Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57306 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4768 | 1.696 | 0.8707 | [M:[0.6885, 1.307, 0.9606], q:[0.4825, 0.478], qb:[0.4825, 0.478], phi:[0.3465]] | [M:[[-5, 1, -5, 1], [2, 2, 2, 2], [3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$ | ${}$ | -4 | t^2.065 + t^2.868 + 3*t^2.882 + t^2.895 + t^3.908 + 3*t^3.921 + t^4.131 + t^4.934 + 4*t^4.947 + 3*t^4.961 + t^4.974 + 2*t^5.355 + 2*t^5.369 + t^5.736 + 3*t^5.75 + 7*t^5.763 + 3*t^5.777 + t^5.79 + t^5.973 + t^5.986 - 4*t^6. - 2*t^6.014 + t^6.196 + 2*t^6.395 + 2*t^6.408 + t^6.776 + 6*t^6.789 + 10*t^6.803 + 3*t^6.816 + t^6.999 + 4*t^7.012 + t^7.026 - 2*t^7.039 - 2*t^7.053 + 4*t^7.421 + 2*t^7.434 + 2*t^7.461 + t^7.802 + 5*t^7.815 + 14*t^7.829 + 14*t^7.842 + 5*t^7.856 + t^7.869 + t^8.038 + t^8.052 - 6*t^8.065 - 4*t^8.079 - 2*t^8.092 + 2*t^8.223 + 8*t^8.237 + 8*t^8.25 + t^8.261 + 2*t^8.264 - 4*t^8.474 - 6*t^8.487 - 2*t^8.501 + t^8.604 + 3*t^8.618 + 7*t^8.632 + 13*t^8.645 + 7*t^8.659 + 3*t^8.672 + t^8.686 + t^8.841 + 5*t^8.855 + 4*t^8.868 - 9*t^8.882 - 8*t^8.895 - 2*t^8.909 - t^4.039/y - t^5.079/y - t^6.105/y - t^6.908/y - (3*t^6.921)/y - t^6.935/y - t^7.144/y + t^7.934/y + (2*t^7.947)/y - (2*t^7.961)/y - t^8.17/y + (3*t^8.75)/y + (4*t^8.763)/y + (3*t^8.777)/y - t^8.986/y - t^4.039*y - t^5.079*y - t^6.105*y - t^6.908*y - 3*t^6.921*y - t^6.935*y - t^7.144*y + t^7.934*y + 2*t^7.947*y - 2*t^7.961*y - t^8.17*y + 3*t^8.75*y + 4*t^8.763*y + 3*t^8.777*y - t^8.986*y | (g2*g4*t^2.065)/(g1^5*g3^5) + g2^6*g4^6*t^2.868 + g2^6*g3^6*t^2.882 + g1^3*g2^3*g3^3*g4^3*t^2.882 + g1^6*g4^6*t^2.882 + g1^6*g3^6*t^2.895 + (g2^5*g4^5*t^3.908)/(g1*g3) + (g2^5*g3^5*t^3.921)/(g1*g4) + g1^2*g2^2*g3^2*g4^2*t^3.921 + (g1^5*g4^5*t^3.921)/(g2*g3) + (g2^2*g4^2*t^4.131)/(g1^10*g3^10) + (g2^7*g4^7*t^4.934)/(g1^5*g3^5) + (g2^7*g3*g4*t^4.947)/g1^5 + (2*g2^4*g4^4*t^4.947)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.947)/g3^5 + (g2^4*g3^4*t^4.961)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.961 + (g1^4*g4^4*t^4.961)/(g2^2*g3^2) + (g1^4*g3^4*t^4.974)/(g2^2*g4^2) + (g1^5*g2^11*t^5.355)/(g3*g4) + (g3^5*g4^11*t^5.355)/(g1*g2) + (g1^11*g2^5*t^5.369)/(g3*g4) + (g3^11*g4^5*t^5.369)/(g1*g2) + g2^12*g4^12*t^5.736 + g2^12*g3^6*g4^6*t^5.75 + g1^3*g2^9*g3^3*g4^9*t^5.75 + g1^6*g2^6*g4^12*t^5.75 + g2^12*g3^12*t^5.763 + g1^3*g2^9*g3^9*g4^3*t^5.763 + 3*g1^6*g2^6*g3^6*g4^6*t^5.763 + g1^9*g2^3*g3^3*g4^9*t^5.763 + g1^12*g4^12*t^5.763 + g1^6*g2^6*g3^12*t^5.777 + g1^9*g2^3*g3^9*g4^3*t^5.777 + g1^12*g3^6*g4^6*t^5.777 + g1^12*g3^12*t^5.79 + (g2^6*g4^6*t^5.973)/(g1^6*g3^6) + (g2^3*g4^3*t^5.986)/(g1^3*g3^3) - 4*t^6. - (g1^6*t^6.014)/g2^6 - (g3^6*t^6.014)/g4^6 + (g2^3*g4^3*t^6.196)/(g1^15*g3^15) + (g1^4*g2^10*t^6.395)/(g3^2*g4^2) + (g3^4*g4^10*t^6.395)/(g1^2*g2^2) + (g1^10*g2^4*t^6.408)/(g3^2*g4^2) + (g3^10*g4^4*t^6.408)/(g1^2*g2^2) + (g2^11*g4^11*t^6.776)/(g1*g3) + (2*g2^11*g3^5*g4^5*t^6.789)/g1 + 2*g1^2*g2^8*g3^2*g4^8*t^6.789 + (2*g1^5*g2^5*g4^11*t^6.789)/g3 + (g2^11*g3^11*t^6.803)/(g1*g4) + 2*g1^2*g2^8*g3^8*g4^2*t^6.803 + 4*g1^5*g2^5*g3^5*g4^5*t^6.803 + 2*g1^8*g2^2*g3^2*g4^8*t^6.803 + (g1^11*g4^11*t^6.803)/(g2*g3) + (g1^5*g2^5*g3^11*t^6.816)/g4 + g1^8*g2^2*g3^8*g4^2*t^6.816 + (g1^11*g3^5*g4^5*t^6.816)/g2 + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (g2^8*g4^2*t^7.012)/(g1^10*g3^4) + (2*g2^5*g4^5*t^7.012)/(g1^7*g3^7) + (g2^2*g4^8*t^7.012)/(g1^4*g3^10) + (g2^2*g4^2*t^7.026)/(g1^4*g3^4) - (2*t^7.039)/(g1*g2*g3*g4) - (g3^5*t^7.053)/(g1*g2*g4^7) - (g1^5*t^7.053)/(g2^7*g3*g4) + (g2^12*t^7.421)/g3^6 + (g2^15*t^7.421)/(g1^3*g3^3*g4^3) + (g4^12*t^7.421)/g1^6 + (g4^15*t^7.421)/(g1^3*g2^3*g3^3) + (g1^3*g2^9*t^7.434)/(g3^3*g4^3) + (g3^3*g4^9*t^7.434)/(g1^3*g2^3) - (g1^6*g2^6*t^7.448)/g4^6 + (g1^9*g2^3*t^7.448)/(g3^3*g4^3) + (g3^9*g4^3*t^7.448)/(g1^3*g2^3) - (g3^6*g4^6*t^7.448)/g2^6 + (g1^15*t^7.461)/(g2^3*g3^3*g4^3) + (g3^15*t^7.461)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.802)/(g1^5*g3^5) + (g2^13*g3*g4^7*t^7.815)/g1^5 + (3*g2^10*g4^10*t^7.815)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.815)/g3^5 + (g2^13*g3^7*g4*t^7.829)/g1^5 + (4*g2^10*g3^4*g4^4*t^7.829)/g1^2 + 4*g1*g2^7*g3*g4^7*t^7.829 + (4*g1^4*g2^4*g4^10*t^7.829)/g3^2 + (g1^7*g2*g4^13*t^7.829)/g3^5 + (2*g2^10*g3^10*t^7.842)/(g1^2*g4^2) + 2*g1*g2^7*g3^7*g4*t^7.842 + 6*g1^4*g2^4*g3^4*g4^4*t^7.842 + 2*g1^7*g2*g3*g4^7*t^7.842 + (2*g1^10*g4^10*t^7.842)/(g2^2*g3^2) + (2*g1^4*g2^4*g3^10*t^7.856)/g4^2 + g1^7*g2*g3^7*g4*t^7.856 + (2*g1^10*g3^4*g4^4*t^7.856)/g2^2 + (g1^10*g3^10*t^7.869)/(g2^2*g4^2) + (g2^7*g4^7*t^8.038)/(g1^11*g3^11) + (g2^4*g4^4*t^8.052)/(g1^8*g3^8) - (g2^4*t^8.065)/(g1^8*g3^2*g4^2) - (4*g2*g4*t^8.065)/(g1^5*g3^5) - (g4^4*t^8.065)/(g1^2*g2^2*g3^8) - (g2*g3*t^8.079)/(g1^5*g4^5) - (2*t^8.079)/(g1^2*g2^2*g3^2*g4^2) - (g1*g4*t^8.079)/(g2^5*g3^5) - (g3^4*t^8.092)/(g1^2*g2^2*g4^8) - (g1^4*t^8.092)/(g2^8*g3^2*g4^2) + (g1^5*g2^17*g4^5*t^8.223)/g3 + (g2^5*g3^5*g4^17*t^8.223)/g1 + (g1^5*g2^17*g3^5*t^8.237)/g4 + g1^8*g2^14*g3^2*g4^2*t^8.237 + (2*g1^11*g2^11*g4^5*t^8.237)/g3 + (2*g2^5*g3^11*g4^11*t^8.237)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.237 + (g1^5*g3^5*g4^17*t^8.237)/g2 + (2*g1^11*g2^11*g3^5*t^8.25)/g4 + g1^14*g2^8*g3^2*g4^2*t^8.25 + (g1^17*g2^5*g4^5*t^8.25)/g3 + (g2^5*g3^17*g4^5*t^8.25)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.25 + (2*g1^5*g3^11*g4^11*t^8.25)/g2 + (g2^4*g4^4*t^8.261)/(g1^20*g3^20) + (g1^17*g2^5*g3^5*t^8.264)/g4 + (g1^5*g3^17*g4^5*t^8.264)/g2 - (g2^11*t^8.474)/(g1*g3*g4^7) - (g1^5*g2^5*t^8.474)/(g3^7*g4) - (g3^5*g4^5*t^8.474)/(g1^7*g2) - (g4^11*t^8.474)/(g1*g2^7*g3) - (2*g1^5*g2^5*t^8.487)/(g3*g4^7) - (g1^11*t^8.487)/(g2*g3^7*g4) - (g3^11*t^8.487)/(g1^7*g2*g4) - (2*g3^5*g4^5*t^8.487)/(g1*g2^7) - (g1^11*t^8.501)/(g2*g3*g4^7) - (g3^11*t^8.501)/(g1*g2^7*g4) + g2^18*g4^18*t^8.604 + g2^18*g3^6*g4^12*t^8.618 + g1^3*g2^15*g3^3*g4^15*t^8.618 + g1^6*g2^12*g4^18*t^8.618 + g2^18*g3^12*g4^6*t^8.632 + g1^3*g2^15*g3^9*g4^9*t^8.632 + 3*g1^6*g2^12*g3^6*g4^12*t^8.632 + g1^9*g2^9*g3^3*g4^15*t^8.632 + g1^12*g2^6*g4^18*t^8.632 + g2^18*g3^18*t^8.645 + g1^3*g2^15*g3^15*g4^3*t^8.645 + 3*g1^6*g2^12*g3^12*g4^6*t^8.645 + 3*g1^9*g2^9*g3^9*g4^9*t^8.645 + 3*g1^12*g2^6*g3^6*g4^12*t^8.645 + g1^15*g2^3*g3^3*g4^15*t^8.645 + g1^18*g4^18*t^8.645 + g1^6*g2^12*g3^18*t^8.659 + g1^9*g2^9*g3^15*g4^3*t^8.659 + 3*g1^12*g2^6*g3^12*g4^6*t^8.659 + g1^15*g2^3*g3^9*g4^9*t^8.659 + g1^18*g3^6*g4^12*t^8.659 + g1^12*g2^6*g3^18*t^8.672 + g1^15*g2^3*g3^15*g4^3*t^8.672 + g1^18*g3^12*g4^6*t^8.672 + g1^18*g3^18*t^8.686 + (g2^12*g4^12*t^8.841)/(g1^6*g3^6) + (g2^12*g4^6*t^8.855)/g1^6 + (3*g2^9*g4^9*t^8.855)/(g1^3*g3^3) + (g2^6*g4^12*t^8.855)/g3^6 + (3*g2^9*g3^3*g4^3*t^8.868)/g1^3 - 2*g2^6*g4^6*t^8.868 + (3*g1^3*g2^3*g4^9*t^8.868)/g3^3 - 5*g2^6*g3^6*t^8.882 + (g2^9*g3^9*t^8.882)/(g1^3*g4^3) - g1^3*g2^3*g3^3*g4^3*t^8.882 - 5*g1^6*g4^6*t^8.882 + (g1^9*g4^9*t^8.882)/(g2^3*g3^3) - 6*g1^6*g3^6*t^8.895 - (g2^6*g3^12*t^8.895)/g4^6 - (g1^12*g4^6*t^8.895)/g2^6 - (g1^12*g3^6*t^8.909)/g2^6 - (g1^6*g3^12*t^8.909)/g4^6 - t^4.039/(g1*g2*g3*g4*y) - t^5.079/(g1^2*g2^2*g3^2*g4^2*y) - t^6.105/(g1^6*g3^6*y) - (g2^5*g4^5*t^6.908)/(g1*g3*y) - (g2^5*g3^5*t^6.921)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.921)/y - (g1^5*g4^5*t^6.921)/(g2*g3*y) - (g1^5*g3^5*t^6.935)/(g2*g4*y) - t^7.144/(g1^7*g2*g3^7*g4*y) + (g2^7*g4^7*t^7.934)/(g1^5*g3^5*y) + (g2^7*g3*g4*t^7.947)/(g1^5*y) + (g1*g2*g4^7*t^7.947)/(g3^5*y) - (g2^4*g3^4*t^7.961)/(g1^2*g4^2*y) - (g1^4*g4^4*t^7.961)/(g2^2*g3^2*y) - (g2*g4*t^8.17)/(g1^11*g3^11*y) + (g2^12*g3^6*g4^6*t^8.75)/y + (g1^3*g2^9*g3^3*g4^9*t^8.75)/y + (g1^6*g2^6*g4^12*t^8.75)/y + (g1^3*g2^9*g3^9*g4^3*t^8.763)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.763)/y + (g1^9*g2^3*g3^3*g4^9*t^8.763)/y + (g1^6*g2^6*g3^12*t^8.777)/y + (g1^9*g2^3*g3^9*g4^3*t^8.777)/y + (g1^12*g3^6*g4^6*t^8.777)/y - (g2^3*g4^3*t^8.986)/(g1^3*g3^3*y) - (t^4.039*y)/(g1*g2*g3*g4) - (t^5.079*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.105*y)/(g1^6*g3^6) - (g2^5*g4^5*t^6.908*y)/(g1*g3) - (g2^5*g3^5*t^6.921*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.921*y - (g1^5*g4^5*t^6.921*y)/(g2*g3) - (g1^5*g3^5*t^6.935*y)/(g2*g4) - (t^7.144*y)/(g1^7*g2*g3^7*g4) + (g2^7*g4^7*t^7.934*y)/(g1^5*g3^5) + (g2^7*g3*g4*t^7.947*y)/g1^5 + (g1*g2*g4^7*t^7.947*y)/g3^5 - (g2^4*g3^4*t^7.961*y)/(g1^2*g4^2) - (g1^4*g4^4*t^7.961*y)/(g2^2*g3^2) - (g2*g4*t^8.17*y)/(g1^11*g3^11) + g2^12*g3^6*g4^6*t^8.75*y + g1^3*g2^9*g3^3*g4^9*t^8.75*y + g1^6*g2^6*g4^12*t^8.75*y + g1^3*g2^9*g3^9*g4^3*t^8.763*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.763*y + g1^9*g2^3*g3^3*g4^9*t^8.763*y + g1^6*g2^6*g3^12*t^8.777*y + g1^9*g2^3*g3^9*g4^3*t^8.777*y + g1^12*g3^6*g4^6*t^8.777*y - (g2^3*g4^3*t^8.986*y)/(g1^3*g3^3) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
57972 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4974 | 1.7357 | 0.8627 | [X:[], M:[0.6873, 1.3084, 0.9626, 0.6873], q:[0.4813, 0.4813], qb:[0.4856, 0.477], phi:[0.3458]] | 2*t^2.06 + 2*t^2.88 + t^2.89 + 2*t^2.9 + 2*t^3.91 + t^3.93 + 3*t^4.12 + 4*t^4.94 + 4*t^4.95 + 4*t^4.96 + 2*t^4.98 + t^5.36 + 2*t^5.37 + t^5.38 + 3*t^5.75 + 2*t^5.76 + 5*t^5.78 + 2*t^5.79 + 3*t^5.8 + 3*t^5.97 + 2*t^5.99 - 6*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y | detail | |
57971 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4974 | 1.7349 | 0.8631 | [X:[], M:[0.6911, 1.3089, 0.9634, 0.6911], q:[0.4817, 0.4817], qb:[0.4817, 0.4817], phi:[0.3455]] | 2*t^2.07 + 5*t^2.89 + 3*t^3.93 + 3*t^4.15 + 14*t^4.96 + 4*t^5.37 + 15*t^5.78 - 2*t^6. - t^4.04/y - t^5.07/y - t^4.04*y - t^5.07*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47879 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.4743 | 1.6855 | 0.8747 | [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] | t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y | detail |