Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57310 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4951 | 1.7263 | 0.8661 | [M:[0.6749, 1.3251, 0.6749], q:[0.4938, 0.4938], qb:[0.4938, 0.4938], phi:[0.3375]] | [M:[[-5, 1, -5, 1], [2, 2, 2, 2], [1, -5, 1, -5]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | 2 | 2*t^2.025 + 4*t^2.963 + t^3.037 + 3*t^3.975 + 3*t^4.049 + 12*t^4.988 + 2*t^5.062 + 4*t^5.457 + 10*t^5.926 + 2*t^6. + 5*t^6.074 + 4*t^6.469 + 12*t^6.938 + 16*t^7.012 + 3*t^7.087 + 12*t^7.481 + 37*t^7.951 - t^8.025 + 7*t^8.099 + 16*t^8.42 - 4*t^8.494 + 20*t^8.889 + 9*t^8.963 - t^4.012/y - t^5.025/y - (2*t^6.037)/y - (4*t^6.975)/y - (2*t^7.049)/y + (6*t^7.988)/y - (2*t^8.062)/y + (6*t^8.926)/y - t^4.012*y - t^5.025*y - 2*t^6.037*y - 4*t^6.975*y - 2*t^7.049*y + 6*t^7.988*y - 2*t^8.062*y + 6*t^8.926*y | (g1*g3*t^2.025)/(g2^5*g4^5) + (g2*g4*t^2.025)/(g1^5*g3^5) + g1^6*g3^6*t^2.963 + g2^6*g3^6*t^2.963 + g1^6*g4^6*t^2.963 + g2^6*g4^6*t^2.963 + t^3.037/(g1^3*g2^3*g3^3*g4^3) + (g2^5*g3^5*t^3.975)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.975 + (g1^5*g4^5*t^3.975)/(g2*g3) + (g1^2*g3^2*t^4.049)/(g2^10*g4^10) + t^4.049/(g1^4*g2^4*g3^4*g4^4) + (g2^2*g4^2*t^4.049)/(g1^10*g3^10) + (g1^7*g3^7*t^4.988)/(g2^5*g4^5) + (g1*g2*g3^7*t^4.988)/g4^5 + (g1^4*g3^4*t^4.988)/(g2^2*g4^2) + (g2^4*g3^4*t^4.988)/(g1^2*g4^2) + (g1^7*g3*g4*t^4.988)/g2^5 + 2*g1*g2*g3*g4*t^4.988 + (g2^7*g3*g4*t^4.988)/g1^5 + (g1^4*g4^4*t^4.988)/(g2^2*g3^2) + (g2^4*g4^4*t^4.988)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.988)/g3^5 + (g2^7*g4^7*t^4.988)/(g1^5*g3^5) + t^5.062/(g1^2*g2^8*g3^2*g4^8) + t^5.062/(g1^8*g2^2*g3^8*g4^2) + (g1^11*g2^5*t^5.457)/(g3*g4) + (g1^5*g2^11*t^5.457)/(g3*g4) + (g3^11*g4^5*t^5.457)/(g1*g2) + (g3^5*g4^11*t^5.457)/(g1*g2) + g1^12*g3^12*t^5.926 + g1^6*g2^6*g3^12*t^5.926 + g2^12*g3^12*t^5.926 + g1^12*g3^6*g4^6*t^5.926 + 2*g1^6*g2^6*g3^6*g4^6*t^5.926 + g2^12*g3^6*g4^6*t^5.926 + g1^12*g4^12*t^5.926 + g1^6*g2^6*g4^12*t^5.926 + g2^12*g4^12*t^5.926 - 4*t^6. + (2*g1^3*g3^3*t^6.)/(g2^3*g4^3) + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + (2*g2^3*g4^3*t^6.)/(g1^3*g3^3) + (g1^3*g3^3*t^6.074)/(g2^15*g4^15) + t^6.074/(g1^3*g2^9*g3^3*g4^9) + t^6.074/(g1^6*g2^6*g3^6*g4^6) + t^6.074/(g1^9*g2^3*g3^9*g4^3) + (g2^3*g4^3*t^6.074)/(g1^15*g3^15) + (g1^10*g2^4*t^6.469)/(g3^2*g4^2) + (g1^4*g2^10*t^6.469)/(g3^2*g4^2) + (g3^10*g4^4*t^6.469)/(g1^2*g2^2) + (g3^4*g4^10*t^6.469)/(g1^2*g2^2) + (g1^5*g2^5*g3^11*t^6.938)/g4 + (g2^11*g3^11*t^6.938)/(g1*g4) + g1^8*g2^2*g3^8*g4^2*t^6.938 + g1^2*g2^8*g3^8*g4^2*t^6.938 + (g1^11*g3^5*g4^5*t^6.938)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.938 + (g2^11*g3^5*g4^5*t^6.938)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.938 + g1^2*g2^8*g3^2*g4^8*t^6.938 + (g1^11*g4^11*t^6.938)/(g2*g3) + (g1^5*g2^5*g4^11*t^6.938)/g3 + (g1^8*g3^8*t^7.012)/(g2^10*g4^10) + (g1^2*g3^8*t^7.012)/(g2^4*g4^10) + (g1^5*g3^5*t^7.012)/(g2^7*g4^7) + (g1^8*g3^2*t^7.012)/(g2^10*g4^4) + (2*g1^2*g3^2*t^7.012)/(g2^4*g4^4) + (2*g2^2*g3^2*t^7.012)/(g1^4*g4^4) + (2*g1^2*g4^2*t^7.012)/(g2^4*g3^4) + (2*g2^2*g4^2*t^7.012)/(g1^4*g3^4) + (g2^8*g4^2*t^7.012)/(g1^10*g3^4) + (g2^5*g4^5*t^7.012)/(g1^7*g3^7) + (g2^2*g4^8*t^7.012)/(g1^4*g3^10) + (g2^8*g4^8*t^7.012)/(g1^10*g3^10) + t^7.087/(g1*g2^13*g3*g4^13) + t^7.087/(g1^7*g2^7*g3^7*g4^7) + t^7.087/(g1^13*g2*g3^13*g4) + (g2^12*t^7.481)/g3^6 + (g3^12*t^7.481)/g2^6 + (g1^12*t^7.481)/g4^6 + (g1^15*t^7.481)/(g2^3*g3^3*g4^3) + (g1^9*g2^3*t^7.481)/(g3^3*g4^3) + (g1^3*g2^9*t^7.481)/(g3^3*g4^3) + (g2^15*t^7.481)/(g1^3*g3^3*g4^3) + (g3^15*t^7.481)/(g1^3*g2^3*g4^3) + (g3^9*g4^3*t^7.481)/(g1^3*g2^3) + (g3^3*g4^9*t^7.481)/(g1^3*g2^3) + (g4^12*t^7.481)/g1^6 + (g4^15*t^7.481)/(g1^3*g2^3*g3^3) + (g1^13*g3^13*t^7.951)/(g2^5*g4^5) + (g1^7*g2*g3^13*t^7.951)/g4^5 + (g1*g2^7*g3^13*t^7.951)/g4^5 + (g1^10*g3^10*t^7.951)/(g2^2*g4^2) + (2*g1^4*g2^4*g3^10*t^7.951)/g4^2 + (2*g2^10*g3^10*t^7.951)/(g1^2*g4^2) + (g1^13*g3^7*g4*t^7.951)/g2^5 + 2*g1^7*g2*g3^7*g4*t^7.951 + 2*g1*g2^7*g3^7*g4*t^7.951 + (g2^13*g3^7*g4*t^7.951)/g1^5 + (2*g1^10*g3^4*g4^4*t^7.951)/g2^2 + 5*g1^4*g2^4*g3^4*g4^4*t^7.951 + (2*g2^10*g3^4*g4^4*t^7.951)/g1^2 + (g1^13*g3*g4^7*t^7.951)/g2^5 + 2*g1^7*g2*g3*g4^7*t^7.951 + 2*g1*g2^7*g3*g4^7*t^7.951 + (g2^13*g3*g4^7*t^7.951)/g1^5 + (2*g1^10*g4^10*t^7.951)/(g2^2*g3^2) + (2*g1^4*g2^4*g4^10*t^7.951)/g3^2 + (g2^10*g4^10*t^7.951)/(g1^2*g3^2) + (g1^7*g2*g4^13*t^7.951)/g3^5 + (g1*g2^7*g4^13*t^7.951)/g3^5 + (g2^13*g4^13*t^7.951)/(g1^5*g3^5) + (2*g1^4*g3^4*t^8.025)/(g2^8*g4^8) - (3*g1*g3*t^8.025)/(g2^5*g4^5) + t^8.025/(g1^2*g2^2*g3^2*g4^2) - (3*g2*g4*t^8.025)/(g1^5*g3^5) + (2*g2^4*g4^4*t^8.025)/(g1^8*g3^8) + (g1^4*g3^4*t^8.099)/(g2^20*g4^20) + t^8.099/(g1^2*g2^14*g3^2*g4^14) + t^8.099/(g1^5*g2^11*g3^5*g4^11) + t^8.099/(g1^8*g2^8*g3^8*g4^8) + t^8.099/(g1^11*g2^5*g3^11*g4^5) + t^8.099/(g1^14*g2^2*g3^14*g4^2) + (g2^4*g4^4*t^8.099)/(g1^20*g3^20) + (g1^17*g2^5*g3^5*t^8.42)/g4 + (2*g1^11*g2^11*g3^5*t^8.42)/g4 + (g1^5*g2^17*g3^5*t^8.42)/g4 + (g1^17*g2^5*g4^5*t^8.42)/g3 + (2*g1^11*g2^11*g4^5*t^8.42)/g3 + (g1^5*g2^17*g4^5*t^8.42)/g3 + (g1^5*g3^17*g4^5*t^8.42)/g2 + (g2^5*g3^17*g4^5*t^8.42)/g1 + (2*g1^5*g3^11*g4^11*t^8.42)/g2 + (2*g2^5*g3^11*g4^11*t^8.42)/g1 + (g1^5*g3^5*g4^17*t^8.42)/g2 + (g2^5*g3^5*g4^17*t^8.42)/g1 - (g1^5*g2^5*t^8.494)/(g3*g4^7) - (g2^11*t^8.494)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.494)/(g3^4*g4^4) + (g1^2*g2^8*t^8.494)/(g3^4*g4^4) - (g1^11*t^8.494)/(g2*g3^7*g4) - (g1^5*g2^5*t^8.494)/(g3^7*g4) - (g3^11*t^8.494)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.494)/(g1^4*g2^4) - (g3^5*g4^5*t^8.494)/(g1*g2^7) - (g3^5*g4^5*t^8.494)/(g1^7*g2) + (g3^2*g4^8*t^8.494)/(g1^4*g2^4) - (g4^11*t^8.494)/(g1*g2^7*g3) + g1^18*g3^18*t^8.889 + g1^12*g2^6*g3^18*t^8.889 + g1^6*g2^12*g3^18*t^8.889 + g2^18*g3^18*t^8.889 + g1^18*g3^12*g4^6*t^8.889 + 2*g1^12*g2^6*g3^12*g4^6*t^8.889 + 2*g1^6*g2^12*g3^12*g4^6*t^8.889 + g2^18*g3^12*g4^6*t^8.889 + g1^18*g3^6*g4^12*t^8.889 + 2*g1^12*g2^6*g3^6*g4^12*t^8.889 + 2*g1^6*g2^12*g3^6*g4^12*t^8.889 + g2^18*g3^6*g4^12*t^8.889 + g1^18*g4^18*t^8.889 + g1^12*g2^6*g4^18*t^8.889 + g1^6*g2^12*g4^18*t^8.889 + g2^18*g4^18*t^8.889 - 4*g1^6*g3^6*t^8.963 - 4*g2^6*g3^6*t^8.963 + (2*g1^9*g3^9*t^8.963)/(g2^3*g4^3) + (3*g1^3*g2^3*g3^9*t^8.963)/g4^3 + (2*g2^9*g3^9*t^8.963)/(g1^3*g4^3) + (3*g1^9*g3^3*g4^3*t^8.963)/g2^3 + 5*g1^3*g2^3*g3^3*g4^3*t^8.963 + (3*g2^9*g3^3*g4^3*t^8.963)/g1^3 - 4*g1^6*g4^6*t^8.963 - 4*g2^6*g4^6*t^8.963 + (2*g1^9*g4^9*t^8.963)/(g2^3*g3^3) + (3*g1^3*g2^3*g4^9*t^8.963)/g3^3 + (2*g2^9*g4^9*t^8.963)/(g1^3*g3^3) - t^4.012/(g1*g2*g3*g4*y) - t^5.025/(g1^2*g2^2*g3^2*g4^2*y) - t^6.037/(g1^6*g3^6*y) - t^6.037/(g2^6*g4^6*y) - (g1^5*g3^5*t^6.975)/(g2*g4*y) - (g2^5*g3^5*t^6.975)/(g1*g4*y) - (g1^5*g4^5*t^6.975)/(g2*g3*y) - (g2^5*g4^5*t^6.975)/(g1*g3*y) - t^7.049/(g1*g2^7*g3*g4^7*y) - t^7.049/(g1^7*g2*g3^7*g4*y) + (g1^7*g3^7*t^7.988)/(g2^5*g4^5*y) + (g1*g2*g3^7*t^7.988)/(g4^5*y) - (g2^4*g3^4*t^7.988)/(g1^2*g4^2*y) + (g1^7*g3*g4*t^7.988)/(g2^5*y) + (2*g1*g2*g3*g4*t^7.988)/y + (g2^7*g3*g4*t^7.988)/(g1^5*y) - (g1^4*g4^4*t^7.988)/(g2^2*g3^2*y) + (g1*g2*g4^7*t^7.988)/(g3^5*y) + (g2^7*g4^7*t^7.988)/(g1^5*g3^5*y) - (g1*g3*t^8.062)/(g2^11*g4^11*y) + t^8.062/(g1^2*g2^8*g3^2*g4^8*y) - (2*t^8.062)/(g1^5*g2^5*g3^5*g4^5*y) + t^8.062/(g1^8*g2^2*g3^8*g4^2*y) - (g2*g4*t^8.062)/(g1^11*g3^11*y) + (g1^6*g2^6*g3^12*t^8.926)/y + (g1^12*g3^6*g4^6*t^8.926)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.926)/y + (g2^12*g3^6*g4^6*t^8.926)/y + (g1^6*g2^6*g4^12*t^8.926)/y - (t^4.012*y)/(g1*g2*g3*g4) - (t^5.025*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.037*y)/(g1^6*g3^6) - (t^6.037*y)/(g2^6*g4^6) - (g1^5*g3^5*t^6.975*y)/(g2*g4) - (g2^5*g3^5*t^6.975*y)/(g1*g4) - (g1^5*g4^5*t^6.975*y)/(g2*g3) - (g2^5*g4^5*t^6.975*y)/(g1*g3) - (t^7.049*y)/(g1*g2^7*g3*g4^7) - (t^7.049*y)/(g1^7*g2*g3^7*g4) + (g1^7*g3^7*t^7.988*y)/(g2^5*g4^5) + (g1*g2*g3^7*t^7.988*y)/g4^5 - (g2^4*g3^4*t^7.988*y)/(g1^2*g4^2) + (g1^7*g3*g4*t^7.988*y)/g2^5 + 2*g1*g2*g3*g4*t^7.988*y + (g2^7*g3*g4*t^7.988*y)/g1^5 - (g1^4*g4^4*t^7.988*y)/(g2^2*g3^2) + (g1*g2*g4^7*t^7.988*y)/g3^5 + (g2^7*g4^7*t^7.988*y)/(g1^5*g3^5) - (g1*g3*t^8.062*y)/(g2^11*g4^11) + (t^8.062*y)/(g1^2*g2^8*g3^2*g4^8) - (2*t^8.062*y)/(g1^5*g2^5*g3^5*g4^5) + (t^8.062*y)/(g1^8*g2^2*g3^8*g4^2) - (g2*g4*t^8.062*y)/(g1^11*g3^11) + g1^6*g2^6*g3^12*t^8.926*y + g1^12*g3^6*g4^6*t^8.926*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.926*y + g2^12*g3^6*g4^6*t^8.926*y + g1^6*g2^6*g4^12*t^8.926*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
58000 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4456 | 1.6995 | 0.8506 | [X:[], M:[0.6793, 1.2345, 0.8517], q:[0.469, 0.3828], qb:[0.469, 0.3828], phi:[0.3828]] | t^2.04 + t^2.3 + 3*t^2.56 + t^2.81 + t^3.44 + 3*t^3.7 + t^4.08 + t^4.33 + 5*t^4.59 + 8*t^4.85 + 10*t^5.11 + 3*t^5.37 + t^5.48 + t^5.63 + 2*t^5.74 + 4*t^6. - t^4.15/y - t^5.3/y - t^4.15*y - t^5.3*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47879 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.4743 | 1.6855 | 0.8747 | [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] | t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y | detail |