Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57309 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4951 1.7266 0.8659 [M:[0.6736, 1.3249, 0.6736], q:[0.4937, 0.4937], qb:[0.4952, 0.4922], phi:[0.3376]] [M:[[-5, 1, -5, 1], [2, 2, 2, 2], [1, -5, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] 4
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -6 2*t^2.021 + 2*t^2.958 + 2*t^2.967 + t^3.038 + 2*t^3.97 + t^3.975 + 3*t^4.042 + 4*t^4.978 + 2*t^4.983 + 4*t^4.987 + 2*t^4.992 + 2*t^5.059 + t^5.451 + 2*t^5.456 + t^5.46 + 3*t^5.915 + 4*t^5.924 + 3*t^5.933 + 3*t^5.991 + 4*t^5.995 - 6*t^6. + 2*t^6.005 - t^6.009 + 4*t^6.062 + t^6.076 + t^6.464 + 2*t^6.468 + t^6.473 + 4*t^6.928 + 2*t^6.932 + 4*t^6.937 + 2*t^6.941 + 6*t^6.999 + 3*t^7.004 + 8*t^7.008 - t^7.022 + 3*t^7.08 + t^7.467 + 2*t^7.472 + 3*t^7.476 + t^7.477 + 4*t^7.481 + t^7.495 + 6*t^7.936 + 7*t^7.94 + 8*t^7.945 + 8*t^7.949 + 4*t^7.954 + 4*t^7.958 + 4*t^8.012 + 6*t^8.016 - 10*t^8.021 - t^8.034 + 5*t^8.083 + 2*t^8.097 + 2*t^8.409 + 4*t^8.413 + 4*t^8.418 + 4*t^8.422 + 2*t^8.427 + t^8.489 - 3*t^8.498 - 2*t^8.503 + 4*t^8.873 + 6*t^8.882 + 6*t^8.891 + 4*t^8.9 + 6*t^8.948 + 11*t^8.953 - 6*t^8.958 + 11*t^8.962 - 14*t^8.967 + 3*t^8.971 - 2*t^8.976 - t^4.013/y - t^5.025/y - (2*t^6.033)/y - (2*t^6.97)/y - (2*t^6.979)/y + t^7.042/y - (2*t^7.046)/y - t^7.051/y + (4*t^7.978)/y - (2*t^7.983)/y + (4*t^7.987)/y - (3*t^8.054)/y + (2*t^8.059)/y - t^8.063/y + t^8.915/y + (4*t^8.924)/y + t^8.933/y + (2*t^8.995)/y - t^4.013*y - t^5.025*y - 2*t^6.033*y - 2*t^6.97*y - 2*t^6.979*y + t^7.042*y - 2*t^7.046*y - t^7.051*y + 4*t^7.978*y - 2*t^7.983*y + 4*t^7.987*y - 3*t^8.054*y + 2*t^8.059*y - t^8.063*y + t^8.915*y + 4*t^8.924*y + t^8.933*y + 2*t^8.995*y (g1*g4*t^2.021)/(g2^5*g3^5) + (g2*g4*t^2.021)/(g1^5*g3^5) + g1^6*g4^6*t^2.958 + g2^6*g4^6*t^2.958 + g1^6*g3^6*t^2.967 + g2^6*g3^6*t^2.967 + t^3.038/(g1^3*g2^3*g3^3*g4^3) + (g1^5*g4^5*t^3.97)/(g2*g3) + (g2^5*g4^5*t^3.97)/(g1*g3) + g1^2*g2^2*g3^2*g4^2*t^3.975 + (g1^2*g4^2*t^4.042)/(g2^10*g3^10) + (g4^2*t^4.042)/(g1^4*g2^4*g3^10) + (g2^2*g4^2*t^4.042)/(g1^10*g3^10) + (g1^7*g4^7*t^4.978)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^4.978)/g3^5 + (g2^7*g4^7*t^4.978)/(g1^5*g3^5) + (g1^4*g4^4*t^4.983)/(g2^2*g3^2) + (g2^4*g4^4*t^4.983)/(g1^2*g3^2) + (g1^7*g3*g4*t^4.987)/g2^5 + 2*g1*g2*g3*g4*t^4.987 + (g2^7*g3*g4*t^4.987)/g1^5 + (g1^4*g3^4*t^4.992)/(g2^2*g4^2) + (g2^4*g3^4*t^4.992)/(g1^2*g4^2) + t^5.059/(g1^2*g2^8*g3^8*g4^2) + t^5.059/(g1^8*g2^2*g3^8*g4^2) + (g3^5*g4^11*t^5.451)/(g1*g2) + (g1^11*g2^5*t^5.456)/(g3*g4) + (g1^5*g2^11*t^5.456)/(g3*g4) + (g3^11*g4^5*t^5.46)/(g1*g2) + g1^12*g4^12*t^5.915 + g1^6*g2^6*g4^12*t^5.915 + g2^12*g4^12*t^5.915 + g1^12*g3^6*g4^6*t^5.924 + 2*g1^6*g2^6*g3^6*g4^6*t^5.924 + g2^12*g3^6*g4^6*t^5.924 + g1^12*g3^12*t^5.933 + g1^6*g2^6*g3^12*t^5.933 + g2^12*g3^12*t^5.933 + (g4^6*t^5.991)/g3^6 + (g1^6*g4^6*t^5.991)/(g2^6*g3^6) + (g2^6*g4^6*t^5.991)/(g1^6*g3^6) + (2*g1^3*g4^3*t^5.995)/(g2^3*g3^3) + (2*g2^3*g4^3*t^5.995)/(g1^3*g3^3) - 4*t^6. - (g1^6*t^6.)/g2^6 - (g2^6*t^6.)/g1^6 + (g1^3*g3^3*t^6.005)/(g2^3*g4^3) + (g2^3*g3^3*t^6.005)/(g1^3*g4^3) - (g3^6*t^6.009)/g4^6 + (g1^3*g4^3*t^6.062)/(g2^15*g3^15) + (g4^3*t^6.062)/(g1^3*g2^9*g3^15) + (g4^3*t^6.062)/(g1^9*g2^3*g3^15) + (g2^3*g4^3*t^6.062)/(g1^15*g3^15) + t^6.076/(g1^6*g2^6*g3^6*g4^6) + (g3^4*g4^10*t^6.464)/(g1^2*g2^2) + (g1^10*g2^4*t^6.468)/(g3^2*g4^2) + (g1^4*g2^10*t^6.468)/(g3^2*g4^2) + (g3^10*g4^4*t^6.473)/(g1^2*g2^2) + (g1^11*g4^11*t^6.928)/(g2*g3) + (2*g1^5*g2^5*g4^11*t^6.928)/g3 + (g2^11*g4^11*t^6.928)/(g1*g3) + g1^8*g2^2*g3^2*g4^8*t^6.932 + g1^2*g2^8*g3^2*g4^8*t^6.932 + (g1^11*g3^5*g4^5*t^6.937)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.937 + (g2^11*g3^5*g4^5*t^6.937)/g1 + g1^8*g2^2*g3^8*g4^2*t^6.941 + g1^2*g2^8*g3^8*g4^2*t^6.941 + (g1^8*g4^8*t^6.999)/(g2^10*g3^10) + (2*g1^2*g4^8*t^6.999)/(g2^4*g3^10) + (2*g2^2*g4^8*t^6.999)/(g1^4*g3^10) + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (g1^5*g4^5*t^7.004)/(g2^7*g3^7) + (g4^5*t^7.004)/(g1*g2*g3^7) + (g2^5*g4^5*t^7.004)/(g1^7*g3^7) + (g1^8*g4^2*t^7.008)/(g2^10*g3^4) + (3*g1^2*g4^2*t^7.008)/(g2^4*g3^4) + (3*g2^2*g4^2*t^7.008)/(g1^4*g3^4) + (g2^8*g4^2*t^7.008)/(g1^10*g3^4) - (g3^5*t^7.022)/(g1*g2*g4^7) + t^7.08/(g1*g2^13*g3^13*g4) + t^7.08/(g1^7*g2^7*g3^13*g4) + t^7.08/(g1^13*g2*g3^13*g4) + (g4^15*t^7.467)/(g1^3*g2^3*g3^3) + (g4^12*t^7.472)/g1^6 + (g4^12*t^7.472)/g2^6 + (g1^12*t^7.476)/g3^6 + (g1^6*g2^6*t^7.476)/g3^6 + (g2^12*t^7.476)/g3^6 + (g3^3*g4^9*t^7.477)/(g1^3*g2^3) + (g1^15*t^7.481)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.481)/(g3^3*g4^3) + (g1^3*g2^9*t^7.481)/(g3^3*g4^3) + (g2^15*t^7.481)/(g1^3*g3^3*g4^3) - (g1^6*g2^6*t^7.486)/g4^6 + (g3^9*g4^3*t^7.486)/(g1^3*g2^3) + (g3^15*t^7.495)/(g1^3*g2^3*g4^3) + (g1^13*g4^13*t^7.936)/(g2^5*g3^5) + (2*g1^7*g2*g4^13*t^7.936)/g3^5 + (2*g1*g2^7*g4^13*t^7.936)/g3^5 + (g2^13*g4^13*t^7.936)/(g1^5*g3^5) + (2*g1^10*g4^10*t^7.94)/(g2^2*g3^2) + (3*g1^4*g2^4*g4^10*t^7.94)/g3^2 + (2*g2^10*g4^10*t^7.94)/(g1^2*g3^2) + (g1^13*g3*g4^7*t^7.945)/g2^5 + 3*g1^7*g2*g3*g4^7*t^7.945 + 3*g1*g2^7*g3*g4^7*t^7.945 + (g2^13*g3*g4^7*t^7.945)/g1^5 + (2*g1^10*g3^4*g4^4*t^7.949)/g2^2 + 4*g1^4*g2^4*g3^4*g4^4*t^7.949 + (2*g2^10*g3^4*g4^4*t^7.949)/g1^2 + (g1^13*g3^7*g4*t^7.954)/g2^5 + g1^7*g2*g3^7*g4*t^7.954 + g1*g2^7*g3^7*g4*t^7.954 + (g2^13*g3^7*g4*t^7.954)/g1^5 + (g1^10*g3^10*t^7.958)/(g2^2*g4^2) + (2*g1^4*g2^4*g3^10*t^7.958)/g4^2 + (g2^10*g3^10*t^7.958)/(g1^2*g4^2) + (g1^7*g4^7*t^8.012)/(g2^11*g3^11) + (g1*g4^7*t^8.012)/(g2^5*g3^11) + (g2*g4^7*t^8.012)/(g1^5*g3^11) + (g2^7*g4^7*t^8.012)/(g1^11*g3^11) + (2*g1^4*g4^4*t^8.016)/(g2^8*g3^8) + (2*g4^4*t^8.016)/(g1^2*g2^2*g3^8) + (2*g2^4*g4^4*t^8.016)/(g1^8*g3^8) - (g1^7*g4*t^8.021)/(g2^11*g3^5) - (4*g1*g4*t^8.021)/(g2^5*g3^5) - (4*g2*g4*t^8.021)/(g1^5*g3^5) - (g2^7*g4*t^8.021)/(g1^11*g3^5) - (g3^4*t^8.034)/(g1^2*g2^2*g4^8) + (g1^4*g4^4*t^8.083)/(g2^20*g3^20) + (g4^4*t^8.083)/(g1^2*g2^14*g3^20) + (g4^4*t^8.083)/(g1^8*g2^8*g3^20) + (g4^4*t^8.083)/(g1^14*g2^2*g3^20) + (g2^4*g4^4*t^8.083)/(g1^20*g3^20) + t^8.097/(g1^5*g2^11*g3^11*g4^5) + t^8.097/(g1^11*g2^5*g3^11*g4^5) + (g1^5*g3^5*g4^17*t^8.409)/g2 + (g2^5*g3^5*g4^17*t^8.409)/g1 + (g1^17*g2^5*g4^5*t^8.413)/g3 + (2*g1^11*g2^11*g4^5*t^8.413)/g3 + (g1^5*g2^17*g4^5*t^8.413)/g3 + (2*g1^5*g3^11*g4^11*t^8.418)/g2 + (2*g2^5*g3^11*g4^11*t^8.418)/g1 + (g1^17*g2^5*g3^5*t^8.422)/g4 + (2*g1^11*g2^11*g3^5*t^8.422)/g4 + (g1^5*g2^17*g3^5*t^8.422)/g4 + (g1^5*g3^17*g4^5*t^8.427)/g2 + (g2^5*g3^17*g4^5*t^8.427)/g1 + (g3^2*g4^8*t^8.489)/(g1^4*g2^4) + (g1^8*g2^2*t^8.494)/(g3^4*g4^4) + (g1^2*g2^8*t^8.494)/(g3^4*g4^4) - (g3^5*g4^5*t^8.494)/(g1*g2^7) - (g3^5*g4^5*t^8.494)/(g1^7*g2) - (g1^11*t^8.498)/(g2*g3*g4^7) - (2*g1^5*g2^5*t^8.498)/(g3*g4^7) - (g2^11*t^8.498)/(g1*g3*g4^7) + (g3^8*g4^2*t^8.498)/(g1^4*g2^4) - (g3^11*t^8.503)/(g1*g2^7*g4) - (g3^11*t^8.503)/(g1^7*g2*g4) + g1^18*g4^18*t^8.873 + g1^12*g2^6*g4^18*t^8.873 + g1^6*g2^12*g4^18*t^8.873 + g2^18*g4^18*t^8.873 + g1^18*g3^6*g4^12*t^8.882 + 2*g1^12*g2^6*g3^6*g4^12*t^8.882 + 2*g1^6*g2^12*g3^6*g4^12*t^8.882 + g2^18*g3^6*g4^12*t^8.882 + g1^18*g3^12*g4^6*t^8.891 + 2*g1^12*g2^6*g3^12*g4^6*t^8.891 + 2*g1^6*g2^12*g3^12*g4^6*t^8.891 + g2^18*g3^12*g4^6*t^8.891 + g1^18*g3^18*t^8.9 + g1^12*g2^6*g3^18*t^8.9 + g1^6*g2^12*g3^18*t^8.9 + g2^18*g3^18*t^8.9 + (2*g1^6*g4^12*t^8.948)/g3^6 + (g1^12*g4^12*t^8.948)/(g2^6*g3^6) + (2*g2^6*g4^12*t^8.948)/g3^6 + (g2^12*g4^12*t^8.948)/(g1^6*g3^6) + (3*g1^9*g4^9*t^8.953)/(g2^3*g3^3) + (5*g1^3*g2^3*g4^9*t^8.953)/g3^3 + (3*g2^9*g4^9*t^8.953)/(g1^3*g3^3) - 3*g1^6*g4^6*t^8.958 - 3*g2^6*g4^6*t^8.958 + (3*g1^9*g3^3*g4^3*t^8.962)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.962 + (3*g2^9*g3^3*g4^3*t^8.962)/g1^3 - 6*g1^6*g3^6*t^8.967 - (g1^12*g3^6*t^8.967)/g2^6 - 6*g2^6*g3^6*t^8.967 - (g2^12*g3^6*t^8.967)/g1^6 + (g1^9*g3^9*t^8.971)/(g2^3*g4^3) + (g1^3*g2^3*g3^9*t^8.971)/g4^3 + (g2^9*g3^9*t^8.971)/(g1^3*g4^3) - (g1^6*g3^12*t^8.976)/g4^6 - (g2^6*g3^12*t^8.976)/g4^6 - t^4.013/(g1*g2*g3*g4*y) - t^5.025/(g1^2*g2^2*g3^2*g4^2*y) - t^6.033/(g1^6*g3^6*y) - t^6.033/(g2^6*g3^6*y) - (g1^5*g4^5*t^6.97)/(g2*g3*y) - (g2^5*g4^5*t^6.97)/(g1*g3*y) - (g1^5*g3^5*t^6.979)/(g2*g4*y) - (g2^5*g3^5*t^6.979)/(g1*g4*y) + (g4^2*t^7.042)/(g1^4*g2^4*g3^10*y) - t^7.046/(g1*g2^7*g3^7*g4*y) - t^7.046/(g1^7*g2*g3^7*g4*y) - t^7.051/(g1^4*g2^4*g3^4*g4^4*y) + (g1^7*g4^7*t^7.978)/(g2^5*g3^5*y) + (2*g1*g2*g4^7*t^7.978)/(g3^5*y) + (g2^7*g4^7*t^7.978)/(g1^5*g3^5*y) - (g1^4*g4^4*t^7.983)/(g2^2*g3^2*y) - (g2^4*g4^4*t^7.983)/(g1^2*g3^2*y) + (g1^7*g3*g4*t^7.987)/(g2^5*y) + (2*g1*g2*g3*g4*t^7.987)/y + (g2^7*g3*g4*t^7.987)/(g1^5*y) - (g1*g4*t^8.054)/(g2^11*g3^11*y) - (g4*t^8.054)/(g1^5*g2^5*g3^11*y) - (g2*g4*t^8.054)/(g1^11*g3^11*y) + t^8.059/(g1^2*g2^8*g3^8*g4^2*y) + t^8.059/(g1^8*g2^2*g3^8*g4^2*y) - t^8.063/(g1^5*g2^5*g3^5*g4^5*y) + (g1^6*g2^6*g4^12*t^8.915)/y + (g1^12*g3^6*g4^6*t^8.924)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.924)/y + (g2^12*g3^6*g4^6*t^8.924)/y + (g1^6*g2^6*g3^12*t^8.933)/y + (g1^3*g4^3*t^8.995)/(g2^3*g3^3*y) + (g2^3*g4^3*t^8.995)/(g1^3*g3^3*y) - (t^4.013*y)/(g1*g2*g3*g4) - (t^5.025*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.033*y)/(g1^6*g3^6) - (t^6.033*y)/(g2^6*g3^6) - (g1^5*g4^5*t^6.97*y)/(g2*g3) - (g2^5*g4^5*t^6.97*y)/(g1*g3) - (g1^5*g3^5*t^6.979*y)/(g2*g4) - (g2^5*g3^5*t^6.979*y)/(g1*g4) + (g4^2*t^7.042*y)/(g1^4*g2^4*g3^10) - (t^7.046*y)/(g1*g2^7*g3^7*g4) - (t^7.046*y)/(g1^7*g2*g3^7*g4) - (t^7.051*y)/(g1^4*g2^4*g3^4*g4^4) + (g1^7*g4^7*t^7.978*y)/(g2^5*g3^5) + (2*g1*g2*g4^7*t^7.978*y)/g3^5 + (g2^7*g4^7*t^7.978*y)/(g1^5*g3^5) - (g1^4*g4^4*t^7.983*y)/(g2^2*g3^2) - (g2^4*g4^4*t^7.983*y)/(g1^2*g3^2) + (g1^7*g3*g4*t^7.987*y)/g2^5 + 2*g1*g2*g3*g4*t^7.987*y + (g2^7*g3*g4*t^7.987*y)/g1^5 - (g1*g4*t^8.054*y)/(g2^11*g3^11) - (g4*t^8.054*y)/(g1^5*g2^5*g3^11) - (g2*g4*t^8.054*y)/(g1^11*g3^11) + (t^8.059*y)/(g1^2*g2^8*g3^8*g4^2) + (t^8.059*y)/(g1^8*g2^2*g3^8*g4^2) - (t^8.063*y)/(g1^5*g2^5*g3^5*g4^5) + g1^6*g2^6*g4^12*t^8.915*y + g1^12*g3^6*g4^6*t^8.924*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.924*y + g2^12*g3^6*g4^6*t^8.924*y + g1^6*g2^6*g3^12*t^8.933*y + (g1^3*g4^3*t^8.995*y)/(g2^3*g3^3) + (g2^3*g4^3*t^8.995*y)/(g1^3*g3^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57996 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5159 1.7675 0.8577 [X:[], M:[0.6731, 1.3255, 0.6745, 0.6745], q:[0.4948, 0.4934], qb:[0.4948, 0.4934], phi:[0.3372]] 3*t^2.02 + 3*t^2.96 + t^2.97 + t^3.04 + t^3.97 + t^3.98 + 3*t^4.04 + 3*t^4.05 + 6*t^4.98 + 10*t^4.99 + t^5.05 + 2*t^5.06 + 4*t^5.46 + t^5.92 + 8*t^5.93 + t^5.94 + t^5.99 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47879 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4743 1.6855 0.8747 [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y detail