Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55428 SU2adj1nf3 . 0.8588 1.0348 0.8299 [X:[], M:[], q:[0.6245, 0.6245, 0.6245], qb:[0.6245, 0.6245, 0.6245], phi:[0.5632]] [X:[], M:[], q:[[4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0]], qb:[[0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 0, 0, 0, 4]], phi:[[-1, -1, -1, -1, -1, -1]]] 6
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ q_1q_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_2\tilde{q}_3$ . -36 t^3.38 + 15*t^3.75 + 21*t^5.44 - 36*t^6. + t^6.76 + 15*t^7.13 + 105*t^7.49 - 35*t^7.69 - 21*t^8.06 + 21*t^8.25 + 21*t^8.82 - t^4.69/y + t^7.31/y - t^8.07/y - t^4.69*y + t^7.31*y - t^8.07*y t^3.38/(g1^2*g2^2*g3^2*g4^2*g5^2*g6^2) + g1^4*g2^4*t^3.75 + g1^4*g3^4*t^3.75 + g2^4*g3^4*t^3.75 + g1^4*g4^4*t^3.75 + g2^4*g4^4*t^3.75 + g3^4*g4^4*t^3.75 + g1^4*g5^4*t^3.75 + g2^4*g5^4*t^3.75 + g3^4*g5^4*t^3.75 + g4^4*g5^4*t^3.75 + g1^4*g6^4*t^3.75 + g2^4*g6^4*t^3.75 + g3^4*g6^4*t^3.75 + g4^4*g6^4*t^3.75 + g5^4*g6^4*t^3.75 + (g1^7*t^5.44)/(g2*g3*g4*g5*g6) + (g1^3*g2^3*t^5.44)/(g3*g4*g5*g6) + (g2^7*t^5.44)/(g1*g3*g4*g5*g6) + (g1^3*g3^3*t^5.44)/(g2*g4*g5*g6) + (g2^3*g3^3*t^5.44)/(g1*g4*g5*g6) + (g3^7*t^5.44)/(g1*g2*g4*g5*g6) + (g1^3*g4^3*t^5.44)/(g2*g3*g5*g6) + (g2^3*g4^3*t^5.44)/(g1*g3*g5*g6) + (g3^3*g4^3*t^5.44)/(g1*g2*g5*g6) + (g4^7*t^5.44)/(g1*g2*g3*g5*g6) + (g1^3*g5^3*t^5.44)/(g2*g3*g4*g6) + (g2^3*g5^3*t^5.44)/(g1*g3*g4*g6) + (g3^3*g5^3*t^5.44)/(g1*g2*g4*g6) + (g4^3*g5^3*t^5.44)/(g1*g2*g3*g6) + (g5^7*t^5.44)/(g1*g2*g3*g4*g6) + (g1^3*g6^3*t^5.44)/(g2*g3*g4*g5) + (g2^3*g6^3*t^5.44)/(g1*g3*g4*g5) + (g3^3*g6^3*t^5.44)/(g1*g2*g4*g5) + (g4^3*g6^3*t^5.44)/(g1*g2*g3*g5) + (g5^3*g6^3*t^5.44)/(g1*g2*g3*g4) + (g6^7*t^5.44)/(g1*g2*g3*g4*g5) - 6*t^6. - (g1^4*t^6.)/g2^4 - (g2^4*t^6.)/g1^4 - (g1^4*t^6.)/g3^4 - (g2^4*t^6.)/g3^4 - (g3^4*t^6.)/g1^4 - (g3^4*t^6.)/g2^4 - (g1^4*t^6.)/g4^4 - (g2^4*t^6.)/g4^4 - (g3^4*t^6.)/g4^4 - (g4^4*t^6.)/g1^4 - (g4^4*t^6.)/g2^4 - (g4^4*t^6.)/g3^4 - (g1^4*t^6.)/g5^4 - (g2^4*t^6.)/g5^4 - (g3^4*t^6.)/g5^4 - (g4^4*t^6.)/g5^4 - (g5^4*t^6.)/g1^4 - (g5^4*t^6.)/g2^4 - (g5^4*t^6.)/g3^4 - (g5^4*t^6.)/g4^4 - (g1^4*t^6.)/g6^4 - (g2^4*t^6.)/g6^4 - (g3^4*t^6.)/g6^4 - (g4^4*t^6.)/g6^4 - (g5^4*t^6.)/g6^4 - (g6^4*t^6.)/g1^4 - (g6^4*t^6.)/g2^4 - (g6^4*t^6.)/g3^4 - (g6^4*t^6.)/g4^4 - (g6^4*t^6.)/g5^4 + t^6.76/(g1^4*g2^4*g3^4*g4^4*g5^4*g6^4) + (g1^2*g2^2*t^7.13)/(g3^2*g4^2*g5^2*g6^2) + (g1^2*g3^2*t^7.13)/(g2^2*g4^2*g5^2*g6^2) + (g2^2*g3^2*t^7.13)/(g1^2*g4^2*g5^2*g6^2) + (g1^2*g4^2*t^7.13)/(g2^2*g3^2*g5^2*g6^2) + (g2^2*g4^2*t^7.13)/(g1^2*g3^2*g5^2*g6^2) + (g3^2*g4^2*t^7.13)/(g1^2*g2^2*g5^2*g6^2) + (g1^2*g5^2*t^7.13)/(g2^2*g3^2*g4^2*g6^2) + (g2^2*g5^2*t^7.13)/(g1^2*g3^2*g4^2*g6^2) + (g3^2*g5^2*t^7.13)/(g1^2*g2^2*g4^2*g6^2) + (g4^2*g5^2*t^7.13)/(g1^2*g2^2*g3^2*g6^2) + (g1^2*g6^2*t^7.13)/(g2^2*g3^2*g4^2*g5^2) + (g2^2*g6^2*t^7.13)/(g1^2*g3^2*g4^2*g5^2) + (g3^2*g6^2*t^7.13)/(g1^2*g2^2*g4^2*g5^2) + (g4^2*g6^2*t^7.13)/(g1^2*g2^2*g3^2*g5^2) + (g5^2*g6^2*t^7.13)/(g1^2*g2^2*g3^2*g4^2) + g1^8*g2^8*t^7.49 + g1^8*g2^4*g3^4*t^7.49 + g1^4*g2^8*g3^4*t^7.49 + g1^8*g3^8*t^7.49 + g1^4*g2^4*g3^8*t^7.49 + g2^8*g3^8*t^7.49 + g1^8*g2^4*g4^4*t^7.49 + g1^4*g2^8*g4^4*t^7.49 + g1^8*g3^4*g4^4*t^7.49 + 2*g1^4*g2^4*g3^4*g4^4*t^7.49 + g2^8*g3^4*g4^4*t^7.49 + g1^4*g3^8*g4^4*t^7.49 + g2^4*g3^8*g4^4*t^7.49 + g1^8*g4^8*t^7.49 + g1^4*g2^4*g4^8*t^7.49 + g2^8*g4^8*t^7.49 + g1^4*g3^4*g4^8*t^7.49 + g2^4*g3^4*g4^8*t^7.49 + g3^8*g4^8*t^7.49 + g1^8*g2^4*g5^4*t^7.49 + g1^4*g2^8*g5^4*t^7.49 + g1^8*g3^4*g5^4*t^7.49 + 2*g1^4*g2^4*g3^4*g5^4*t^7.49 + g2^8*g3^4*g5^4*t^7.49 + g1^4*g3^8*g5^4*t^7.49 + g2^4*g3^8*g5^4*t^7.49 + g1^8*g4^4*g5^4*t^7.49 + 2*g1^4*g2^4*g4^4*g5^4*t^7.49 + g2^8*g4^4*g5^4*t^7.49 + 2*g1^4*g3^4*g4^4*g5^4*t^7.49 + 2*g2^4*g3^4*g4^4*g5^4*t^7.49 + g3^8*g4^4*g5^4*t^7.49 + g1^4*g4^8*g5^4*t^7.49 + g2^4*g4^8*g5^4*t^7.49 + g3^4*g4^8*g5^4*t^7.49 + g1^8*g5^8*t^7.49 + g1^4*g2^4*g5^8*t^7.49 + g2^8*g5^8*t^7.49 + g1^4*g3^4*g5^8*t^7.49 + g2^4*g3^4*g5^8*t^7.49 + g3^8*g5^8*t^7.49 + g1^4*g4^4*g5^8*t^7.49 + g2^4*g4^4*g5^8*t^7.49 + g3^4*g4^4*g5^8*t^7.49 + g4^8*g5^8*t^7.49 + g1^8*g2^4*g6^4*t^7.49 + g1^4*g2^8*g6^4*t^7.49 + g1^8*g3^4*g6^4*t^7.49 + 2*g1^4*g2^4*g3^4*g6^4*t^7.49 + g2^8*g3^4*g6^4*t^7.49 + g1^4*g3^8*g6^4*t^7.49 + g2^4*g3^8*g6^4*t^7.49 + g1^8*g4^4*g6^4*t^7.49 + 2*g1^4*g2^4*g4^4*g6^4*t^7.49 + g2^8*g4^4*g6^4*t^7.49 + 2*g1^4*g3^4*g4^4*g6^4*t^7.49 + 2*g2^4*g3^4*g4^4*g6^4*t^7.49 + g3^8*g4^4*g6^4*t^7.49 + g1^4*g4^8*g6^4*t^7.49 + g2^4*g4^8*g6^4*t^7.49 + g3^4*g4^8*g6^4*t^7.49 + g1^8*g5^4*g6^4*t^7.49 + 2*g1^4*g2^4*g5^4*g6^4*t^7.49 + g2^8*g5^4*g6^4*t^7.49 + 2*g1^4*g3^4*g5^4*g6^4*t^7.49 + 2*g2^4*g3^4*g5^4*g6^4*t^7.49 + g3^8*g5^4*g6^4*t^7.49 + 2*g1^4*g4^4*g5^4*g6^4*t^7.49 + 2*g2^4*g4^4*g5^4*g6^4*t^7.49 + 2*g3^4*g4^4*g5^4*g6^4*t^7.49 + g4^8*g5^4*g6^4*t^7.49 + g1^4*g5^8*g6^4*t^7.49 + g2^4*g5^8*g6^4*t^7.49 + g3^4*g5^8*g6^4*t^7.49 + g4^4*g5^8*g6^4*t^7.49 + g1^8*g6^8*t^7.49 + g1^4*g2^4*g6^8*t^7.49 + g2^8*g6^8*t^7.49 + g1^4*g3^4*g6^8*t^7.49 + g2^4*g3^4*g6^8*t^7.49 + g3^8*g6^8*t^7.49 + g1^4*g4^4*g6^8*t^7.49 + g2^4*g4^4*g6^8*t^7.49 + g3^4*g4^4*g6^8*t^7.49 + g4^8*g6^8*t^7.49 + g1^4*g5^4*g6^8*t^7.49 + g2^4*g5^4*g6^8*t^7.49 + g3^4*g5^4*g6^8*t^7.49 + g4^4*g5^4*g6^8*t^7.49 + g5^8*g6^8*t^7.49 - (g1^3*t^7.69)/(g2*g3*g4*g5*g6^5) - (g2^3*t^7.69)/(g1*g3*g4*g5*g6^5) - (g3^3*t^7.69)/(g1*g2*g4*g5*g6^5) - (g4^3*t^7.69)/(g1*g2*g3*g5*g6^5) - (g5^3*t^7.69)/(g1*g2*g3*g4*g6^5) - (g1^3*t^7.69)/(g2*g3*g4*g5^5*g6) - (g2^3*t^7.69)/(g1*g3*g4*g5^5*g6) - (g3^3*t^7.69)/(g1*g2*g4*g5^5*g6) - (g4^3*t^7.69)/(g1*g2*g3*g5^5*g6) - (g1^3*t^7.69)/(g2*g3*g4^5*g5*g6) - (g2^3*t^7.69)/(g1*g3*g4^5*g5*g6) - (g3^3*t^7.69)/(g1*g2*g4^5*g5*g6) - (g1^3*t^7.69)/(g2*g3^5*g4*g5*g6) - (g2^3*t^7.69)/(g1*g3^5*g4*g5*g6) - (g1^3*t^7.69)/(g2^5*g3*g4*g5*g6) - (5*t^7.69)/(g1*g2*g3*g4*g5*g6) - (g2^3*t^7.69)/(g1^5*g3*g4*g5*g6) - (g3^3*t^7.69)/(g1*g2^5*g4*g5*g6) - (g3^3*t^7.69)/(g1^5*g2*g4*g5*g6) - (g4^3*t^7.69)/(g1*g2*g3^5*g5*g6) - (g4^3*t^7.69)/(g1*g2^5*g3*g5*g6) - (g4^3*t^7.69)/(g1^5*g2*g3*g5*g6) - (g5^3*t^7.69)/(g1*g2*g3*g4^5*g6) - (g5^3*t^7.69)/(g1*g2*g3^5*g4*g6) - (g5^3*t^7.69)/(g1*g2^5*g3*g4*g6) - (g5^3*t^7.69)/(g1^5*g2*g3*g4*g6) - (g6^3*t^7.69)/(g1*g2*g3*g4*g5^5) - (g6^3*t^7.69)/(g1*g2*g3*g4^5*g5) - (g6^3*t^7.69)/(g1*g2*g3^5*g4*g5) - (g6^3*t^7.69)/(g1*g2^5*g3*g4*g5) - (g6^3*t^7.69)/(g1^5*g2*g3*g4*g5) - g1^9*g2*g3*g4*g5*g6*t^8.06 - g1^5*g2^5*g3*g4*g5*g6*t^8.06 - g1*g2^9*g3*g4*g5*g6*t^8.06 - g1^5*g2*g3^5*g4*g5*g6*t^8.06 - g1*g2^5*g3^5*g4*g5*g6*t^8.06 - g1*g2*g3^9*g4*g5*g6*t^8.06 - g1^5*g2*g3*g4^5*g5*g6*t^8.06 - g1*g2^5*g3*g4^5*g5*g6*t^8.06 - g1*g2*g3^5*g4^5*g5*g6*t^8.06 - g1*g2*g3*g4^9*g5*g6*t^8.06 - g1^5*g2*g3*g4*g5^5*g6*t^8.06 - g1*g2^5*g3*g4*g5^5*g6*t^8.06 - g1*g2*g3^5*g4*g5^5*g6*t^8.06 - g1*g2*g3*g4^5*g5^5*g6*t^8.06 - g1*g2*g3*g4*g5^9*g6*t^8.06 - g1^5*g2*g3*g4*g5*g6^5*t^8.06 - g1*g2^5*g3*g4*g5*g6^5*t^8.06 - g1*g2*g3^5*g4*g5*g6^5*t^8.06 - g1*g2*g3*g4^5*g5*g6^5*t^8.06 - g1*g2*g3*g4*g5^5*g6^5*t^8.06 - g1*g2*g3*g4*g5*g6^9*t^8.06 + t^8.25/g1^8 + t^8.25/g2^8 + t^8.25/(g1^4*g2^4) + t^8.25/g3^8 + t^8.25/(g1^4*g3^4) + t^8.25/(g2^4*g3^4) + t^8.25/g4^8 + t^8.25/(g1^4*g4^4) + t^8.25/(g2^4*g4^4) + t^8.25/(g3^4*g4^4) + t^8.25/g5^8 + t^8.25/(g1^4*g5^4) + t^8.25/(g2^4*g5^4) + t^8.25/(g3^4*g5^4) + t^8.25/(g4^4*g5^4) + t^8.25/g6^8 + t^8.25/(g1^4*g6^4) + t^8.25/(g2^4*g6^4) + t^8.25/(g3^4*g6^4) + t^8.25/(g4^4*g6^4) + t^8.25/(g5^4*g6^4) + (g1^5*t^8.82)/(g2^3*g3^3*g4^3*g5^3*g6^3) + (g1*g2*t^8.82)/(g3^3*g4^3*g5^3*g6^3) + (g2^5*t^8.82)/(g1^3*g3^3*g4^3*g5^3*g6^3) + (g1*g3*t^8.82)/(g2^3*g4^3*g5^3*g6^3) + (g2*g3*t^8.82)/(g1^3*g4^3*g5^3*g6^3) + (g3^5*t^8.82)/(g1^3*g2^3*g4^3*g5^3*g6^3) + (g1*g4*t^8.82)/(g2^3*g3^3*g5^3*g6^3) + (g2*g4*t^8.82)/(g1^3*g3^3*g5^3*g6^3) + (g3*g4*t^8.82)/(g1^3*g2^3*g5^3*g6^3) + (g4^5*t^8.82)/(g1^3*g2^3*g3^3*g5^3*g6^3) + (g1*g5*t^8.82)/(g2^3*g3^3*g4^3*g6^3) + (g2*g5*t^8.82)/(g1^3*g3^3*g4^3*g6^3) + (g3*g5*t^8.82)/(g1^3*g2^3*g4^3*g6^3) + (g4*g5*t^8.82)/(g1^3*g2^3*g3^3*g6^3) + (g5^5*t^8.82)/(g1^3*g2^3*g3^3*g4^3*g6^3) + (g1*g6*t^8.82)/(g2^3*g3^3*g4^3*g5^3) + (g2*g6*t^8.82)/(g1^3*g3^3*g4^3*g5^3) + (g3*g6*t^8.82)/(g1^3*g2^3*g4^3*g5^3) + (g4*g6*t^8.82)/(g1^3*g2^3*g3^3*g5^3) + (g5*g6*t^8.82)/(g1^3*g2^3*g3^3*g4^3) + (g6^5*t^8.82)/(g1^3*g2^3*g3^3*g4^3*g5^3) - t^4.69/(g1*g2*g3*g4*g5*g6*y) + (g1*g2*g3*g4*g5*g6*t^7.31)/y - t^8.07/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3*y) - (t^4.69*y)/(g1*g2*g3*g4*g5*g6) + g1*g2*g3*g4*g5*g6*t^7.31*y - (t^8.07*y)/(g1^3*g2^3*g3^3*g4^3*g5^3*g6^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55432 $M_1\phi_1^2$ 0.872 1.0666 0.8176 [X:[], M:[0.8251], q:[0.6084, 0.6084, 0.6084], qb:[0.6084, 0.6084, 0.6084], phi:[0.5875]] t^2.48 + 15*t^3.65 + t^4.95 + 21*t^5.41 - 36*t^6. - t^4.76/y - t^4.76*y detail
55431 $M_1q_1q_2$ 0.8785 1.0704 0.8208 [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - t^4.67/y - t^4.67*y detail
55430 $\phi_1q_1q_2$ 0.8434 1.0148 0.831 [X:[], M:[], q:[0.7257, 0.7257, 0.5885], qb:[0.5885, 0.5885, 0.5885], phi:[0.5487]] t^3.29 + 6*t^3.53 + 8*t^3.94 + t^4.35 + 10*t^5.18 - 17*t^6. - t^4.65/y - t^4.65*y detail
55429 $\phi_1q_1^2$ 0.8526 1.0268 0.8304 [X:[], M:[], q:[0.7213, 0.6098, 0.6098], qb:[0.6098, 0.6098, 0.6098], phi:[0.5574]] t^3.34 + 10*t^3.66 + 5*t^3.99 + 15*t^5.33 - 25*t^6. - t^4.67/y - t^4.67*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational