Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
55451 SU2adj1nf3 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ 0.8602 1.0422 0.8254 [X:[], M:[0.7683], q:[0.6158, 0.6158, 0.732], qb:[0.732, 0.5801, 0.5801], phi:[0.536]] [X:[], M:[[0, -3, -3, 1, 1]], q:[[-1, 3, 3, -1, -1], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]], qb:[[0, 0, 1, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], phi:[[0, -1, -1, 0, 0]]] 5
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ \phi_1^2$, $ \tilde{q}_2\tilde{q}_3$, $ q_1\tilde{q}_3$, $ q_3\tilde{q}_2$, $ q_2q_3$, $ q_3\tilde{q}_1$, $ M_1^2$, $ \phi_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_2\tilde{q}_3$, $ \phi_1q_1\tilde{q}_3$, $ \phi_1q_2^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_1\phi_1^2$, $ M_1\tilde{q}_2\tilde{q}_3$ . -9 t^2.3 + t^3.22 + t^3.48 + 4*t^3.59 + 4*t^3.94 + 4*t^4.04 + t^4.39 + t^4.61 + 3*t^5.09 + 4*t^5.2 + 3*t^5.3 + t^5.52 + t^5.79 - 9*t^6. - 4*t^6.11 + 4*t^6.24 + t^6.43 - 4*t^6.46 + 2*t^6.7 + 4*t^6.8 + t^6.91 + t^6.96 + 4*t^7.07 + 9*t^7.18 + 3*t^7.39 + 4*t^7.42 + 16*t^7.52 - 4*t^7.61 + 12*t^7.63 - 4*t^7.72 + t^7.83 + 7*t^7.87 + 12*t^7.98 + 7*t^8.09 - 3*t^8.3 + 4*t^8.41 + 6*t^8.52 + 4*t^8.55 + 3*t^8.57 + 12*t^8.68 + t^8.74 - 4*t^8.76 + 10*t^8.78 + 8*t^8.89 - t^4.61/y - t^6.91/y + t^7.39/y - t^7.82/y + t^8.3/y + t^8.52/y + t^8.79/y + (4*t^8.89)/y - t^4.61*y - t^6.91*y + t^7.39*y - t^7.82*y + t^8.3*y + t^8.52*y + t^8.79*y + 4*t^8.89*y (g4*g5*t^2.3)/(g2^3*g3^3) + t^3.22/(g2^2*g3^2) + g4*g5*t^3.48 + (g2^3*g3^3*t^3.59)/(g1*g4) + g1*g4*t^3.59 + (g2^3*g3^3*t^3.59)/(g1*g5) + g1*g5*t^3.59 + g2*g4*t^3.94 + g3*g4*t^3.94 + g2*g5*t^3.94 + g3*g5*t^3.94 + g1*g2*t^4.04 + g1*g3*t^4.04 + (g2^4*g3^3*t^4.04)/(g1*g4*g5) + (g2^3*g3^4*t^4.04)/(g1*g4*g5) + g2*g3*t^4.39 + (g4^2*g5^2*t^4.61)/(g2^6*g3^6) + (g4^2*t^5.09)/(g2*g3) + (g4*g5*t^5.09)/(g2*g3) + (g5^2*t^5.09)/(g2*g3) + (g2^2*g3^2*t^5.2)/(g1*g4) + (g1*g4*t^5.2)/(g2*g3) + (g2^2*g3^2*t^5.2)/(g1*g5) + (g1*g5*t^5.2)/(g2*g3) + (g1^2*t^5.3)/(g2*g3) + (g2^5*g3^5*t^5.3)/(g1^2*g4^2*g5^2) + (g2^2*g3^2*t^5.3)/(g4*g5) + (g4*g5*t^5.52)/(g2^5*g3^5) + (g4^2*g5^2*t^5.79)/(g2^3*g3^3) - 5*t^6. - (g2^3*g3^3*t^6.)/(g1^2*g4*g5) - (g4*t^6.)/g5 - (g5*t^6.)/g4 - (g1^2*g4*g5*t^6.)/(g2^3*g3^3) - (g1*t^6.11)/g4 - (g2^3*g3^3*t^6.11)/(g1*g4*g5^2) - (g1*t^6.11)/g5 - (g2^3*g3^3*t^6.11)/(g1*g4^2*g5) + (g4^2*g5*t^6.24)/(g2^2*g3^3) + (g4^2*g5*t^6.24)/(g2^3*g3^2) + (g4*g5^2*t^6.24)/(g2^2*g3^3) + (g4*g5^2*t^6.24)/(g2^3*g3^2) + t^6.43/(g2^4*g3^4) - (g2*t^6.46)/g4 - (g3*t^6.46)/g4 - (g2*t^6.46)/g5 - (g3*t^6.46)/g5 + (2*g4*g5*t^6.7)/(g2^2*g3^2) + (g2*g3*t^6.8)/(g1*g4) + (g1*g4*t^6.8)/(g2^2*g3^2) + (g2*g3*t^6.8)/(g1*g5) + (g1*g5*t^6.8)/(g2^2*g3^2) + (g4^3*g5^3*t^6.91)/(g2^9*g3^9) + g4^2*g5^2*t^6.96 + (g2^3*g3^3*g4*t^7.07)/g1 + (g2^3*g3^3*g5*t^7.07)/g1 + g1*g4^2*g5*t^7.07 + g1*g4*g5^2*t^7.07 + g2^3*g3^3*t^7.18 + (g2^6*g3^6*t^7.18)/(g1^2*g4^2) + g1^2*g4^2*t^7.18 + (g2^6*g3^6*t^7.18)/(g1^2*g5^2) + (g2^6*g3^6*t^7.18)/(g1^2*g4*g5) + (g2^3*g3^3*g4*t^7.18)/g5 + (g2^3*g3^3*g5*t^7.18)/g4 + g1^2*g4*g5*t^7.18 + g1^2*g5^2*t^7.18 + (g4^3*g5*t^7.39)/(g2^4*g3^4) + (g4^2*g5^2*t^7.39)/(g2^4*g3^4) + (g4*g5^3*t^7.39)/(g2^4*g3^4) + g2*g4^2*g5*t^7.42 + g3*g4^2*g5*t^7.42 + g2*g4*g5^2*t^7.42 + g3*g4*g5^2*t^7.42 + (2*g2^4*g3^3*t^7.52)/g1 + (2*g2^3*g3^4*t^7.52)/g1 + g1*g2*g4^2*t^7.52 + g1*g3*g4^2*t^7.52 + (g2^4*g3^3*g4*t^7.52)/(g1*g5) + (g2^3*g3^4*g4*t^7.52)/(g1*g5) + (g2^4*g3^3*g5*t^7.52)/(g1*g4) + (g2^3*g3^4*g5*t^7.52)/(g1*g4) + 2*g1*g2*g4*g5*t^7.52 + 2*g1*g3*g4*g5*t^7.52 + g1*g2*g5^2*t^7.52 + g1*g3*g5^2*t^7.52 - (2*t^7.61)/(g2*g3) - (g4*t^7.61)/(g2*g3*g5) - (g5*t^7.61)/(g2*g3*g4) + (g2^4*g3^3*t^7.63)/g4 + (g2^3*g3^4*t^7.63)/g4 + g1^2*g2*g4*t^7.63 + g1^2*g3*g4*t^7.63 + (g2^7*g3^6*t^7.63)/(g1^2*g4*g5^2) + (g2^6*g3^7*t^7.63)/(g1^2*g4*g5^2) + (g2^4*g3^3*t^7.63)/g5 + (g2^3*g3^4*t^7.63)/g5 + (g2^7*g3^6*t^7.63)/(g1^2*g4^2*g5) + (g2^6*g3^7*t^7.63)/(g1^2*g4^2*g5) + g1^2*g2*g5*t^7.63 + g1^2*g3*g5*t^7.63 - (g1*t^7.72)/(g2*g3*g4) - (g2^2*g3^2*t^7.72)/(g1*g4*g5^2) - (g1*t^7.72)/(g2*g3*g5) - (g2^2*g3^2*t^7.72)/(g1*g4^2*g5) + (g4^2*g5^2*t^7.83)/(g2^8*g3^8) + g2^2*g4^2*t^7.87 + g3^2*g4^2*t^7.87 + g2^2*g4*g5*t^7.87 + g2*g3*g4*g5*t^7.87 + g3^2*g4*g5*t^7.87 + g2^2*g5^2*t^7.87 + g3^2*g5^2*t^7.87 + (g2^5*g3^3*t^7.98)/(g1*g4) + (g2^4*g3^4*t^7.98)/(g1*g4) + (g2^3*g3^5*t^7.98)/(g1*g4) + g1*g2^2*g4*t^7.98 + g1*g2*g3*g4*t^7.98 + g1*g3^2*g4*t^7.98 + (g2^5*g3^3*t^7.98)/(g1*g5) + (g2^4*g3^4*t^7.98)/(g1*g5) + (g2^3*g3^5*t^7.98)/(g1*g5) + g1*g2^2*g5*t^7.98 + g1*g2*g3*g5*t^7.98 + g1*g3^2*g5*t^7.98 + g1^2*g2^2*t^8.09 + g1^2*g3^2*t^8.09 + (g2^8*g3^6*t^8.09)/(g1^2*g4^2*g5^2) + (g2^6*g3^8*t^8.09)/(g1^2*g4^2*g5^2) + (g2^5*g3^3*t^8.09)/(g4*g5) + (g2^3*g3^5*t^8.09)/(g4*g5) + (g4^3*g5^3*t^8.09)/(g2^6*g3^6) - (3*g4*g5*t^8.3)/(g2^3*g3^3) + t^8.41/(g1*g4) + (g1*g4*t^8.41)/(g2^3*g3^3) + t^8.41/(g1*g5) + (g1*g5*t^8.41)/(g2^3*g3^3) + (g1^2*t^8.52)/(g2^3*g3^3) + t^8.52/g4^2 + t^8.52/g5^2 + (g2^3*g3^3*t^8.52)/(g1^2*g4^2*g5^2) + (2*t^8.52)/(g4*g5) + (g4^3*g5^2*t^8.55)/(g2^5*g3^6) + (g4^3*g5^2*t^8.55)/(g2^6*g3^5) + (g4^2*g5^3*t^8.55)/(g2^5*g3^6) + (g4^2*g5^3*t^8.55)/(g2^6*g3^5) + (g4^3*g5*t^8.57)/(g2*g3) + (g4^2*g5^2*t^8.57)/(g2*g3) + (g4*g5^3*t^8.57)/(g2*g3) + (2*g2^2*g3^2*g4*t^8.68)/g1 + (g1*g4^3*t^8.68)/(g2*g3) + (g2^2*g3^2*g4^2*t^8.68)/(g1*g5) + (2*g2^2*g3^2*g5*t^8.68)/g1 + (2*g1*g4^2*g5*t^8.68)/(g2*g3) + (g2^2*g3^2*g5^2*t^8.68)/(g1*g4) + (2*g1*g4*g5^2*t^8.68)/(g2*g3) + (g1*g5^3*t^8.68)/(g2*g3) + (g4*g5*t^8.74)/(g2^7*g3^7) - (g4*t^8.76)/(g2^2*g3^3) - (g4*t^8.76)/(g2^3*g3^2) - (g5*t^8.76)/(g2^2*g3^3) - (g5*t^8.76)/(g2^3*g3^2) - g2^3*g3*t^8.78 + 2*g2^2*g3^2*t^8.78 - g2*g3^3*t^8.78 + (g2^5*g3^5*t^8.78)/(g1^2*g4^2) + (g1^2*g4^2*t^8.78)/(g2*g3) + (g2^5*g3^5*t^8.78)/(g1^2*g5^2) + (2*g2^5*g3^5*t^8.78)/(g1^2*g4*g5) + (g2^2*g3^2*g4*t^8.78)/g5 + (g2^2*g3^2*g5*t^8.78)/g4 + (2*g1^2*g4*g5*t^8.78)/(g2*g3) + (g1^2*g5^2*t^8.78)/(g2*g3) + (g1*g2^2*g3^2*t^8.89)/g4 + (g1^3*g4*t^8.89)/(g2*g3) + (g2^8*g3^8*t^8.89)/(g1^3*g4^2*g5^3) + (g2^8*g3^8*t^8.89)/(g1^3*g4^3*g5^2) + (g2^5*g3^5*t^8.89)/(g1*g4*g5^2) + (g1*g2^2*g3^2*t^8.89)/g5 + (g2^5*g3^5*t^8.89)/(g1*g4^2*g5) + (g1^3*g5*t^8.89)/(g2*g3) - t^4.61/(g2*g3*y) - (g4*g5*t^6.91)/(g2^4*g3^4*y) + (g2*g3*t^7.39)/y - t^7.82/(g2^3*g3^3*y) + (g2^2*g3^2*t^8.3)/(g4*g5*y) + (g4*g5*t^8.52)/(g2^5*g3^5*y) + (g4^2*g5^2*t^8.79)/(g2^3*g3^3*y) + (g4*t^8.89)/(g1*y) + (g5*t^8.89)/(g1*y) + (g1*g4^2*g5*t^8.89)/(g2^3*g3^3*y) + (g1*g4*g5^2*t^8.89)/(g2^3*g3^3*y) - (t^4.61*y)/(g2*g3) - (g4*g5*t^6.91*y)/(g2^4*g3^4) + g2*g3*t^7.39*y - (t^7.82*y)/(g2^3*g3^3) + (g2^2*g3^2*t^8.3*y)/(g4*g5) + (g4*g5*t^8.52*y)/(g2^5*g3^5) + (g4^2*g5^2*t^8.79*y)/(g2^3*g3^3) + (g4*t^8.89*y)/g1 + (g5*t^8.89*y)/g1 + (g1*g4^2*g5*t^8.89*y)/(g2^3*g3^3) + (g1*g4*g5^2*t^8.89*y)/(g2^3*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55598 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_1\tilde{q}_2\tilde{q}_3$ 0.8592 1.0383 0.8274 [X:[], M:[0.8], q:[0.6, 0.6, 0.7333], qb:[0.7333, 0.6, 0.6], phi:[0.5333]] t^2.4 + t^3.2 + 5*t^3.6 + 8*t^4. + t^4.4 + t^4.8 + 10*t^5.2 + t^5.6 - 12*t^6. - t^4.6/y - t^4.6*y detail {a: 1031/1200, c: 623/600, M1: 4/5, q1: 3/5, q2: 3/5, q3: 11/15, qb1: 11/15, qb2: 3/5, qb3: 3/5, phi1: 8/15}
55679 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ M_2\tilde{q}_2\tilde{q}_3$ 0.8762 1.0664 0.8217 [X:[], M:[0.7818, 0.7818], q:[0.6091, 0.6091, 0.7394], qb:[0.7394, 0.6091, 0.6091], phi:[0.5212]] 2*t^2.35 + t^3.13 + 4*t^3.65 + 8*t^4.05 + t^4.44 + 3*t^4.69 + 10*t^5.22 + 2*t^5.47 - 9*t^6. - t^4.56/y - t^4.56*y detail
55673 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ \phi_1q_1\tilde{q}_3$ 0.8165 0.99 0.8247 [X:[], M:[0.7241], q:[0.7674, 0.5085, 0.7499], qb:[0.7499, 0.491, 0.7324], phi:[0.5003]] t^2.17 + 2*t^3. + t^3.67 + 3*t^3.72 + 3*t^3.78 + t^4.34 + 3*t^4.45 + 3*t^4.5 + 3*t^4.55 + 2*t^5.17 + t^5.84 + 3*t^5.9 - t^6. - t^4.5/y - t^4.5*y detail
55685 $M_1q_1q_2$ + $ \phi_1q_3\tilde{q}_1$ + $ \phi_1\tilde{q}_2\tilde{q}_3$ 0.7983 0.9507 0.8397 [X:[], M:[0.959], q:[0.5205, 0.5205, 0.7603], qb:[0.7603, 0.7603, 0.7603], phi:[0.4795]] 2*t^2.88 + 8*t^3.84 + 9*t^4.56 + 3*t^5.75 - 10*t^6. - t^4.44/y - t^4.44*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55431 SU2adj1nf3 $M_1q_1q_2$ 0.8785 1.0704 0.8208 [X:[], M:[0.7154], q:[0.6423, 0.6423, 0.6218], qb:[0.6218, 0.6218, 0.6218], phi:[0.557]] t^2.15 + t^3.34 + 6*t^3.73 + 8*t^3.79 + t^4.29 + 10*t^5.4 + 8*t^5.46 + t^5.49 + 3*t^5.52 + 6*t^5.88 - 20*t^6. - t^4.67/y - t^4.67*y detail