Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47874 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4951 | 1.7264 | 0.866 | [M:[0.6735], q:[0.4945, 0.493], qb:[0.4945, 0.493], phi:[0.3375]] | [M:[[-5, 1, -5, 1]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ | ${2}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ 2}\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 0 | t^2.021 + t^2.025 + t^2.958 + 2*t^2.962 + t^2.967 + t^3.038 + t^3.971 + 2*t^3.975 + t^4.041 + t^4.046 + t^4.05 + t^4.979 + 4*t^4.983 + 5*t^4.987 + 2*t^4.992 + t^5.058 + t^5.063 + 2*t^5.454 + 2*t^5.458 + t^5.916 + 2*t^5.92 + 4*t^5.925 + 2*t^5.929 + t^5.934 + t^5.991 + 2*t^5.996 - t^6.004 + t^6.062 + t^6.066 + t^6.071 + 2*t^6.075 + 2*t^6.466 + 2*t^6.471 + t^6.929 + 4*t^6.933 + 5*t^6.937 + 2*t^6.942 + t^6.999 + 4*t^7.004 + 6*t^7.008 + 5*t^7.013 + t^7.079 + t^7.083 + t^7.088 + 4*t^7.475 + 4*t^7.479 + 2*t^7.483 + 2*t^7.488 + t^7.937 + 5*t^7.941 + 11*t^7.946 + 12*t^7.95 + 6*t^7.954 + 2*t^7.959 + t^8.012 + 2*t^8.016 - t^8.021 - t^8.025 - 2*t^8.029 + t^8.082 + t^8.087 + t^8.091 + 2*t^8.096 + 2*t^8.1 + 2*t^8.412 + 6*t^8.416 + 6*t^8.421 + 2*t^8.425 - 2*t^8.496 - 2*t^8.5 + t^8.874 + 2*t^8.878 + 4*t^8.883 + 6*t^8.887 + 4*t^8.892 + 2*t^8.896 + t^8.901 + t^8.949 + 5*t^8.954 + 6*t^8.958 + t^8.962 - 3*t^8.967 - t^8.971 - t^4.013/y - t^5.025/y - t^6.033/y - t^6.038/y - t^6.971/y - (2*t^6.975)/y - t^6.979/y - (2*t^7.05)/y + t^7.979/y + (2*t^7.983)/y + (2*t^7.987)/y + t^7.992/y - t^8.054/y - t^8.063/y + (2*t^8.92)/y + (2*t^8.925)/y + (2*t^8.929)/y - t^4.013*y - t^5.025*y - t^6.033*y - t^6.038*y - t^6.971*y - 2*t^6.975*y - t^6.979*y - 2*t^7.05*y + t^7.979*y + 2*t^7.983*y + 2*t^7.987*y + t^7.992*y - t^8.054*y - t^8.063*y + 2*t^8.92*y + 2*t^8.925*y + 2*t^8.929*y | (g2*g4*t^2.021)/(g1^5*g3^5) + t^2.025/(g1^2*g2^2*g3^2*g4^2) + g2^6*g4^6*t^2.958 + g2^6*g3^6*t^2.962 + g1^6*g4^6*t^2.962 + g1^6*g3^6*t^2.967 + t^3.038/(g1^3*g2^3*g3^3*g4^3) + (g2^5*g4^5*t^3.971)/(g1*g3) + (g2^5*g3^5*t^3.975)/(g1*g4) + (g1^5*g4^5*t^3.975)/(g2*g3) + (g2^2*g4^2*t^4.041)/(g1^10*g3^10) + t^4.046/(g1^7*g2*g3^7*g4) + t^4.05/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^4.979)/(g1^5*g3^5) + (g2^7*g3*g4*t^4.983)/g1^5 + (2*g2^4*g4^4*t^4.983)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.983)/g3^5 + (2*g2^4*g3^4*t^4.987)/(g1^2*g4^2) + g1*g2*g3*g4*t^4.987 + (2*g1^4*g4^4*t^4.987)/(g2^2*g3^2) + (2*g1^4*g3^4*t^4.992)/(g2^2*g4^2) + t^5.058/(g1^8*g2^2*g3^8*g4^2) + t^5.063/(g1^5*g2^5*g3^5*g4^5) + (g1^5*g2^11*t^5.454)/(g3*g4) + (g3^5*g4^11*t^5.454)/(g1*g2) + (g1^11*g2^5*t^5.458)/(g3*g4) + (g3^11*g4^5*t^5.458)/(g1*g2) + g2^12*g4^12*t^5.916 + g2^12*g3^6*g4^6*t^5.92 + g1^6*g2^6*g4^12*t^5.92 + g2^12*g3^12*t^5.925 + 2*g1^6*g2^6*g3^6*g4^6*t^5.925 + g1^12*g4^12*t^5.925 + g1^6*g2^6*g3^12*t^5.929 + g1^12*g3^6*g4^6*t^5.929 + g1^12*g3^12*t^5.934 + (g2^6*g4^6*t^5.991)/(g1^6*g3^6) + (2*g2^3*g4^3*t^5.996)/(g1^3*g3^3) - 4*t^6. + (2*g2^3*g3^3*t^6.)/(g1^3*g4^3) + (2*g1^3*g4^3*t^6.)/(g2^3*g3^3) - (g1^6*t^6.004)/g2^6 - (g3^6*t^6.004)/g4^6 + (g1^3*g3^3*t^6.004)/(g2^3*g4^3) + (g2^3*g4^3*t^6.062)/(g1^15*g3^15) + t^6.066/(g1^12*g3^12) + t^6.071/(g1^9*g2^3*g3^9*g4^3) + (2*t^6.075)/(g1^6*g2^6*g3^6*g4^6) + (g1^4*g2^10*t^6.466)/(g3^2*g4^2) + (g3^4*g4^10*t^6.466)/(g1^2*g2^2) + (g1^10*g2^4*t^6.471)/(g3^2*g4^2) + (g3^10*g4^4*t^6.471)/(g1^2*g2^2) + (g2^11*g4^11*t^6.929)/(g1*g3) + (2*g2^11*g3^5*g4^5*t^6.933)/g1 + (2*g1^5*g2^5*g4^11*t^6.933)/g3 + (g2^11*g3^11*t^6.937)/(g1*g4) + 3*g1^5*g2^5*g3^5*g4^5*t^6.937 + (g1^11*g4^11*t^6.937)/(g2*g3) + (g1^5*g2^5*g3^11*t^6.942)/g4 + (g1^11*g3^5*g4^5*t^6.942)/g2 + (g2^8*g4^8*t^6.999)/(g1^10*g3^10) + (g2^8*g4^2*t^7.004)/(g1^10*g3^4) + (2*g2^5*g4^5*t^7.004)/(g1^7*g3^7) + (g2^2*g4^8*t^7.004)/(g1^4*g3^10) + (g2^5*t^7.008)/(g1^7*g3*g4) + (4*g2^2*g4^2*t^7.008)/(g1^4*g3^4) + (g4^5*t^7.008)/(g1*g2*g3^7) + (3*g2^2*g3^2*t^7.013)/(g1^4*g4^4) - t^7.013/(g1*g2*g3*g4) + (3*g1^2*g4^2*t^7.013)/(g2^4*g3^4) - (g3^5*t^7.017)/(g1*g2*g4^7) + (2*g1^2*g3^2*t^7.017)/(g2^4*g4^4) - (g1^5*t^7.017)/(g2^7*g3*g4) + t^7.079/(g1^13*g2*g3^13*g4) + t^7.083/(g1^10*g2^4*g3^10*g4^4) + t^7.088/(g1^7*g2^7*g3^7*g4^7) + (g2^12*t^7.475)/g3^6 + (g2^15*t^7.475)/(g1^3*g3^3*g4^3) + (g4^12*t^7.475)/g1^6 + (g4^15*t^7.475)/(g1^3*g2^3*g3^3) + (2*g1^3*g2^9*t^7.479)/(g3^3*g4^3) + (2*g3^3*g4^9*t^7.479)/(g1^3*g2^3) - (g1^6*g2^6*t^7.483)/g4^6 + (2*g1^9*g2^3*t^7.483)/(g3^3*g4^3) + (2*g3^9*g4^3*t^7.483)/(g1^3*g2^3) - (g3^6*g4^6*t^7.483)/g2^6 + (g1^15*t^7.488)/(g2^3*g3^3*g4^3) + (g3^15*t^7.488)/(g1^3*g2^3*g4^3) + (g2^13*g4^13*t^7.937)/(g1^5*g3^5) + (g2^13*g3*g4^7*t^7.941)/g1^5 + (3*g2^10*g4^10*t^7.941)/(g1^2*g3^2) + (g1*g2^7*g4^13*t^7.941)/g3^5 + (g2^13*g3^7*g4*t^7.946)/g1^5 + (4*g2^10*g3^4*g4^4*t^7.946)/g1^2 + g1*g2^7*g3*g4^7*t^7.946 + (4*g1^4*g2^4*g4^10*t^7.946)/g3^2 + (g1^7*g2*g4^13*t^7.946)/g3^5 + (3*g2^10*g3^10*t^7.95)/(g1^2*g4^2) + 6*g1^4*g2^4*g3^4*g4^4*t^7.95 + (3*g1^10*g4^10*t^7.95)/(g2^2*g3^2) + (3*g1^4*g2^4*g3^10*t^7.954)/g4^2 + (3*g1^10*g3^4*g4^4*t^7.954)/g2^2 + (2*g1^10*g3^10*t^7.959)/(g2^2*g4^2) + (g2^7*g4^7*t^8.012)/(g1^11*g3^11) + (2*g2^4*g4^4*t^8.016)/(g1^8*g3^8) - (g2*g4*t^8.021)/(g1^5*g3^5) + (2*g2*g3*t^8.025)/(g1^5*g4^5) - (5*t^8.025)/(g1^2*g2^2*g3^2*g4^2) + (2*g1*g4*t^8.025)/(g2^5*g3^5) - (2*g3^4*t^8.029)/(g1^2*g2^2*g4^8) + (2*g1*g3*t^8.029)/(g2^5*g4^5) - (2*g1^4*t^8.029)/(g2^8*g3^2*g4^2) + (g2^4*g4^4*t^8.082)/(g1^20*g3^20) + (g2*g4*t^8.087)/(g1^17*g3^17) + t^8.091/(g1^14*g2^2*g3^14*g4^2) + (2*t^8.096)/(g1^11*g2^5*g3^11*g4^5) + (2*t^8.1)/(g1^8*g2^8*g3^8*g4^8) + (g1^5*g2^17*g4^5*t^8.412)/g3 + (g2^5*g3^5*g4^17*t^8.412)/g1 + (g1^5*g2^17*g3^5*t^8.416)/g4 + (2*g1^11*g2^11*g4^5*t^8.416)/g3 + (2*g2^5*g3^11*g4^11*t^8.416)/g1 + (g1^5*g3^5*g4^17*t^8.416)/g2 + (2*g1^11*g2^11*g3^5*t^8.421)/g4 + (g1^17*g2^5*g4^5*t^8.421)/g3 + (g2^5*g3^17*g4^5*t^8.421)/g1 + (2*g1^5*g3^11*g4^11*t^8.421)/g2 + (g1^17*g2^5*g3^5*t^8.425)/g4 + (g1^5*g3^17*g4^5*t^8.425)/g2 - (g2^11*t^8.492)/(g1*g3*g4^7) + (2*g1^2*g2^8*t^8.492)/(g3^4*g4^4) - (g1^5*g2^5*t^8.492)/(g3^7*g4) - (g3^5*g4^5*t^8.492)/(g1^7*g2) + (2*g3^2*g4^8*t^8.492)/(g1^4*g2^4) - (g4^11*t^8.492)/(g1*g2^7*g3) - (2*g1^5*g2^5*t^8.496)/(g3*g4^7) + (2*g1^8*g2^2*t^8.496)/(g3^4*g4^4) - (g1^11*t^8.496)/(g2*g3^7*g4) - (g3^11*t^8.496)/(g1^7*g2*g4) + (2*g3^8*g4^2*t^8.496)/(g1^4*g2^4) - (2*g3^5*g4^5*t^8.496)/(g1*g2^7) - (g1^11*t^8.5)/(g2*g3*g4^7) - (g3^11*t^8.5)/(g1*g2^7*g4) + g2^18*g4^18*t^8.874 + g2^18*g3^6*g4^12*t^8.878 + g1^6*g2^12*g4^18*t^8.878 + g2^18*g3^12*g4^6*t^8.883 + 2*g1^6*g2^12*g3^6*g4^12*t^8.883 + g1^12*g2^6*g4^18*t^8.883 + g2^18*g3^18*t^8.887 + 2*g1^6*g2^12*g3^12*g4^6*t^8.887 + 2*g1^12*g2^6*g3^6*g4^12*t^8.887 + g1^18*g4^18*t^8.887 + g1^6*g2^12*g3^18*t^8.892 + 2*g1^12*g2^6*g3^12*g4^6*t^8.892 + g1^18*g3^6*g4^12*t^8.892 + g1^12*g2^6*g3^18*t^8.896 + g1^18*g3^12*g4^6*t^8.896 + g1^18*g3^18*t^8.901 + (g2^12*g4^12*t^8.949)/(g1^6*g3^6) + (g2^12*g4^6*t^8.954)/g1^6 + (3*g2^9*g4^9*t^8.954)/(g1^3*g3^3) + (g2^6*g4^12*t^8.954)/g3^6 + (5*g2^9*g3^3*g4^3*t^8.958)/g1^3 - 4*g2^6*g4^6*t^8.958 + (5*g1^3*g2^3*g4^9*t^8.958)/g3^3 - 6*g2^6*g3^6*t^8.962 + (3*g2^9*g3^9*t^8.962)/(g1^3*g4^3) + 7*g1^3*g2^3*g3^3*g4^3*t^8.962 - 6*g1^6*g4^6*t^8.962 + (3*g1^9*g4^9*t^8.962)/(g2^3*g3^3) - 7*g1^6*g3^6*t^8.967 - (g2^6*g3^12*t^8.967)/g4^6 + (3*g1^3*g2^3*g3^9*t^8.967)/g4^3 + (3*g1^9*g3^3*g4^3*t^8.967)/g2^3 - (g1^12*g4^6*t^8.967)/g2^6 - (g1^12*g3^6*t^8.971)/g2^6 - (g1^6*g3^12*t^8.971)/g4^6 + (g1^9*g3^9*t^8.971)/(g2^3*g4^3) - t^4.013/(g1*g2*g3*g4*y) - t^5.025/(g1^2*g2^2*g3^2*g4^2*y) - t^6.033/(g1^6*g3^6*y) - t^6.038/(g1^3*g2^3*g3^3*g4^3*y) - (g2^5*g4^5*t^6.971)/(g1*g3*y) - (g2^5*g3^5*t^6.975)/(g1*g4*y) - (g1^5*g4^5*t^6.975)/(g2*g3*y) - (g1^5*g3^5*t^6.979)/(g2*g4*y) - (2*t^7.05)/(g1^4*g2^4*g3^4*g4^4*y) + (g2^7*g4^7*t^7.979)/(g1^5*g3^5*y) + (g2^7*g3*g4*t^7.983)/(g1^5*y) + (g1*g2*g4^7*t^7.983)/(g3^5*y) + (2*g1*g2*g3*g4*t^7.987)/y + (g1^4*g3^4*t^7.992)/(g2^2*g4^2*y) - (g2*g4*t^8.054)/(g1^11*g3^11*y) - t^8.063/(g1^5*g2^5*g3^5*g4^5*y) + (g2^12*g3^6*g4^6*t^8.92)/y + (g1^6*g2^6*g4^12*t^8.92)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.925)/y + (g1^6*g2^6*g3^12*t^8.929)/y + (g1^12*g3^6*g4^6*t^8.929)/y - (t^4.013*y)/(g1*g2*g3*g4) - (t^5.025*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.033*y)/(g1^6*g3^6) - (t^6.038*y)/(g1^3*g2^3*g3^3*g4^3) - (g2^5*g4^5*t^6.971*y)/(g1*g3) - (g2^5*g3^5*t^6.975*y)/(g1*g4) - (g1^5*g4^5*t^6.975*y)/(g2*g3) - (g1^5*g3^5*t^6.979*y)/(g2*g4) - (2*t^7.05*y)/(g1^4*g2^4*g3^4*g4^4) + (g2^7*g4^7*t^7.979*y)/(g1^5*g3^5) + (g2^7*g3*g4*t^7.983*y)/g1^5 + (g1*g2*g4^7*t^7.983*y)/g3^5 + 2*g1*g2*g3*g4*t^7.987*y + (g1^4*g3^4*t^7.992*y)/(g2^2*g4^2) - (g2*g4*t^8.054*y)/(g1^11*g3^11) - (t^8.063*y)/(g1^5*g2^5*g3^5*g4^5) + g2^12*g3^6*g4^6*t^8.92*y + g1^6*g2^6*g4^12*t^8.92*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.925*y + g1^6*g2^6*g3^12*t^8.929*y + g1^12*g3^6*g4^6*t^8.929*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47918 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4951 | 1.7263 | 0.8661 | [M:[0.6749], q:[0.4938, 0.4938], qb:[0.4938, 0.4938], phi:[0.3375]] | 2*t^2.025 + 4*t^2.963 + t^3.037 + 3*t^3.975 + 3*t^4.049 + 12*t^4.988 + 2*t^5.062 + 4*t^5.457 + 10*t^5.926 + 2*t^6. - t^4.012/y - t^5.025/y - t^4.012*y - t^5.025*y | detail | |
47917 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4047 | 1.592 | 0.8823 | [X:[1.371], M:[0.7758], q:[0.384, 0.6985], qb:[0.5257, 0.5047], phi:[0.3145]] | t^2.327 + t^2.666 + t^2.729 + t^2.83 + 2*t^3.61 + t^3.673 + t^4.113 + 2*t^4.553 + 2*t^4.616 + t^4.655 + t^4.994 + t^5.158 + t^5.333 + t^5.343 + t^5.396 + t^5.458 + 2*t^5.497 + t^5.549 + 2*t^5.56 + t^5.612 + t^5.661 + t^5.937 - 4*t^6. - t^3.943/y - t^4.887/y - t^3.943*y - t^4.887*y | detail | |
47882 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.4342 | 1.6257 | 0.8822 | [X:[1.3547], M:[0.8066], q:[0.4353, 0.5967], qb:[0.4353, 0.5967], phi:[0.3227]] | t^2.42 + t^2.612 + t^2.904 + 2*t^3.096 + t^3.58 + 3*t^4.064 + 2*t^4.548 + t^4.84 + 3*t^5.032 + t^5.224 + t^5.324 + 2*t^5.37 + 2*t^5.516 + 2*t^5.708 + t^5.808 + 2*t^5.854 - t^6. - t^3.968/y - t^4.936/y - t^3.968*y - t^4.936*y | detail | |
47933 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.5159 | 1.7676 | 0.8576 | [M:[0.6732, 0.6732], q:[0.4941, 0.4941], qb:[0.4955, 0.4927], phi:[0.3373]] | 2*t^2.019 + t^2.024 + 2*t^2.96 + 2*t^2.969 + t^3.036 + 2*t^3.972 + 3*t^4.039 + 2*t^4.043 + t^4.047 + 4*t^4.98 + 4*t^4.984 + 4*t^4.988 + 4*t^4.992 + 2*t^5.055 + t^5.059 + t^5.454 + 2*t^5.458 + t^5.463 + 3*t^5.92 + 4*t^5.929 + 3*t^5.937 + 3*t^5.992 + 4*t^5.996 - 6*t^6. - t^4.012/y - t^5.024/y - t^4.012*y - t^5.024*y | detail | |
47919 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.5159 | 1.7673 | 0.8577 | [M:[0.6744, 0.6744], q:[0.4942, 0.4942], qb:[0.4942, 0.4942], phi:[0.3372]] | 3*t^2.023 + 4*t^2.965 + t^3.035 + 2*t^3.977 + 6*t^4.046 + 16*t^4.988 + 3*t^5.058 + 4*t^5.459 + 10*t^5.93 + 2*t^6. - t^4.012/y - t^5.023/y - t^4.012*y - t^5.023*y | detail | |
47879 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 1.4743 | 1.6855 | 0.8747 | [M:[0.674, 1.3244], q:[0.4941, 0.4925], qb:[0.4941, 0.4925], phi:[0.3378]] | t^2.022 + t^2.955 + 2*t^2.96 + t^2.965 + t^3.04 + t^3.968 + 3*t^3.973 + t^4.044 + t^4.977 + 3*t^4.982 + 3*t^4.987 + t^4.991 + t^5.062 + 2*t^5.451 + 2*t^5.456 + t^5.91 + 2*t^5.915 + 4*t^5.92 + 2*t^5.924 + t^5.929 + t^5.99 + 2*t^5.995 - 2*t^6. - t^4.013/y - t^5.027/y - t^4.013*y - t^5.027*y | detail | |
47943 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4974 | 1.7353 | 0.8629 | [M:[0.6871, 0.963], q:[0.4836, 0.4794], qb:[0.4836, 0.4794], phi:[0.3457]] | t^2.061 + t^2.074 + t^2.876 + 3*t^2.889 + t^2.902 + t^3.913 + 2*t^3.926 + t^4.123 + t^4.135 + t^4.148 + t^4.938 + 5*t^4.95 + 6*t^4.963 + 2*t^4.976 + 2*t^5.364 + 2*t^5.377 + t^5.753 + 3*t^5.765 + 7*t^5.778 + 3*t^5.791 + t^5.803 + t^5.975 + t^5.987 - 2*t^6. - t^4.037/y - t^5.074/y - t^4.037*y - t^5.074*y | detail | |
47904 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ | 1.1161 | 1.2318 | 0.9061 | [X:[1.5372], M:[0.9256], q:[0.4215, 0.8843], qb:[0.4215, 0.8843], phi:[0.2314]] | t^2.083 + t^2.529 + t^2.777 + 3*t^3.917 + t^4.165 + 2*t^4.612 + t^4.859 + t^5.058 + 2*t^5.306 + t^5.553 + 4*t^5.876 - 2*t^6. - t^3.694/y - t^4.388/y - t^5.777/y - t^3.694*y - t^4.388*y - t^5.777*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47866 | SU3adj1nf2 | ${}$ | 1.4743 | 1.6854 | 0.8748 | [q:[0.4934, 0.4934], qb:[0.4934, 0.4934], phi:[0.3377]] | t^2.026 + 4*t^2.96 + t^3.04 + 4*t^3.974 + t^4.053 + 8*t^4.987 + t^5.066 + 4*t^5.454 + 10*t^5.921 - t^4.013/y - t^5.026/y - t^4.013*y - t^5.026*y | detail |