Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55441 SU2adj1nf3 $M_1q_1q_2$ + $ M_2\phi_1^2$ 0.8907 1.0986 0.8108 [X:[], M:[0.7371, 0.8394], q:[0.6314, 0.6314, 0.604], qb:[0.604, 0.604, 0.604], phi:[0.5803]] [X:[], M:[[-4, -4, 0, 0, 0, 0], [2, 2, 2, 2, 2, 2]], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ q_3\tilde{q}_1$, $ q_1q_3$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1q_3^2$, $ \phi_1q_3\tilde{q}_1$, $ \phi_1q_1q_3$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_1q_3\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1\tilde{q}_2\tilde{q}_3$ . -20 t^2.21 + t^2.52 + 6*t^3.62 + 8*t^3.71 + t^4.42 + t^4.73 + t^5.04 + 10*t^5.36 + 8*t^5.45 + 3*t^5.53 + 6*t^5.84 - 20*t^6. - 8*t^6.08 + 6*t^6.14 + 8*t^6.22 + t^6.63 + t^6.94 + 21*t^7.25 + 40*t^7.33 + 30*t^7.41 + t^7.55 + 10*t^7.58 - 16*t^7.74 - 8*t^7.82 + 6*t^8.05 - 17*t^8.21 + 6*t^8.35 + 10*t^8.38 - 20*t^8.52 - 8*t^8.6 + 6*t^8.66 + 8*t^8.74 + t^8.85 + 45*t^8.99 - t^4.74/y - t^6.95/y + t^7.73/y + t^8.53/y + (6*t^8.84)/y + (8*t^8.92)/y - t^4.74*y - t^6.95*y + t^7.73*y + t^8.53*y + 6*t^8.84*y + 8*t^8.92*y t^2.21/(g1^4*g2^4) + g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^2.52 + g3^4*g4^4*t^3.62 + g3^4*g5^4*t^3.62 + g4^4*g5^4*t^3.62 + g3^4*g6^4*t^3.62 + g4^4*g6^4*t^3.62 + g5^4*g6^4*t^3.62 + g1^4*g3^4*t^3.71 + g2^4*g3^4*t^3.71 + g1^4*g4^4*t^3.71 + g2^4*g4^4*t^3.71 + g1^4*g5^4*t^3.71 + g2^4*g5^4*t^3.71 + g1^4*g6^4*t^3.71 + g2^4*g6^4*t^3.71 + t^4.42/(g1^8*g2^8) + (g3^2*g4^2*g5^2*g6^2*t^4.73)/(g1^2*g2^2) + g1^4*g2^4*g3^4*g4^4*g5^4*g6^4*t^5.04 + (g3^7*t^5.36)/(g1*g2*g4*g5*g6) + (g3^3*g4^3*t^5.36)/(g1*g2*g5*g6) + (g4^7*t^5.36)/(g1*g2*g3*g5*g6) + (g3^3*g5^3*t^5.36)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.36)/(g1*g2*g3*g6) + (g5^7*t^5.36)/(g1*g2*g3*g4*g6) + (g3^3*g6^3*t^5.36)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.36)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.36)/(g1*g2*g3*g4) + (g6^7*t^5.36)/(g1*g2*g3*g4*g5) + (g1^3*g3^3*t^5.45)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.45)/(g1*g4*g5*g6) + (g1^3*g4^3*t^5.45)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.45)/(g1*g3*g5*g6) + (g1^3*g5^3*t^5.45)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.45)/(g1*g3*g4*g6) + (g1^3*g6^3*t^5.45)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.45)/(g1*g3*g4*g5) + (g1^7*t^5.53)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.53)/(g3*g4*g5*g6) + (g2^7*t^5.53)/(g1*g3*g4*g5*g6) + (g3^4*g4^4*t^5.84)/(g1^4*g2^4) + (g3^4*g5^4*t^5.84)/(g1^4*g2^4) + (g4^4*g5^4*t^5.84)/(g1^4*g2^4) + (g3^4*g6^4*t^5.84)/(g1^4*g2^4) + (g4^4*g6^4*t^5.84)/(g1^4*g2^4) + (g5^4*g6^4*t^5.84)/(g1^4*g2^4) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g3^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g3^4*t^6.)/g6^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g3^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 - (g1^4*t^6.08)/g3^4 - (g2^4*t^6.08)/g3^4 - (g1^4*t^6.08)/g4^4 - (g2^4*t^6.08)/g4^4 - (g1^4*t^6.08)/g5^4 - (g2^4*t^6.08)/g5^4 - (g1^4*t^6.08)/g6^4 - (g2^4*t^6.08)/g6^4 + g1^2*g2^2*g3^6*g4^6*g5^2*g6^2*t^6.14 + g1^2*g2^2*g3^6*g4^2*g5^6*g6^2*t^6.14 + g1^2*g2^2*g3^2*g4^6*g5^6*g6^2*t^6.14 + g1^2*g2^2*g3^6*g4^2*g5^2*g6^6*t^6.14 + g1^2*g2^2*g3^2*g4^6*g5^2*g6^6*t^6.14 + g1^2*g2^2*g3^2*g4^2*g5^6*g6^6*t^6.14 + g1^6*g2^2*g3^6*g4^2*g5^2*g6^2*t^6.22 + g1^2*g2^6*g3^6*g4^2*g5^2*g6^2*t^6.22 + g1^6*g2^2*g3^2*g4^6*g5^2*g6^2*t^6.22 + g1^2*g2^6*g3^2*g4^6*g5^2*g6^2*t^6.22 + g1^6*g2^2*g3^2*g4^2*g5^6*g6^2*t^6.22 + g1^2*g2^6*g3^2*g4^2*g5^6*g6^2*t^6.22 + g1^6*g2^2*g3^2*g4^2*g5^2*g6^6*t^6.22 + g1^2*g2^6*g3^2*g4^2*g5^2*g6^6*t^6.22 + t^6.63/(g1^12*g2^12) + (g3^2*g4^2*g5^2*g6^2*t^6.94)/(g1^6*g2^6) + g3^8*g4^8*t^7.25 + g3^8*g4^4*g5^4*t^7.25 + g3^4*g4^8*g5^4*t^7.25 + g3^8*g5^8*t^7.25 + g3^4*g4^4*g5^8*t^7.25 + g4^8*g5^8*t^7.25 + g3^8*g4^4*g6^4*t^7.25 + g3^4*g4^8*g6^4*t^7.25 + g3^8*g5^4*g6^4*t^7.25 + 3*g3^4*g4^4*g5^4*g6^4*t^7.25 + g4^8*g5^4*g6^4*t^7.25 + g3^4*g5^8*g6^4*t^7.25 + g4^4*g5^8*g6^4*t^7.25 + g3^8*g6^8*t^7.25 + g3^4*g4^4*g6^8*t^7.25 + g4^8*g6^8*t^7.25 + g3^4*g5^4*g6^8*t^7.25 + g4^4*g5^4*g6^8*t^7.25 + g5^8*g6^8*t^7.25 + g1^4*g3^8*g4^4*t^7.33 + g2^4*g3^8*g4^4*t^7.33 + g1^4*g3^4*g4^8*t^7.33 + g2^4*g3^4*g4^8*t^7.33 + g1^4*g3^8*g5^4*t^7.33 + g2^4*g3^8*g5^4*t^7.33 + 2*g1^4*g3^4*g4^4*g5^4*t^7.33 + 2*g2^4*g3^4*g4^4*g5^4*t^7.33 + g1^4*g4^8*g5^4*t^7.33 + g2^4*g4^8*g5^4*t^7.33 + g1^4*g3^4*g5^8*t^7.33 + g2^4*g3^4*g5^8*t^7.33 + g1^4*g4^4*g5^8*t^7.33 + g2^4*g4^4*g5^8*t^7.33 + g1^4*g3^8*g6^4*t^7.33 + g2^4*g3^8*g6^4*t^7.33 + 2*g1^4*g3^4*g4^4*g6^4*t^7.33 + 2*g2^4*g3^4*g4^4*g6^4*t^7.33 + g1^4*g4^8*g6^4*t^7.33 + g2^4*g4^8*g6^4*t^7.33 + 2*g1^4*g3^4*g5^4*g6^4*t^7.33 + 2*g2^4*g3^4*g5^4*g6^4*t^7.33 + 2*g1^4*g4^4*g5^4*g6^4*t^7.33 + 2*g2^4*g4^4*g5^4*g6^4*t^7.33 + g1^4*g5^8*g6^4*t^7.33 + g2^4*g5^8*g6^4*t^7.33 + g1^4*g3^4*g6^8*t^7.33 + g2^4*g3^4*g6^8*t^7.33 + g1^4*g4^4*g6^8*t^7.33 + g2^4*g4^4*g6^8*t^7.33 + g1^4*g5^4*g6^8*t^7.33 + g2^4*g5^4*g6^8*t^7.33 + g1^8*g3^8*t^7.41 + g1^4*g2^4*g3^8*t^7.41 + g2^8*g3^8*t^7.41 + g1^8*g3^4*g4^4*t^7.41 + g1^4*g2^4*g3^4*g4^4*t^7.41 + g2^8*g3^4*g4^4*t^7.41 + g1^8*g4^8*t^7.41 + g1^4*g2^4*g4^8*t^7.41 + g2^8*g4^8*t^7.41 + g1^8*g3^4*g5^4*t^7.41 + g1^4*g2^4*g3^4*g5^4*t^7.41 + g2^8*g3^4*g5^4*t^7.41 + g1^8*g4^4*g5^4*t^7.41 + g1^4*g2^4*g4^4*g5^4*t^7.41 + g2^8*g4^4*g5^4*t^7.41 + g1^8*g5^8*t^7.41 + g1^4*g2^4*g5^8*t^7.41 + g2^8*g5^8*t^7.41 + g1^8*g3^4*g6^4*t^7.41 + g1^4*g2^4*g3^4*g6^4*t^7.41 + g2^8*g3^4*g6^4*t^7.41 + g1^8*g4^4*g6^4*t^7.41 + g1^4*g2^4*g4^4*g6^4*t^7.41 + g2^8*g4^4*g6^4*t^7.41 + g1^8*g5^4*g6^4*t^7.41 + g1^4*g2^4*g5^4*g6^4*t^7.41 + g2^8*g5^4*g6^4*t^7.41 + g1^8*g6^8*t^7.41 + g1^4*g2^4*g6^8*t^7.41 + g2^8*g6^8*t^7.41 + g1^6*g2^6*g3^6*g4^6*g5^6*g6^6*t^7.55 + (g3^7*t^7.58)/(g1^5*g2^5*g4*g5*g6) + (g3^3*g4^3*t^7.58)/(g1^5*g2^5*g5*g6) + (g4^7*t^7.58)/(g1^5*g2^5*g3*g5*g6) + (g3^3*g5^3*t^7.58)/(g1^5*g2^5*g4*g6) + (g4^3*g5^3*t^7.58)/(g1^5*g2^5*g3*g6) + (g5^7*t^7.58)/(g1^5*g2^5*g3*g4*g6) + (g3^3*g6^3*t^7.58)/(g1^5*g2^5*g4*g5) + (g4^3*g6^3*t^7.58)/(g1^5*g2^5*g3*g5) + (g5^3*g6^3*t^7.58)/(g1^5*g2^5*g3*g4) + (g6^7*t^7.58)/(g1^5*g2^5*g3*g4*g5) - (g3^3*t^7.74)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.74)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.74)/(g1*g2*g3*g4*g6^5) - (g3^3*t^7.74)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.74)/(g1*g2*g3*g5^5*g6) - (g3^3*t^7.74)/(g1*g2*g4^5*g5*g6) - (4*t^7.74)/(g1*g2*g3*g4*g5*g6) - (g4^3*t^7.74)/(g1*g2*g3^5*g5*g6) - (g5^3*t^7.74)/(g1*g2*g3*g4^5*g6) - (g5^3*t^7.74)/(g1*g2*g3^5*g4*g6) - (g6^3*t^7.74)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.74)/(g1*g2*g3*g4^5*g5) - (g6^3*t^7.74)/(g1*g2*g3^5*g4*g5) - (g1^3*t^7.82)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.82)/(g1*g3*g4*g5*g6^5) - (g1^3*t^7.82)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.82)/(g1*g3*g4*g5^5*g6) - (g1^3*t^7.82)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.82)/(g1*g3*g4^5*g5*g6) - (g1^3*t^7.82)/(g2*g3^5*g4*g5*g6) - (g2^3*t^7.82)/(g1*g3^5*g4*g5*g6) + (g3^4*g4^4*t^8.05)/(g1^8*g2^8) + (g3^4*g5^4*t^8.05)/(g1^8*g2^8) + (g4^4*g5^4*t^8.05)/(g1^8*g2^8) + (g3^4*g6^4*t^8.05)/(g1^8*g2^8) + (g4^4*g6^4*t^8.05)/(g1^8*g2^8) + (g5^4*g6^4*t^8.05)/(g1^8*g2^8) - (5*t^8.21)/(g1^4*g2^4) - (g3^4*t^8.21)/(g1^4*g2^4*g4^4) - (g4^4*t^8.21)/(g1^4*g2^4*g3^4) - (g3^4*t^8.21)/(g1^4*g2^4*g5^4) - (g4^4*t^8.21)/(g1^4*g2^4*g5^4) - (g5^4*t^8.21)/(g1^4*g2^4*g3^4) - (g5^4*t^8.21)/(g1^4*g2^4*g4^4) - (g3^4*t^8.21)/(g1^4*g2^4*g6^4) - (g4^4*t^8.21)/(g1^4*g2^4*g6^4) - (g5^4*t^8.21)/(g1^4*g2^4*g6^4) - (g6^4*t^8.21)/(g1^4*g2^4*g3^4) - (g6^4*t^8.21)/(g1^4*g2^4*g4^4) - (g6^4*t^8.21)/(g1^4*g2^4*g5^4) + (g3^6*g4^6*g5^2*g6^2*t^8.35)/(g1^2*g2^2) + (g3^6*g4^2*g5^6*g6^2*t^8.35)/(g1^2*g2^2) + (g3^2*g4^6*g5^6*g6^2*t^8.35)/(g1^2*g2^2) + (g3^6*g4^2*g5^2*g6^6*t^8.35)/(g1^2*g2^2) + (g3^2*g4^6*g5^2*g6^6*t^8.35)/(g1^2*g2^2) + (g3^2*g4^2*g5^6*g6^6*t^8.35)/(g1^2*g2^2) + t^8.38/g3^8 + t^8.38/g4^8 + t^8.38/(g3^4*g4^4) + t^8.38/g5^8 + t^8.38/(g3^4*g5^4) + t^8.38/(g4^4*g5^4) + t^8.38/g6^8 + t^8.38/(g3^4*g6^4) + t^8.38/(g4^4*g6^4) + t^8.38/(g5^4*g6^4) - (g1^2*g2^2*g3^6*g4^2*g5^2*t^8.52)/g6^2 - (g1^2*g2^2*g3^2*g4^6*g5^2*t^8.52)/g6^2 - (g1^2*g2^2*g3^2*g4^2*g5^6*t^8.52)/g6^2 - (g1^2*g2^2*g3^6*g4^2*g6^2*t^8.52)/g5^2 - (g1^2*g2^2*g3^2*g4^6*g6^2*t^8.52)/g5^2 - (g1^2*g2^2*g3^6*g5^2*g6^2*t^8.52)/g4^2 - (g1^6*g3^2*g4^2*g5^2*g6^2*t^8.52)/g2^2 - 6*g1^2*g2^2*g3^2*g4^2*g5^2*g6^2*t^8.52 - (g2^6*g3^2*g4^2*g5^2*g6^2*t^8.52)/g1^2 - (g1^2*g2^2*g4^6*g5^2*g6^2*t^8.52)/g3^2 - (g1^2*g2^2*g3^2*g5^6*g6^2*t^8.52)/g4^2 - (g1^2*g2^2*g4^2*g5^6*g6^2*t^8.52)/g3^2 - (g1^2*g2^2*g3^2*g4^2*g6^6*t^8.52)/g5^2 - (g1^2*g2^2*g3^2*g5^2*g6^6*t^8.52)/g4^2 - (g1^2*g2^2*g4^2*g5^2*g6^6*t^8.52)/g3^2 - (g1^6*g2^2*g3^2*g4^2*g5^2*t^8.6)/g6^2 - (g1^2*g2^6*g3^2*g4^2*g5^2*t^8.6)/g6^2 - (g1^6*g2^2*g3^2*g4^2*g6^2*t^8.6)/g5^2 - (g1^2*g2^6*g3^2*g4^2*g6^2*t^8.6)/g5^2 - (g1^6*g2^2*g3^2*g5^2*g6^2*t^8.6)/g4^2 - (g1^2*g2^6*g3^2*g5^2*g6^2*t^8.6)/g4^2 - (g1^6*g2^2*g4^2*g5^2*g6^2*t^8.6)/g3^2 - (g1^2*g2^6*g4^2*g5^2*g6^2*t^8.6)/g3^2 + g1^4*g2^4*g3^8*g4^8*g5^4*g6^4*t^8.66 + g1^4*g2^4*g3^8*g4^4*g5^8*g6^4*t^8.66 + g1^4*g2^4*g3^4*g4^8*g5^8*g6^4*t^8.66 + g1^4*g2^4*g3^8*g4^4*g5^4*g6^8*t^8.66 + g1^4*g2^4*g3^4*g4^8*g5^4*g6^8*t^8.66 + g1^4*g2^4*g3^4*g4^4*g5^8*g6^8*t^8.66 + g1^8*g2^4*g3^8*g4^4*g5^4*g6^4*t^8.74 + g1^4*g2^8*g3^8*g4^4*g5^4*g6^4*t^8.74 + g1^8*g2^4*g3^4*g4^8*g5^4*g6^4*t^8.74 + g1^4*g2^8*g3^4*g4^8*g5^4*g6^4*t^8.74 + g1^8*g2^4*g3^4*g4^4*g5^8*g6^4*t^8.74 + g1^4*g2^8*g3^4*g4^4*g5^8*g6^4*t^8.74 + g1^8*g2^4*g3^4*g4^4*g5^4*g6^8*t^8.74 + g1^4*g2^8*g3^4*g4^4*g5^4*g6^8*t^8.74 + t^8.85/(g1^16*g2^16) + (g3^11*g4^3*t^8.99)/(g1*g2*g5*g6) + (g3^7*g4^7*t^8.99)/(g1*g2*g5*g6) + (g3^3*g4^11*t^8.99)/(g1*g2*g5*g6) + (g3^11*g5^3*t^8.99)/(g1*g2*g4*g6) + (2*g3^7*g4^3*g5^3*t^8.99)/(g1*g2*g6) + (2*g3^3*g4^7*g5^3*t^8.99)/(g1*g2*g6) + (g4^11*g5^3*t^8.99)/(g1*g2*g3*g6) + (g3^7*g5^7*t^8.99)/(g1*g2*g4*g6) + (2*g3^3*g4^3*g5^7*t^8.99)/(g1*g2*g6) + (g4^7*g5^7*t^8.99)/(g1*g2*g3*g6) + (g3^3*g5^11*t^8.99)/(g1*g2*g4*g6) + (g4^3*g5^11*t^8.99)/(g1*g2*g3*g6) + (g3^11*g6^3*t^8.99)/(g1*g2*g4*g5) + (2*g3^7*g4^3*g6^3*t^8.99)/(g1*g2*g5) + (2*g3^3*g4^7*g6^3*t^8.99)/(g1*g2*g5) + (g4^11*g6^3*t^8.99)/(g1*g2*g3*g5) + (2*g3^7*g5^3*g6^3*t^8.99)/(g1*g2*g4) + (3*g3^3*g4^3*g5^3*g6^3*t^8.99)/(g1*g2) + (2*g4^7*g5^3*g6^3*t^8.99)/(g1*g2*g3) + (2*g3^3*g5^7*g6^3*t^8.99)/(g1*g2*g4) + (2*g4^3*g5^7*g6^3*t^8.99)/(g1*g2*g3) + (g5^11*g6^3*t^8.99)/(g1*g2*g3*g4) + (g3^7*g6^7*t^8.99)/(g1*g2*g4*g5) + (2*g3^3*g4^3*g6^7*t^8.99)/(g1*g2*g5) + (g4^7*g6^7*t^8.99)/(g1*g2*g3*g5) + (2*g3^3*g5^3*g6^7*t^8.99)/(g1*g2*g4) + (2*g4^3*g5^3*g6^7*t^8.99)/(g1*g2*g3) + (g5^7*g6^7*t^8.99)/(g1*g2*g3*g4) + (g3^3*g6^11*t^8.99)/(g1*g2*g4*g5) + (g4^3*g6^11*t^8.99)/(g1*g2*g3*g5) + (g5^3*g6^11*t^8.99)/(g1*g2*g3*g4) - t^4.74/(g1*g2*g3*g4*g5*g6*y) - t^6.95/(g1^5*g2^5*g3*g4*g5*g6*y) + (g3^2*g4^2*g5^2*g6^2*t^7.73)/(g1^2*g2^2*y) + (g1^3*g2^3*t^8.53)/(g3*g4*g5*g6*y) + (g3^4*g4^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*g5^4*t^8.84)/(g1^4*g2^4*y) + (g4^4*g5^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g4^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g5^4*g6^4*t^8.84)/(g1^4*g2^4*y) + (g3^4*t^8.92)/(g1^4*y) + (g3^4*t^8.92)/(g2^4*y) + (g4^4*t^8.92)/(g1^4*y) + (g4^4*t^8.92)/(g2^4*y) + (g5^4*t^8.92)/(g1^4*y) + (g5^4*t^8.92)/(g2^4*y) + (g6^4*t^8.92)/(g1^4*y) + (g6^4*t^8.92)/(g2^4*y) - (t^4.74*y)/(g1*g2*g3*g4*g5*g6) - (t^6.95*y)/(g1^5*g2^5*g3*g4*g5*g6) + (g3^2*g4^2*g5^2*g6^2*t^7.73*y)/(g1^2*g2^2) + (g1^3*g2^3*t^8.53*y)/(g3*g4*g5*g6) + (g3^4*g4^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*g5^4*t^8.84*y)/(g1^4*g2^4) + (g4^4*g5^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g4^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g5^4*g6^4*t^8.84*y)/(g1^4*g2^4) + (g3^4*t^8.92*y)/g1^4 + (g3^4*t^8.92*y)/g2^4 + (g4^4*t^8.92*y)/g1^4 + (g4^4*t^8.92*y)/g2^4 + (g5^4*t^8.92*y)/g1^4 + (g5^4*t^8.92*y)/g2^4 + (g6^4*t^8.92*y)/g1^4 + (g6^4*t^8.92*y)/g2^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55602 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_1\tilde{q}_1\tilde{q}_2$ 0.8901 1.0957 0.8124 [X:[], M:[0.7598, 0.8431], q:[0.6201, 0.6201, 0.6029], qb:[0.6201, 0.6201, 0.6029], phi:[0.5785]] t^2.28 + t^2.53 + t^3.62 + 8*t^3.67 + 5*t^3.72 + t^4.56 + t^4.81 + t^5.06 + 3*t^5.35 + 8*t^5.4 + 10*t^5.46 + t^5.9 - 15*t^6. - t^4.74/y - t^4.74*y detail
55672 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3q_1q_3$ 0.91 1.1333 0.803 [X:[], M:[0.7265, 0.8501, 0.7265], q:[0.6492, 0.6242, 0.6242], qb:[0.6008, 0.6008, 0.6008], phi:[0.575]] 2*t^2.18 + t^2.55 + 3*t^3.6 + 6*t^3.68 + 4*t^3.75 + 3*t^4.36 + 2*t^4.73 + t^5.1 + 6*t^5.33 + 6*t^5.4 + 3*t^5.47 + 3*t^5.48 + 2*t^5.55 + t^5.62 + 6*t^5.78 + 9*t^5.85 - 14*t^6. - t^4.72/y - t^4.72*y detail
55688 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ \phi_1q_1q_3$ 0.8748 1.0812 0.8092 [X:[], M:[0.697, 0.8576], q:[0.7229, 0.5801, 0.7059], qb:[0.5688, 0.5688, 0.5688], phi:[0.5712]] t^2.09 + t^2.57 + 3*t^3.41 + 3*t^3.45 + 3*t^3.82 + t^3.86 + 3*t^3.87 + t^4.18 + t^4.29 + t^4.66 + 6*t^5.13 + t^5.15 + 3*t^5.16 + t^5.19 + 3*t^5.5 + 3*t^5.54 + 3*t^5.92 + t^5.95 + 3*t^5.99 - 11*t^6. - t^4.71/y - t^4.71*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55431 SU2adj1nf3 $M_1q_1q_2$ 0.8785 1.0704 0.8208 [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - t^4.67/y - t^4.67*y detail