], [-3, -4, 1, 1, 1]], q:[[3, 3, -1, -1, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[-1, -1, 0, 0, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ M_1$, $ \phi_1^2$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_3$, $ q_2\tilde{q}_1$, $ q_3\tilde{q}_1$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ q_2q_3$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_1^2$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_2q_3\tilde{q}_1$, $ M_1q_3\tilde{q}_1$, $ M_2q_3\tilde{q}_2$, $ M_1q_3\tilde{q}_2$ $\phi_1q_2^2$, $ \phi_1q_3^2$ -11 2*t^2.03 + t^3.28 + 3*t^3.53 + 3*t^3.55 + 6*t^3.95 + 3*t^4.06 + t^4.36 + 6*t^5.17 + 3*t^5.19 + t^5.22 + 2*t^5.31 + 6*t^5.56 + 6*t^5.58 + 9*t^5.98 - 11*t^6. - 3*t^6.02 + 4*t^6.09 - 6*t^6.42 + t^6.56 + 3*t^6.81 + 3*t^6.83 + 6*t^7.06 + 8*t^7.08 + 6*t^7.11 + 12*t^7.2 + 6*t^7.22 + 3*t^7.34 + 16*t^7.47 + 12*t^7.5 + 9*t^7.59 + 6*t^7.61 - 9*t^7.64 - 3*t^7.66 + 15*t^7.89 - 3*t^7.91 - t^7.94 + 12*t^8.01 - 22*t^8.03 - 6*t^8.05 + 5*t^8.12 - 2*t^8.33 - 3*t^8.45 + 9*t^8.47 + t^8.49 + 2*t^8.59 + 15*t^8.7 + 16*t^8.72 + 9*t^8.75 + 3*t^8.77 + 6*t^8.84 + 6*t^8.86 - t^4.64/y - (2*t^6.67)/y + t^7.06/y + t^7.36/y - t^7.92/y + (2*t^8.31)/y + (6*t^8.56)/y + (6*t^8.58)/y + (2*t^8.61)/y - (3*t^8.7)/y + (12*t^8.98)/y - t^4.64*y - 2*t^6.67*y + t^7.06*y + t^7.36*y - t^7.92*y + 2*t^8.31*y + 6*t^8.56*y + 6*t^8.58*y + 2*t^8.61*y - 3*t^8.7*y + 12*t^8.98*y (g3*g4*g5*t^2.03)/(g1^3*g2^4) + (g3*g4*g5*t^2.03)/(g1^4*g2^3) + t^3.28/(g1^2*g2^2) + g3*g4*t^3.53 + g3*g5*t^3.53 + g4*g5*t^3.53 + (g1^3*g2^3*t^3.55)/(g3*g4) + (g1^3*g2^3*t^3.55)/(g3*g5) + (g1^3*g2^3*t^3.55)/(g4*g5) + g1*g3*t^3.95 + g2*g3*t^3.95 + g1*g4*t^3.95 + g2*g4*t^3.95 + g1*g5*t^3.95 + g2*g5*t^3.95 + (g3^2*g4^2*g5^2*t^4.06)/(g1^6*g2^8) + (g3^2*g4^2*g5^2*t^4.06)/(g1^7*g2^7) + (g3^2*g4^2*g5^2*t^4.06)/(g1^8*g2^6) + g1*g2*t^4.36 + (g3^2*t^5.17)/(g1*g2) + (g3*g4*t^5.17)/(g1*g2) + (g4^2*t^5.17)/(g1*g2) + (g3*g5*t^5.17)/(g1*g2) + (g4*g5*t^5.17)/(g1*g2) + (g5^2*t^5.17)/(g1*g2) + (g1^2*g2^2*t^5.19)/(g3*g4) + (g1^2*g2^2*t^5.19)/(g3*g5) + (g1^2*g2^2*t^5.19)/(g4*g5) + (g1^5*g2^5*t^5.22)/(g3^2*g4^2*g5^2) + (g3*g4*g5*t^5.31)/(g1^5*g2^6) + (g3*g4*g5*t^5.31)/(g1^6*g2^5) + (g3^2*g4^2*g5*t^5.56)/(g1^3*g2^4) + (g3^2*g4^2*g5*t^5.56)/(g1^4*g2^3) + (g3^2*g4*g5^2*t^5.56)/(g1^3*g2^4) + (g3^2*g4*g5^2*t^5.56)/(g1^4*g2^3) + (g3*g4^2*g5^2*t^5.56)/(g1^3*g2^4) + (g3*g4^2*g5^2*t^5.56)/(g1^4*g2^3) + (g3*t^5.58)/g1 + (g3*t^5.58)/g2 + (g4*t^5.58)/g1 + (g4*t^5.58)/g2 + (g5*t^5.58)/g1 + (g5*t^5.58)/g2 + (g3^2*g4*g5*t^5.98)/(g1^2*g2^4) + (g3^2*g4*g5*t^5.98)/(g1^3*g2^3) + (g3^2*g4*g5*t^5.98)/(g1^4*g2^2) + (g3*g4^2*g5*t^5.98)/(g1^2*g2^4) + (g3*g4^2*g5*t^5.98)/(g1^3*g2^3) + (g3*g4^2*g5*t^5.98)/(g1^4*g2^2) + (g3*g4*g5^2*t^5.98)/(g1^2*g2^4) + (g3*g4*g5^2*t^5.98)/(g1^3*g2^3) + (g3*g4*g5^2*t^5.98)/(g1^4*g2^2) - 5*t^6. - (g3*t^6.)/g4 - (g4*t^6.)/g3 - (g3*t^6.)/g5 - (g4*t^6.)/g5 - (g5*t^6.)/g3 - (g5*t^6.)/g4 - (g1^3*g2^3*t^6.02)/(g3*g4*g5^2) - (g1^3*g2^3*t^6.02)/(g3*g4^2*g5) - (g1^3*g2^3*t^6.02)/(g3^2*g4*g5) + (g3^3*g4^3*g5^3*t^6.09)/(g1^9*g2^12) + (g3^3*g4^3*g5^3*t^6.09)/(g1^10*g2^11) + (g3^3*g4^3*g5^3*t^6.09)/(g1^11*g2^10) + (g3^3*g4^3*g5^3*t^6.09)/(g1^12*g2^9) - (g1*t^6.42)/g3 - (g2*t^6.42)/g3 - (g1*t^6.42)/g4 - (g2*t^6.42)/g4 - (g1*t^6.42)/g5 - (g2*t^6.42)/g5 + t^6.56/(g1^4*g2^4) + (g3*g4*t^6.81)/(g1^2*g2^2) + (g3*g5*t^6.81)/(g1^2*g2^2) + (g4*g5*t^6.81)/(g1^2*g2^2) + (g1*g2*t^6.83)/(g3*g4) + (g1*g2*t^6.83)/(g3*g5) + (g1*g2*t^6.83)/(g4*g5) + g3^2*g4^2*t^7.06 + g3^2*g4*g5*t^7.06 + g3*g4^2*g5*t^7.06 + g3^2*g5^2*t^7.06 + g3*g4*g5^2*t^7.06 + g4^2*g5^2*t^7.06 + 2*g1^3*g2^3*t^7.08 + (g1^3*g2^3*g3*t^7.08)/g4 + (g1^3*g2^3*g4*t^7.08)/g3 + (g1^3*g2^3*g3*t^7.08)/g5 + (g1^3*g2^3*g4*t^7.08)/g5 + (g1^3*g2^3*g5*t^7.08)/g3 + (g1^3*g2^3*g5*t^7.08)/g4 + (g1^6*g2^6*t^7.11)/(g3^2*g4^2) + (g1^6*g2^6*t^7.11)/(g3^2*g5^2) + (g1^6*g2^6*t^7.11)/(g4^2*g5^2) + (g1^6*g2^6*t^7.11)/(g3*g4*g5^2) + (g1^6*g2^6*t^7.11)/(g3*g4^2*g5) + (g1^6*g2^6*t^7.11)/(g3^2*g4*g5) + (g3^3*g4*g5*t^7.2)/(g1^4*g2^5) + (g3^3*g4*g5*t^7.2)/(g1^5*g2^4) + (g3^2*g4^2*g5*t^7.2)/(g1^4*g2^5) + (g3^2*g4^2*g5*t^7.2)/(g1^5*g2^4) + (g3*g4^3*g5*t^7.2)/(g1^4*g2^5) + (g3*g4^3*g5*t^7.2)/(g1^5*g2^4) + (g3^2*g4*g5^2*t^7.2)/(g1^4*g2^5) + (g3^2*g4*g5^2*t^7.2)/(g1^5*g2^4) + (g3*g4^2*g5^2*t^7.2)/(g1^4*g2^5) + (g3*g4^2*g5^2*t^7.2)/(g1^5*g2^4) + (g3*g4*g5^3*t^7.2)/(g1^4*g2^5) + (g3*g4*g5^3*t^7.2)/(g1^5*g2^4) + (g3*t^7.22)/(g1*g2^2) + (g3*t^7.22)/(g1^2*g2) + (g4*t^7.22)/(g1*g2^2) + (g4*t^7.22)/(g1^2*g2) + (g5*t^7.22)/(g1*g2^2) + (g5*t^7.22)/(g1^2*g2) + (g3^2*g4^2*g5^2*t^7.34)/(g1^8*g2^10) + (g3^2*g4^2*g5^2*t^7.34)/(g1^9*g2^9) + (g3^2*g4^2*g5^2*t^7.34)/(g1^10*g2^8) + g1*g3^2*g4*t^7.47 + g2*g3^2*g4*t^7.47 + g1*g3*g4^2*t^7.47 + g2*g3*g4^2*t^7.47 + g1*g3^2*g5*t^7.47 + g2*g3^2*g5*t^7.47 + 2*g1*g3*g4*g5*t^7.47 + 2*g2*g3*g4*g5*t^7.47 + g1*g4^2*g5*t^7.47 + g2*g4^2*g5*t^7.47 + g1*g3*g5^2*t^7.47 + g2*g3*g5^2*t^7.47 + g1*g4*g5^2*t^7.47 + g2*g4*g5^2*t^7.47 + (g1^4*g2^3*t^7.5)/g3 + (g1^3*g2^4*t^7.5)/g3 + (g1^4*g2^3*t^7.5)/g4 + (g1^3*g2^4*t^7.5)/g4 + (g1^4*g2^3*t^7.5)/g5 + (g1^3*g2^4*t^7.5)/g5 + (g1^4*g2^3*g3*t^7.5)/(g4*g5) + (g1^3*g2^4*g3*t^7.5)/(g4*g5) + (g1^4*g2^3*g4*t^7.5)/(g3*g5) + (g1^3*g2^4*g4*t^7.5)/(g3*g5) + (g1^4*g2^3*g5*t^7.5)/(g3*g4) + (g1^3*g2^4*g5*t^7.5)/(g3*g4) + (g3^3*g4^3*g5^2*t^7.59)/(g1^6*g2^8) + (g3^3*g4^3*g5^2*t^7.59)/(g1^7*g2^7) + (g3^3*g4^3*g5^2*t^7.59)/(g1^8*g2^6) + (g3^3*g4^2*g5^3*t^7.59)/(g1^6*g2^8) + (g3^3*g4^2*g5^3*t^7.59)/(g1^7*g2^7) + (g3^3*g4^2*g5^3*t^7.59)/(g1^8*g2^6) + (g3^2*g4^3*g5^3*t^7.59)/(g1^6*g2^8) + (g3^2*g4^3*g5^3*t^7.59)/(g1^7*g2^7) + (g3^2*g4^3*g5^3*t^7.59)/(g1^8*g2^6) + (g3^2*g4*g5*t^7.61)/(g1^3*g2^5) + (g3^2*g4*g5*t^7.61)/(g1^5*g2^3) + (g3*g4^2*g5*t^7.61)/(g1^3*g2^5) + (g3*g4^2*g5*t^7.61)/(g1^5*g2^3) + (g3*g4*g5^2*t^7.61)/(g1^3*g2^5) + (g3*g4*g5^2*t^7.61)/(g1^5*g2^3) - (3*t^7.64)/(g1*g2) - (g3*t^7.64)/(g1*g2*g4) - (g4*t^7.64)/(g1*g2*g3) - (g3*t^7.64)/(g1*g2*g5) - (g4*t^7.64)/(g1*g2*g5) - (g5*t^7.64)/(g1*g2*g3) - (g5*t^7.64)/(g1*g2*g4) - (g1^2*g2^2*t^7.66)/(g3*g4*g5^2) - (g1^2*g2^2*t^7.66)/(g3*g4^2*g5) - (g1^2*g2^2*t^7.66)/(g3^2*g4*g5) + g1^2*g3^2*t^7.89 + g2^2*g3^2*t^7.89 + g1^2*g3*g4*t^7.89 + g1*g2*g3*g4*t^7.89 + g2^2*g3*g4*t^7.89 + g1^2*g4^2*t^7.89 + g2^2*g4^2*t^7.89 + g1^2*g3*g5*t^7.89 + g1*g2*g3*g5*t^7.89 + g2^2*g3*g5*t^7.89 + g1^2*g4*g5*t^7.89 + g1*g2*g4*g5*t^7.89 + g2^2*g4*g5*t^7.89 + g1^2*g5^2*t^7.89 + g2^2*g5^2*t^7.89 - (g1^4*g2^4*t^7.91)/(g3*g4) - (g1^4*g2^4*t^7.91)/(g3*g5) - (g1^4*g2^4*t^7.91)/(g4*g5) - (g1^7*g2^7*t^7.94)/(g3^2*g4^2*g5^2) + (g3^3*g4^2*g5^2*t^8.01)/(g1^5*g2^8) + (g3^3*g4^2*g5^2*t^8.01)/(g1^6*g2^7) + (g3^3*g4^2*g5^2*t^8.01)/(g1^7*g2^6) + (g3^3*g4^2*g5^2*t^8.01)/(g1^8*g2^5) + (g3^2*g4^3*g5^2*t^8.01)/(g1^5*g2^8) + (g3^2*g4^3*g5^2*t^8.01)/(g1^6*g2^7) + (g3^2*g4^3*g5^2*t^8.01)/(g1^7*g2^6) + (g3^2*g4^3*g5^2*t^8.01)/(g1^8*g2^5) + (g3^2*g4^2*g5^3*t^8.01)/(g1^5*g2^8) + (g3^2*g4^2*g5^3*t^8.01)/(g1^6*g2^7) + (g3^2*g4^2*g5^3*t^8.01)/(g1^7*g2^6) + (g3^2*g4^2*g5^3*t^8.01)/(g1^8*g2^5) - (g3^2*g4*t^8.03)/(g1^3*g2^4) - (g3^2*g4*t^8.03)/(g1^4*g2^3) - (g3*g4^2*t^8.03)/(g1^3*g2^4) - (g3*g4^2*t^8.03)/(g1^4*g2^3) - (g3^2*g5*t^8.03)/(g1^3*g2^4) - (g3^2*g5*t^8.03)/(g1^4*g2^3) - (5*g3*g4*g5*t^8.03)/(g1^3*g2^4) - (5*g3*g4*g5*t^8.03)/(g1^4*g2^3) - (g4^2*g5*t^8.03)/(g1^3*g2^4) - (g4^2*g5*t^8.03)/(g1^4*g2^3) - (g3*g5^2*t^8.03)/(g1^3*g2^4) - (g3*g5^2*t^8.03)/(g1^4*g2^3) - (g4*g5^2*t^8.03)/(g1^3*g2^4) - (g4*g5^2*t^8.03)/(g1^4*g2^3) - t^8.05/(g1*g3) - t^8.05/(g2*g3) - t^8.05/(g1*g4) - t^8.05/(g2*g4) - t^8.05/(g1*g5) - t^8.05/(g2*g5) + (g3^4*g4^4*g5^4*t^8.12)/(g1^12*g2^16) + (g3^4*g4^4*g5^4*t^8.12)/(g1^13*g2^15) + (g3^4*g4^4*g5^4*t^8.12)/(g1^14*g2^14) + (g3^4*g4^4*g5^4*t^8.12)/(g1^15*g2^13) + (g3^4*g4^4*g5^4*t^8.12)/(g1^16*g2^12) - (g1^5*g2^4*t^8.33)/(g3*g4*g5) - (g1^4*g2^5*t^8.33)/(g3*g4*g5) + (g3^2*t^8.45)/(g1^3*g2^3) - (g3*g4*t^8.45)/(g1^2*g2^4) - (g3*g4*t^8.45)/(g1^4*g2^2) + (g4^2*t^8.45)/(g1^3*g2^3) - (g3*g5*t^8.45)/(g1^2*g2^4) - (g3*g5*t^8.45)/(g1^4*g2^2) - (g4*g5*t^8.45)/(g1^2*g2^4) - (g4*g5*t^8.45)/(g1^4*g2^2) + (g5^2*t^8.45)/(g1^3*g2^3) + t^8.47/g3^2 + t^8.47/g4^2 + (2*t^8.47)/(g3*g4) + t^8.47/g5^2 + (2*t^8.47)/(g3*g5) + (2*t^8.47)/(g4*g5) + (g1^3*g2^3*t^8.49)/(g3^2*g4^2*g5^2) + (g3*g4*g5*t^8.59)/(g1^7*g2^8) + (g3*g4*g5*t^8.59)/(g1^8*g2^7) + (g3^3*g4*t^8.7)/(g1*g2) + (g3^2*g4^2*t^8.7)/(g1*g2) + (g3*g4^3*t^8.7)/(g1*g2) + (g3^3*g5*t^8.7)/(g1*g2) + (2*g3^2*g4*g5*t^8.7)/(g1*g2) + (2*g3*g4^2*g5*t^8.7)/(g1*g2) + (g4^3*g5*t^8.7)/(g1*g2) + (g3^2*g5^2*t^8.7)/(g1*g2) + (2*g3*g4*g5^2*t^8.7)/(g1*g2) + (g4^2*g5^2*t^8.7)/(g1*g2) + (g3*g5^3*t^8.7)/(g1*g2) + (g4*g5^3*t^8.7)/(g1*g2) - g1^3*g2*t^8.72 + 3*g1^2*g2^2*t^8.72 - g1*g2^3*t^8.72 + (2*g1^2*g2^2*g3*t^8.72)/g4 + (2*g1^2*g2^2*g4*t^8.72)/g3 + (2*g1^2*g2^2*g3*t^8.72)/g5 + (g1^2*g2^2*g3^2*t^8.72)/(g4*g5) + (2*g1^2*g2^2*g4*t^8.72)/g5 + (g1^2*g2^2*g4^2*t^8.72)/(g3*g5) + (2*g1^2*g2^2*g5*t^8.72)/g3 + (2*g1^2*g2^2*g5*t^8.72)/g4 + (g1^2*g2^2*g5^2*t^8.72)/(g3*g4) + (g1^5*g2^5*t^8.75)/(g3^2*g4^2) + (g1^5*g2^5*t^8.75)/(g3^2*g5^2) + (g1^5*g2^5*t^8.75)/(g4^2*g5^2) + (2*g1^5*g2^5*t^8.75)/(g3*g4*g5^2) + (2*g1^5*g2^5*t^8.75)/(g3*g4^2*g5) + (2*g1^5*g2^5*t^8.75)/(g3^2*g4*g5) + (g1^8*g2^8*t^8.77)/(g3^2*g4^3*g5^3) + (g1^8*g2^8*t^8.77)/(g3^3*g4^2*g5^3) + (g1^8*g2^8*t^8.77)/(g3^3*g4^3*g5^2) + (g3^2*g4^2*g5*t^8.84)/(g1^5*g2^6) + (g3^2*g4^2*g5*t^8.84)/(g1^6*g2^5) + (g3^2*g4*g5^2*t^8.84)/(g1^5*g2^6) + (g3^2*g4*g5^2*t^8.84)/(g1^6*g2^5) + (g3*g4^2*g5^2*t^8.84)/(g1^5*g2^6) + (g3*g4^2*g5^2*t^8.84)/(g1^6*g2^5) + (g3*t^8.86)/(g1^2*g2^3) + (g3*t^8.86)/(g1^3*g2^2) + (g4*t^8.86)/(g1^2*g2^3) + (g4*t^8.86)/(g1^3*g2^2) + (g5*t^8.86)/(g1^2*g2^3) + (g5*t^8.86)/(g1^3*g2^2) - t^4.64/(g1*g2*y) - (g3*g4*g5*t^6.67)/(g1^4*g2^5*y) - (g3*g4*g5*t^6.67)/(g1^5*g2^4*y) + (g3^2*g4^2*g5^2*t^7.06)/(g1^7*g2^7*y) + (g1*g2*t^7.36)/y - t^7.92/(g1^3*g2^3*y) + (g3*g4*g5*t^8.31)/(g1^5*g2^6*y) + (g3*g4*g5*t^8.31)/(g1^6*g2^5*y) + (g3^2*g4^2*g5*t^8.56)/(g1^3*g2^4*y) + (g3^2*g4^2*g5*t^8.56)/(g1^4*g2^3*y) + (g3^2*g4*g5^2*t^8.56)/(g1^3*g2^4*y) + (g3^2*g4*g5^2*t^8.56)/(g1^4*g2^3*y) + (g3*g4^2*g5^2*t^8.56)/(g1^3*g2^4*y) + (g3*g4^2*g5^2*t^8.56)/(g1^4*g2^3*y) + (g3*t^8.58)/(g1*y) + (g3*t^8.58)/(g2*y) + (g4*t^8.58)/(g1*y) + (g4*t^8.58)/(g2*y) + (g5*t^8.58)/(g1*y) + (g5*t^8.58)/(g2*y) + (g1^3*g2^2*t^8.61)/(g3*g4*g5*y) + (g1^2*g2^3*t^8.61)/(g3*g4*g5*y) - (g3^2*g4^2*g5^2*t^8.7)/(g1^7*g2^9*y) - (g3^2*g4^2*g5^2*t^8.7)/(g1^8*g2^8*y) - (g3^2*g4^2*g5^2*t^8.7)/(g1^9*g2^7*y) + (g3^2*g4*g5*t^8.98)/(g1^2*g2^4*y) + (2*g3^2*g4*g5*t^8.98)/(g1^3*g2^3*y) + (g3^2*g4*g5*t^8.98)/(g1^4*g2^2*y) + (g3*g4^2*g5*t^8.98)/(g1^2*g2^4*y) + (2*g3*g4^2*g5*t^8.98)/(g1^3*g2^3*y) + (g3*g4^2*g5*t^8.98)/(g1^4*g2^2*y) + (g3*g4*g5^2*t^8.98)/(g1^2*g2^4*y) + (2*g3*g4*g5^2*t^8.98)/(g1^3*g2^3*y) + (g3*g4*g5^2*t^8.98)/(g1^4*g2^2*y) - (t^4.64*y)/(g1*g2) - (g3*g4*g5*t^6.67*y)/(g1^4*g2^5) - (g3*g4*g5*t^6.67*y)/(g1^5*g2^4) + (g3^2*g4^2*g5^2*t^7.06*y)/(g1^7*g2^7) + g1*g2*t^7.36*y - (t^7.92*y)/(g1^3*g2^3) + (g3*g4*g5*t^8.31*y)/(g1^5*g2^6) + (g3*g4*g5*t^8.31*y)/(g1^6*g2^5) + (g3^2*g4^2*g5*t^8.56*y)/(g1^3*g2^4) + (g3^2*g4^2*g5*t^8.56*y)/(g1^4*g2^3) + (g3^2*g4*g5^2*t^8.56*y)/(g1^3*g2^4) + (g3^2*g4*g5^2*t^8.56*y)/(g1^4*g2^3) + (g3*g4^2*g5^2*t^8.56*y)/(g1^3*g2^4) + (g3*g4^2*g5^2*t^8.56*y)/(g1^4*g2^3) + (g3*t^8.58*y)/g1 + (g3*t^8.58*y)/g2 + (g4*t^8.58*y)/g1 + (g4*t^8.58*y)/g2 + (g5*t^8.58*y)/g1 + (g5*t^8.58*y)/g2 + (g1^3*g2^2*t^8.61*y)/(g3*g4*g5) + (g1^2*g2^3*t^8.61*y)/(g3*g4*g5) - (g3^2*g4^2*g5^2*t^8.7*y)/(g1^7*g2^9) - (g3^2*g4^2*g5^2*t^8.7*y)/(g1^8*g2^8) - (g3^2*g4^2*g5^2*t^8.7*y)/(g1^9*g2^7) + (g3^2*g4*g5*t^8.98*y)/(g1^2*g2^4) + (2*g3^2*g4*g5*t^8.98*y)/(g1^3*g2^3) + (g3^2*g4*g5*t^8.98*y)/(g1^4*g2^2) + (g3*g4^2*g5*t^8.98*y)/(g1^2*g2^4) + (2*g3*g4^2*g5*t^8.98*y)/(g1^3*g2^3) + (g3*g4^2*g5*t^8.98*y)/(g1^4*g2^2) + (g3*g4*g5^2*t^8.98*y)/(g1^2*g2^4) + (2*g3*g4*g5^2*t^8.98*y)/(g1^3*g2^3) + (g3*g4*g5^2*t^8.98*y)/(g1^4*g2^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55701 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ + $ M_3\phi_1^2$ 0.8953 1.1197 0.7996 [X:[], M:[0.6948, 0.6948, 0.8627], q:[0.5895, 0.7157, 0.7157], qb:[0.5682, 0.5682, 0.5682], phi:[0.5686]] 2*t^2.08 + t^2.59 + 3*t^3.41 + 3*t^3.47 + 6*t^3.85 + 3*t^4.17 + t^4.29 + 2*t^4.67 + 6*t^5.12 + 4*t^5.18 + t^5.24 + 6*t^5.49 + 6*t^5.56 + 9*t^5.94 - 8*t^6. - t^4.71/y - t^4.71*y detail
55787 $M_1q_1q_2$ + $ M_2q_1q_3$ + $ \phi_1q_2q_3$ + $ \phi_1\tilde{q}_1^2$ 0.8689 1.0725 0.8102 [X:[], M:[0.6921, 0.6921], q:[0.5721, 0.7358, 0.7358], qb:[0.7358, 0.5534, 0.5534], phi:[0.5284]] 2*t^2.08 + t^3.17 + t^3.32 + 2*t^3.38 + 6*t^3.87 + t^3.92 + 3*t^4.15 + 3*t^4.41 + 3*t^4.91 + 2*t^4.96 + t^5.02 + 2*t^5.25 + 2*t^5.4 + 4*t^5.45 + 10*t^5.94 - 6*t^6. - t^4.59/y - t^4.59*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55444 SU2adj1nf3 $M_1q_1q_2$ + $ M_2q_1q_3$ 0.8986 1.1079 0.8111 [X:[], M:[0.7076, 0.7076], q:[0.6552, 0.6371, 0.6371], qb:[0.6199, 0.6199, 0.6199], phi:[0.5527]] 2*t^2.12 + t^3.32 + 3*t^3.72 + 6*t^3.77 + t^3.82 + 3*t^3.83 + 3*t^4.25 + 6*t^5.38 + 6*t^5.43 + 2*t^5.44 + 6*t^5.48 + 2*t^5.54 + t^5.59 + 6*t^5.84 + 9*t^5.89 - 14*t^6. - t^4.66/y - t^4.66*y detail