Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57296 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4741 1.6841 0.8753 [M:[0.6709, 1.3282], q:[0.4927, 0.4995], qb:[0.5005, 0.4918], phi:[0.3359]] [M:[[-5, -1, 1], [2, 0, 2]], q:[[6, 0, 0], [0, -1, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.013 + t^2.954 + t^2.974 + t^2.98 + t^3. + t^3.023 + t^3.961 + t^3.982 + t^3.985 + t^4.008 + t^4.025 + t^4.966 + t^4.969 + t^4.987 + t^4.989 + t^4.992 + t^4.995 + t^5.013 + t^5.015 + t^5.036 + t^5.46 + t^5.463 + t^5.483 + t^5.486 + t^5.907 + t^5.928 + t^5.933 + t^5.948 + 2*t^5.954 + t^5.959 + t^5.974 + t^5.977 + t^5.994 + 2*t^5.997 - 3*t^6. + t^6.003 + t^6.023 - t^6.026 + t^6.038 + t^6.046 + t^6.468 + t^6.47 + t^6.491 + t^6.494 + t^6.915 + 2*t^6.935 + t^6.938 + t^6.941 + t^6.956 + t^6.959 + 3*t^6.961 + t^6.964 + t^6.979 + 2*t^6.982 + 2*t^6.985 + t^6.999 + t^7.002 + 2*t^7.005 + t^7.025 + t^7.031 - t^7.034 + t^7.049 + t^7.449 + t^7.458 + t^7.473 + t^7.475 + t^7.496 + t^7.499 + t^7.519 + t^7.527 + t^7.92 + 2*t^7.923 + t^7.94 + 3*t^7.943 + t^7.946 + 2*t^7.949 + t^7.961 + 2*t^7.963 + 2*t^7.966 + 5*t^7.969 + t^7.975 + t^7.987 + 3*t^7.989 + t^7.992 + t^7.995 + t^8.007 + 2*t^8.01 - 2*t^8.013 + t^8.015 + t^8.018 - t^8.041 + t^8.051 + t^8.059 + t^8.413 + t^8.416 + t^8.434 + 2*t^8.437 + 2*t^8.439 + t^8.442 + t^8.457 + t^8.46 + t^8.463 + t^8.466 + t^8.483 - t^8.489 - t^8.509 - t^8.512 - t^8.53 - t^8.532 + t^8.861 + t^8.881 + t^8.887 + t^8.902 + 2*t^8.907 + t^8.913 + t^8.922 + 2*t^8.928 + 2*t^8.93 + t^8.933 + t^8.939 + 2*t^8.948 + 4*t^8.951 - 3*t^8.954 + 2*t^8.956 + t^8.968 + 3*t^8.971 - 2*t^8.974 + 5*t^8.977 - 5*t^8.98 + t^8.982 + t^8.992 + t^8.994 + 4*t^8.997 - t^4.008/y - t^5.015/y - t^6.02/y - t^6.961/y - t^6.982/y - t^6.987/y - t^7.008/y - t^7.028/y - t^7.031/y + t^7.966/y - t^7.969/y + t^7.987/y - t^7.989/y + t^7.992/y + t^8.013/y - t^8.015/y - t^8.033/y + t^8.036/y - t^8.039/y + t^8.928/y + t^8.933/y + (2*t^8.954)/y + t^8.974/y + t^8.98/y + t^8.997/y - t^4.008*y - t^5.015*y - t^6.02*y - t^6.961*y - t^6.982*y - t^6.987*y - t^7.008*y - t^7.028*y - t^7.031*y + t^7.966*y - t^7.969*y + t^7.987*y - t^7.989*y + t^7.992*y + t^8.013*y - t^8.015*y - t^8.033*y + t^8.036*y - t^8.039*y + t^8.928*y + t^8.933*y + 2*t^8.954*y + t^8.974*y + t^8.98*y + t^8.997*y (g3*t^2.013)/(g1^5*g2) + g1^6*g3^6*t^2.954 + (g3^6*t^2.974)/g2 + g1^6*g2*t^2.98 + t^3. + t^3.023/(g1^3*g3^3) + g1^5*g3^5*t^3.961 + (g3^5*t^3.982)/(g1*g2) + g1^2*g3^2*t^3.985 + t^4.008/(g1*g3) + (g3^2*t^4.025)/(g1^10*g2^2) + (g1*g3^7*t^4.966)/g2 + g1^4*g3^4*t^4.969 + (g3^7*t^4.987)/(g1^5*g2^2) + (g3^4*t^4.989)/(g1^2*g2) + g1*g3*t^4.992 + (g1^4*g2*t^4.995)/g3^2 + (g3*t^5.013)/(g1^5*g2) + t^5.015/(g1^2*g3^2) + t^5.036/(g1^8*g2*g3^2) + (g2*g3^11*t^5.46)/g1 + (g1^11*t^5.463)/(g2*g3) + (g1^5*t^5.483)/(g2^2*g3) + (g2^2*g3^5*t^5.486)/g1 + g1^12*g3^12*t^5.907 + (g1^6*g3^12*t^5.928)/g2 + g1^12*g2*g3^6*t^5.933 + (g3^12*t^5.948)/g2^2 + 2*g1^6*g3^6*t^5.954 + g1^12*g2^2*t^5.959 + (g3^6*t^5.974)/g2 + g1^3*g3^3*t^5.977 + (g3^6*t^5.994)/(g1^6*g2^2) + (2*g3^3*t^5.997)/(g1^3*g2) - 3*t^6. + (g1^3*g2*t^6.003)/g3^3 + t^6.023/(g1^3*g3^3) - (g2*t^6.026)/g3^6 + (g3^3*t^6.038)/(g1^15*g2^3) + t^6.046/(g1^6*g3^6) + (g2*g3^10*t^6.468)/g1^2 + (g1^10*t^6.47)/(g2*g3^2) + (g1^4*t^6.491)/(g2^2*g3^2) + (g2^2*g3^4*t^6.494)/g1^2 + g1^11*g3^11*t^6.915 + (2*g1^5*g3^11*t^6.935)/g2 + g1^8*g3^8*t^6.938 + g1^11*g2*g3^5*t^6.941 + (g3^11*t^6.956)/(g1*g2^2) + (g1^2*g3^8*t^6.959)/g2 + 3*g1^5*g3^5*t^6.961 + g1^8*g2*g3^2*t^6.964 + (g3^8*t^6.979)/(g1^4*g2^2) + (2*g3^5*t^6.982)/(g1*g2) + 2*g1^2*g3^2*t^6.985 + (g3^8*t^6.999)/(g1^10*g2^3) + (g3^5*t^7.002)/(g1^7*g2^2) + (2*g3^2*t^7.005)/(g1^4*g2) + (g3^2*t^7.025)/(g1^10*g2^2) + t^7.031/(g1^4*g3^4) - (g2*t^7.034)/(g1*g3^7) + t^7.049/(g1^13*g2^2*g3) + (g3^15*t^7.449)/g1^3 + (g1^15*t^7.458)/g3^3 + (g3^12*t^7.473)/g1^6 + (g2*g3^9*t^7.475)/g1^3 + (g1^9*t^7.478)/(g2*g3^3) - g2^2*g3^6*t^7.478 + t^7.496/g2^3 + (g1^3*t^7.499)/(g2^2*g3^3) - (g1^6*t^7.501)/(g2*g3^6) + (g2^2*g3^3*t^7.501)/g1^3 + t^7.519/(g1^3*g2^3*g3^3) + (g2^3*t^7.527)/(g1^3*g3^3) + (g1^7*g3^13*t^7.92)/g2 + 2*g1^10*g3^10*t^7.923 + (g1*g3^13*t^7.94)/g2^2 + (3*g1^4*g3^10*t^7.943)/g2 + g1^7*g3^7*t^7.946 + 2*g1^10*g2*g3^4*t^7.949 + (g3^13*t^7.961)/(g1^5*g2^3) + (2*g3^10*t^7.963)/(g1^2*g2^2) + (2*g1*g3^7*t^7.966)/g2 + 5*g1^4*g3^4*t^7.969 + (g1^10*g2^2*t^7.975)/g3^2 + (g3^7*t^7.987)/(g1^5*g2^2) + (3*g3^4*t^7.989)/(g1^2*g2) + g1*g3*t^7.992 + (g1^4*g2*t^7.995)/g3^2 + (g3^7*t^8.007)/(g1^11*g2^3) + (2*g3^4*t^8.01)/(g1^8*g2^2) - (2*g3*t^8.013)/(g1^5*g2) + t^8.015/(g1^2*g3^2) + (g1*g2*t^8.018)/g3^5 - (g2*t^8.041)/(g1^2*g3^8) + (g3^4*t^8.051)/(g1^20*g2^4) + t^8.059/(g1^11*g2*g3^5) + g1^5*g2*g3^17*t^8.413 + (g1^17*g3^5*t^8.416)/g2 + (g3^17*t^8.434)/g1 + (2*g1^11*g3^5*t^8.437)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.439 + (g1^17*t^8.442)/g3 + (g1^5*g3^5*t^8.457)/g2^3 + (g2*g3^11*t^8.46)/g1 + (g1^11*t^8.463)/(g2*g3) + g1^5*g2^3*g3^5*t^8.466 + (g2*g3^8*t^8.483)/g1^4 + (g1^8*t^8.486)/(g2*g3^4) - (g2^2*g3^5*t^8.486)/g1 - (g1^11*t^8.489)/g3^7 + (g1^2*t^8.506)/(g2^2*g3^4) - (g2*g3^5*t^8.506)/g1^7 - (2*g1^5*t^8.509)/(g2*g3^7) + (g2^2*g3^2*t^8.509)/g1^4 - (g2^3*t^8.512)/(g1*g3) - t^8.53/(g1*g2^2*g3^7) - (g2^2*t^8.532)/(g1^7*g3) + g1^18*g3^18*t^8.861 + (g1^12*g3^18*t^8.881)/g2 + g1^18*g2*g3^12*t^8.887 + (g1^6*g3^18*t^8.902)/g2^2 + 2*g1^12*g3^12*t^8.907 + g1^18*g2^2*g3^6*t^8.913 + (g3^18*t^8.922)/g2^3 + (2*g1^6*g3^12*t^8.928)/g2 + 2*g1^9*g3^9*t^8.93 + g1^12*g2*g3^6*t^8.933 + g1^18*g2^3*t^8.939 + (2*g3^12*t^8.948)/g2^2 + (4*g1^3*g3^9*t^8.951)/g2 - 3*g1^6*g3^6*t^8.954 + 2*g1^9*g2*g3^3*t^8.956 + (g3^12*t^8.968)/(g1^6*g2^3) + (3*g3^9*t^8.971)/(g1^3*g2^2) - (2*g3^6*t^8.974)/g2 + 5*g1^3*g3^3*t^8.977 - 5*g1^6*g2*t^8.98 + (g1^9*g2^2*t^8.982)/g3^3 + (g3^9*t^8.992)/(g1^9*g2^3) + (g3^6*t^8.994)/(g1^6*g2^2) + (4*g3^3*t^8.997)/(g1^3*g2) - t^4.008/(g1*g3*y) - t^5.015/(g1^2*g3^2*y) - t^6.02/(g1^6*g2*y) - (g1^5*g3^5*t^6.961)/y - (g3^5*t^6.982)/(g1*g2*y) - (g1^5*g2*t^6.987)/(g3*y) - t^7.008/(g1*g3*y) - t^7.028/(g1^7*g2*g3*y) - t^7.031/(g1^4*g3^4*y) + (g1*g3^7*t^7.966)/(g2*y) - (g1^4*g3^4*t^7.969)/y + (g3^7*t^7.987)/(g1^5*g2^2*y) - (g3^4*t^7.989)/(g1^2*g2*y) + (g1*g3*t^7.992)/y + (g3*t^8.013)/(g1^5*g2*y) - t^8.015/(g1^2*g3^2*y) - (g3*t^8.033)/(g1^11*g2^2*y) + t^8.036/(g1^8*g2*g3^2*y) - t^8.039/(g1^5*g3^5*y) + (g1^6*g3^12*t^8.928)/(g2*y) + (g1^12*g2*g3^6*t^8.933)/y + (2*g1^6*g3^6*t^8.954)/y + (g3^6*t^8.974)/(g2*y) + (g1^6*g2*t^8.98)/y + (g3^3*t^8.997)/(g1^3*g2*y) - (t^4.008*y)/(g1*g3) - (t^5.015*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^6*g2) - g1^5*g3^5*t^6.961*y - (g3^5*t^6.982*y)/(g1*g2) - (g1^5*g2*t^6.987*y)/g3 - (t^7.008*y)/(g1*g3) - (t^7.028*y)/(g1^7*g2*g3) - (t^7.031*y)/(g1^4*g3^4) + (g1*g3^7*t^7.966*y)/g2 - g1^4*g3^4*t^7.969*y + (g3^7*t^7.987*y)/(g1^5*g2^2) - (g3^4*t^7.989*y)/(g1^2*g2) + g1*g3*t^7.992*y + (g3*t^8.013*y)/(g1^5*g2) - (t^8.015*y)/(g1^2*g3^2) - (g3*t^8.033*y)/(g1^11*g2^2) + (t^8.036*y)/(g1^8*g2*g3^2) - (t^8.039*y)/(g1^5*g3^5) + (g1^6*g3^12*t^8.928*y)/g2 + g1^12*g2*g3^6*t^8.933*y + 2*g1^6*g3^6*t^8.954*y + (g3^6*t^8.974*y)/g2 + g1^6*g2*t^8.98*y + (g3^3*t^8.997*y)/(g1^3*g2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57925 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 1.495 1.7254 0.8665 [X:[], M:[0.6716, 1.3284, 0.6716], q:[0.4926, 0.5], qb:[0.5, 0.4926], phi:[0.3358]] 2*t^2.01 + t^2.96 + 2*t^2.98 + t^3. + t^3.02 + t^3.96 + t^3.99 + t^4.01 + 3*t^4.03 + 3*t^4.97 + 6*t^4.99 + 3*t^5.01 + 2*t^5.04 + 2*t^5.46 + 2*t^5.49 + t^5.91 + 2*t^5.93 + 4*t^5.96 + 3*t^5.98 + t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail
57924 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ 1.4756 1.6903 0.873 [X:[], M:[0.6792, 1.3181, 0.9771], q:[0.4784, 0.4986], qb:[0.5014, 0.4758], phi:[0.341]] t^2.04 + t^2.86 + t^2.92 + t^2.93 + t^2.94 + t^3. + t^3.89 + 2*t^3.95 + t^4.02 + t^4.08 + t^4.9 + t^4.91 + t^4.96 + 2*t^4.97 + t^4.98 + t^4.99 + t^5.04 + t^5.05 + t^5.38 + t^5.39 + t^5.45 + t^5.46 + t^5.73 + 2*t^5.79 + t^5.8 + 2*t^5.85 + 3*t^5.86 + t^5.87 + t^5.88 + t^5.92 + t^5.93 + t^5.98 + t^5.99 - 3*t^6. - t^4.02/y - t^5.05/y - t^4.02*y - t^5.05*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47879 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ 1.4743 1.6855 0.8747 [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y detail