Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
55443 | SU2adj1nf3 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ | 0.8782 | 1.0685 | 0.8219 | [M:[0.7317], q:[0.6342, 0.6342, 0.621], qb:[0.6342, 0.6342, 0.621], phi:[0.5553]] | [M:[[0, 0, -2, -2, 0]], q:[[-1, 0, 2, 2, 0], [1, 0, 0, 0, 0], [0, 4, 0, 0, 0]], qb:[[0, 0, 2, 0, 0], [0, 0, 0, 2, 0], [0, 0, 0, 0, 4]], phi:[[0, -1, -1, -1, -1]]] | 5 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{3}\tilde{q}_{3}$, ${ }q_{2}q_{3}$, ${ }q_{3}\tilde{q}_{1}$, ${ }q_{3}\tilde{q}_{2}$, ${ }q_{1}q_{3}$, ${ }q_{2}\tilde{q}_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{3}$, ${ }\tilde{q}_{2}\tilde{q}_{3}$, ${ }q_{1}\tilde{q}_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{3}^{2}$, ${ }\phi_{1}q_{3}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{3}^{2}$, ${ }\phi_{1}q_{2}q_{3}$, ${ }\phi_{1}q_{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{3}$, ${ }\phi_{1}\tilde{q}_{2}\tilde{q}_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}q_{3}\tilde{q}_{3}$ | ${}$ | -15 | t^2.195 + t^3.332 + t^3.726 + 8*t^3.766 + 5*t^3.805 + t^4.39 + 3*t^5.392 + 8*t^5.432 + 10*t^5.471 + t^5.527 + t^5.921 - 15*t^6. - 8*t^6.039 + t^6.585 + t^6.664 + t^7.058 + 8*t^7.097 + 5*t^7.137 + t^7.453 + 8*t^7.492 + 35*t^7.531 + 32*t^7.571 + 3*t^7.587 + 14*t^7.61 - 9*t^7.666 - 8*t^7.705 + t^7.722 - 3*t^8.06 - 8*t^8.1 + t^8.116 - 10*t^8.139 - 5*t^8.195 + 3*t^8.274 + 3*t^8.724 + 8*t^8.763 + t^8.78 + 10*t^8.803 + t^8.859 - t^4.666/y - t^6.861/y + t^7.334/y - t^7.998/y + t^8.471/y + t^8.527/y + t^8.921/y + (8*t^8.961)/y - t^4.666*y - t^6.861*y + t^7.334*y - t^7.998*y + t^8.471*y + t^8.527*y + t^8.921*y + 8*t^8.961*y | t^2.195/(g3^2*g4^2) + t^3.332/(g2^2*g3^2*g4^2*g5^2) + g2^4*g5^4*t^3.726 + g1*g2^4*t^3.766 + g2^4*g3^2*t^3.766 + g2^4*g4^2*t^3.766 + (g2^4*g3^2*g4^2*t^3.766)/g1 + g1*g5^4*t^3.766 + g3^2*g5^4*t^3.766 + g4^2*g5^4*t^3.766 + (g3^2*g4^2*g5^4*t^3.766)/g1 + g1*g3^2*t^3.805 + g1*g4^2*t^3.805 + g3^2*g4^2*t^3.805 + (g3^4*g4^2*t^3.805)/g1 + (g3^2*g4^4*t^3.805)/g1 + t^4.39/(g3^4*g4^4) + (g2^7*t^5.392)/(g3*g4*g5) + (g2^3*g5^3*t^5.392)/(g3*g4) + (g5^7*t^5.392)/(g2*g3*g4) + (g1*g2^3*t^5.432)/(g3*g4*g5) + (g2^3*g3*t^5.432)/(g4*g5) + (g2^3*g4*t^5.432)/(g3*g5) + (g2^3*g3*g4*t^5.432)/(g1*g5) + (g1*g5^3*t^5.432)/(g2*g3*g4) + (g3*g5^3*t^5.432)/(g2*g4) + (g4*g5^3*t^5.432)/(g2*g3) + (g3*g4*g5^3*t^5.432)/(g1*g2) + (g1^2*t^5.471)/(g2*g3*g4*g5) + (g1*g3*t^5.471)/(g2*g4*g5) + (g3^3*t^5.471)/(g2*g4*g5) + (g1*g4*t^5.471)/(g2*g3*g5) + (2*g3*g4*t^5.471)/(g2*g5) + (g3^3*g4*t^5.471)/(g1*g2*g5) + (g4^3*t^5.471)/(g2*g3*g5) + (g3*g4^3*t^5.471)/(g1*g2*g5) + (g3^3*g4^3*t^5.471)/(g1^2*g2*g5) + t^5.527/(g2^2*g3^4*g4^4*g5^2) + (g2^4*g5^4*t^5.921)/(g3^2*g4^2) - 5*t^6. - (g1*t^6.)/g3^2 - (g3^2*t^6.)/g1 - (g1*t^6.)/g4^2 - (g1^2*t^6.)/(g3^2*g4^2) - (g3^2*t^6.)/g4^2 - (g4^2*t^6.)/g1 - (g4^2*t^6.)/g3^2 - (g3^2*g4^2*t^6.)/g1^2 - (g2^4*t^6.)/g5^4 - (g5^4*t^6.)/g2^4 - (g1*t^6.039)/g2^4 - (g3^2*t^6.039)/g2^4 - (g4^2*t^6.039)/g2^4 - (g3^2*g4^2*t^6.039)/(g1*g2^4) - (g1*t^6.039)/g5^4 - (g3^2*t^6.039)/g5^4 - (g4^2*t^6.039)/g5^4 - (g3^2*g4^2*t^6.039)/(g1*g5^4) + t^6.585/(g3^6*g4^6) + t^6.664/(g2^4*g3^4*g4^4*g5^4) + (g2^2*g5^2*t^7.058)/(g3^2*g4^2) + (g2^2*t^7.097)/(g1*g5^2) + (g2^2*t^7.097)/(g3^2*g5^2) + (g2^2*t^7.097)/(g4^2*g5^2) + (g1*g2^2*t^7.097)/(g3^2*g4^2*g5^2) + (g5^2*t^7.097)/(g1*g2^2) + (g5^2*t^7.097)/(g2^2*g3^2) + (g5^2*t^7.097)/(g2^2*g4^2) + (g1*g5^2*t^7.097)/(g2^2*g3^2*g4^2) + t^7.137/(g2^2*g5^2) + (g1*t^7.137)/(g2^2*g3^2*g5^2) + (g3^2*t^7.137)/(g1*g2^2*g5^2) + (g1*t^7.137)/(g2^2*g4^2*g5^2) + (g4^2*t^7.137)/(g1*g2^2*g5^2) + g2^8*g5^8*t^7.453 + g1*g2^8*g5^4*t^7.492 + g2^8*g3^2*g5^4*t^7.492 + g2^8*g4^2*g5^4*t^7.492 + (g2^8*g3^2*g4^2*g5^4*t^7.492)/g1 + g1*g2^4*g5^8*t^7.492 + g2^4*g3^2*g5^8*t^7.492 + g2^4*g4^2*g5^8*t^7.492 + (g2^4*g3^2*g4^2*g5^8*t^7.492)/g1 + g1^2*g2^8*t^7.531 + g1*g2^8*g3^2*t^7.531 + g2^8*g3^4*t^7.531 + g1*g2^8*g4^2*t^7.531 + 2*g2^8*g3^2*g4^2*t^7.531 + (g2^8*g3^4*g4^2*t^7.531)/g1 + g2^8*g4^4*t^7.531 + (g2^8*g3^2*g4^4*t^7.531)/g1 + (g2^8*g3^4*g4^4*t^7.531)/g1^2 + g1^2*g2^4*g5^4*t^7.531 + 2*g1*g2^4*g3^2*g5^4*t^7.531 + g2^4*g3^4*g5^4*t^7.531 + 2*g1*g2^4*g4^2*g5^4*t^7.531 + 3*g2^4*g3^2*g4^2*g5^4*t^7.531 + (2*g2^4*g3^4*g4^2*g5^4*t^7.531)/g1 + g2^4*g4^4*g5^4*t^7.531 + (2*g2^4*g3^2*g4^4*g5^4*t^7.531)/g1 + (g2^4*g3^4*g4^4*g5^4*t^7.531)/g1^2 + g1^2*g5^8*t^7.531 + g1*g3^2*g5^8*t^7.531 + g3^4*g5^8*t^7.531 + g1*g4^2*g5^8*t^7.531 + 2*g3^2*g4^2*g5^8*t^7.531 + (g3^4*g4^2*g5^8*t^7.531)/g1 + g4^4*g5^8*t^7.531 + (g3^2*g4^4*g5^8*t^7.531)/g1 + (g3^4*g4^4*g5^8*t^7.531)/g1^2 + g1^2*g2^4*g3^2*t^7.571 + g1*g2^4*g3^4*t^7.571 + g1^2*g2^4*g4^2*t^7.571 + 2*g1*g2^4*g3^2*g4^2*t^7.571 + 2*g2^4*g3^4*g4^2*t^7.571 + (g2^4*g3^6*g4^2*t^7.571)/g1 + g1*g2^4*g4^4*t^7.571 + 2*g2^4*g3^2*g4^4*t^7.571 + (2*g2^4*g3^4*g4^4*t^7.571)/g1 + (g2^4*g3^6*g4^4*t^7.571)/g1^2 + (g2^4*g3^2*g4^6*t^7.571)/g1 + (g2^4*g3^4*g4^6*t^7.571)/g1^2 + g1^2*g3^2*g5^4*t^7.571 + g1*g3^4*g5^4*t^7.571 + g1^2*g4^2*g5^4*t^7.571 + 2*g1*g3^2*g4^2*g5^4*t^7.571 + 2*g3^4*g4^2*g5^4*t^7.571 + (g3^6*g4^2*g5^4*t^7.571)/g1 + g1*g4^4*g5^4*t^7.571 + 2*g3^2*g4^4*g5^4*t^7.571 + (2*g3^4*g4^4*g5^4*t^7.571)/g1 + (g3^6*g4^4*g5^4*t^7.571)/g1^2 + (g3^2*g4^6*g5^4*t^7.571)/g1 + (g3^4*g4^6*g5^4*t^7.571)/g1^2 + (g2^7*t^7.587)/(g3^3*g4^3*g5) + (g2^3*g5^3*t^7.587)/(g3^3*g4^3) + (g5^7*t^7.587)/(g2*g3^3*g4^3) + g1^2*g3^4*t^7.61 + g1^2*g3^2*g4^2*t^7.61 + g1*g3^4*g4^2*t^7.61 + g3^6*g4^2*t^7.61 + g1^2*g4^4*t^7.61 + g1*g3^2*g4^4*t^7.61 + 2*g3^4*g4^4*t^7.61 + (g3^6*g4^4*t^7.61)/g1 + (g3^8*g4^4*t^7.61)/g1^2 + g3^2*g4^6*t^7.61 + (g3^4*g4^6*t^7.61)/g1 + (g3^6*g4^6*t^7.61)/g1^2 + (g3^4*g4^8*t^7.61)/g1^2 - (g2^3*t^7.666)/(g3*g4*g5^5) - (g1*t^7.666)/(g2*g3*g4^3*g5) - (g1*t^7.666)/(g2*g3^3*g4*g5) - (3*t^7.666)/(g2*g3*g4*g5) - (g3*t^7.666)/(g1*g2*g4*g5) - (g4*t^7.666)/(g1*g2*g3*g5) - (g5^3*t^7.666)/(g2^5*g3*g4) - (g1*t^7.705)/(g2*g3*g4*g5^5) - (g3*t^7.705)/(g2*g4*g5^5) - (g4*t^7.705)/(g2*g3*g5^5) - (g3*g4*t^7.705)/(g1*g2*g5^5) - (g1*t^7.705)/(g2^5*g3*g4*g5) - (g3*t^7.705)/(g2^5*g4*g5) - (g4*t^7.705)/(g2^5*g3*g5) - (g3*g4*t^7.705)/(g1*g2^5*g5) + t^7.722/(g2^2*g3^6*g4^6*g5^2) - g2^9*g3*g4*g5*t^8.06 - g2^5*g3*g4*g5^5*t^8.06 - g2*g3*g4*g5^9*t^8.06 - g1*g2^5*g3*g4*g5*t^8.1 - g2^5*g3^3*g4*g5*t^8.1 - g2^5*g3*g4^3*g5*t^8.1 - (g2^5*g3^3*g4^3*g5*t^8.1)/g1 - g1*g2*g3*g4*g5^5*t^8.1 - g2*g3^3*g4*g5^5*t^8.1 - g2*g3*g4^3*g5^5*t^8.1 - (g2*g3^3*g4^3*g5^5*t^8.1)/g1 + (g2^4*g5^4*t^8.116)/(g3^4*g4^4) - g1^2*g2*g3*g4*g5*t^8.139 - g1*g2*g3^3*g4*g5*t^8.139 - g2*g3^5*g4*g5*t^8.139 - g1*g2*g3*g4^3*g5*t^8.139 - 2*g2*g3^3*g4^3*g5*t^8.139 - (g2*g3^5*g4^3*g5*t^8.139)/g1 - g2*g3*g4^5*g5*t^8.139 - (g2*g3^3*g4^5*g5*t^8.139)/g1 - (g2*g3^5*g4^5*g5*t^8.139)/g1^2 - (3*t^8.195)/(g3^2*g4^2) - (g2^4*t^8.195)/(g3^2*g4^2*g5^4) - (g5^4*t^8.195)/(g2^4*g3^2*g4^2) + t^8.274/g2^8 + t^8.274/g5^8 + t^8.274/(g2^4*g5^4) + (g2^5*t^8.724)/(g3^3*g4^3*g5^3) + (g2*g5*t^8.724)/(g3^3*g4^3) + (g5^5*t^8.724)/(g2^3*g3^3*g4^3) + (g1*g2*t^8.763)/(g3^3*g4^3*g5^3) + (g2*t^8.763)/(g3*g4^3*g5^3) + (g2*t^8.763)/(g3^3*g4*g5^3) + (g2*t^8.763)/(g1*g3*g4*g5^3) + (g1*g5*t^8.763)/(g2^3*g3^3*g4^3) + (g5*t^8.763)/(g2^3*g3*g4^3) + (g5*t^8.763)/(g2^3*g3^3*g4) + (g5*t^8.763)/(g1*g2^3*g3*g4) + t^8.78/(g3^8*g4^8) + (g1^2*t^8.803)/(g2^3*g3^3*g4^3*g5^3) + (g1*t^8.803)/(g2^3*g3*g4^3*g5^3) + (g3*t^8.803)/(g2^3*g4^3*g5^3) + (g1*t^8.803)/(g2^3*g3^3*g4*g5^3) + (2*t^8.803)/(g2^3*g3*g4*g5^3) + (g3*t^8.803)/(g1*g2^3*g4*g5^3) + (g4*t^8.803)/(g2^3*g3^3*g5^3) + (g4*t^8.803)/(g1*g2^3*g3*g5^3) + (g3*g4*t^8.803)/(g1^2*g2^3*g5^3) + t^8.859/(g2^4*g3^6*g4^6*g5^4) - t^4.666/(g2*g3*g4*g5*y) - t^6.861/(g2*g3^3*g4^3*g5*y) + (g2*g3*g4*g5*t^7.334)/y - t^7.998/(g2^3*g3^3*g4^3*g5^3*y) + (g3*g4*t^8.471)/(g2*g5*y) + t^8.527/(g2^2*g3^4*g4^4*g5^2*y) + (g2^4*g5^4*t^8.921)/(g3^2*g4^2*y) + (g2^4*t^8.961)/(g1*y) + (g2^4*t^8.961)/(g3^2*y) + (g2^4*t^8.961)/(g4^2*y) + (g1*g2^4*t^8.961)/(g3^2*g4^2*y) + (g5^4*t^8.961)/(g1*y) + (g5^4*t^8.961)/(g3^2*y) + (g5^4*t^8.961)/(g4^2*y) + (g1*g5^4*t^8.961)/(g3^2*g4^2*y) - (t^4.666*y)/(g2*g3*g4*g5) - (t^6.861*y)/(g2*g3^3*g4^3*g5) + g2*g3*g4*g5*t^7.334*y - (t^7.998*y)/(g2^3*g3^3*g4^3*g5^3) + (g3*g4*t^8.471*y)/(g2*g5) + (t^8.527*y)/(g2^2*g3^4*g4^4*g5^2) + (g2^4*g5^4*t^8.921*y)/(g3^2*g4^2) + (g2^4*t^8.961*y)/g1 + (g2^4*t^8.961*y)/g3^2 + (g2^4*t^8.961*y)/g4^2 + (g1*g2^4*t^8.961*y)/(g3^2*g4^2) + (g5^4*t^8.961*y)/g1 + (g5^4*t^8.961*y)/g3^2 + (g5^4*t^8.961*y)/g4^2 + (g1*g5^4*t^8.961*y)/(g3^2*g4^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55682 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}q_{3}\tilde{q}_{3}$ | 0.878 | 1.0676 | 0.8224 | [M:[0.7394], q:[0.6303, 0.6303, 0.6303], qb:[0.6303, 0.6303, 0.6303], phi:[0.5545]] | t^2.218 + t^3.327 + 14*t^3.782 + t^4.436 + 21*t^5.445 + t^5.545 - 22*t^6. - t^4.664/y - t^4.664*y | detail | |
55655 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{3}\tilde{q}_{1}$ | 0.898 | 1.1046 | 0.813 | [M:[0.7279, 0.715], q:[0.6361, 0.6361, 0.6387], qb:[0.6463, 0.6258, 0.6185], phi:[0.5496]] | t^2.145 + t^2.184 + t^3.298 + t^3.733 + 2*t^3.764 + t^3.772 + 2*t^3.786 + t^3.793 + t^3.795 + t^3.816 + 2*t^3.824 + 2*t^3.847 + t^4.29 + t^4.329 + t^4.367 + t^5.36 + t^5.382 + t^5.404 + 2*t^5.413 + t^5.421 + 2*t^5.434 + t^5.442 + t^5.443 + t^5.444 + 4*t^5.465 + 2*t^5.473 + 2*t^5.481 + 2*t^5.496 + t^5.504 + t^5.527 + t^5.878 + 2*t^5.909 + t^5.917 + 2*t^5.931 + t^5.955 - 7*t^6. - t^4.649/y - t^4.649*y | detail | |
55657 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{3}^{2}$ | 0.8708 | 1.0567 | 0.8241 | [M:[0.7582], q:[0.6209, 0.6209, 0.7268], qb:[0.6209, 0.6209, 0.6039], phi:[0.5464]] | t^2.275 + t^3.279 + 4*t^3.674 + 5*t^3.725 + t^3.992 + 4*t^4.043 + t^4.549 + t^5.263 + 4*t^5.314 + 10*t^5.365 + t^5.553 - 12*t^6. - t^4.639/y - t^4.639*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55431 | SU2adj1nf3 | ${}M_{1}q_{1}q_{2}$ | 0.8785 | 1.0704 | 0.8208 | [M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] | t^2.146 + t^3.342 + 6*t^3.731 + 8*t^3.792 + t^4.293 + 10*t^5.402 + 8*t^5.463 + t^5.489 + 3*t^5.525 + 6*t^5.877 - 20*t^6. - t^4.671/y - t^4.671*y | detail |