Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57650 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4954 | 1.7253 | 0.8667 | [X:[], M:[0.992, 0.6879], q:[0.504, 0.4881], qb:[0.504, 0.4881], phi:[0.336]] | [X:[], M:[[3, 0, 3], [-8, 0, -8]], q:[[-3, -1, -3], [9, 0, 0]], qb:[[0, 1, 0], [0, 0, 9]], phi:[[-1, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\phi_{1}^{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1 | t^2.02 + t^2.06 + t^2.93 + 3*t^2.98 + t^3.02 + 2*t^3.98 + 2*t^4.03 + t^4.08 + t^4.13 + 2*t^4.94 + 6*t^4.99 + 5*t^5.04 + t^5.09 + 2*t^5.45 + 2*t^5.5 + t^5.86 + 3*t^5.9 + 5*t^5.95 + t^6. + 3*t^6.05 + 2*t^6.1 + t^6.14 + t^6.19 + 2*t^6.46 + 2*t^6.5 + 2*t^6.91 + 7*t^6.96 + 9*t^7.01 + 7*t^7.06 + 5*t^7.1 + t^7.15 + 2*t^7.42 + 2*t^7.46 + 4*t^7.51 + 4*t^7.56 + 2*t^7.87 + 8*t^7.92 + 14*t^7.97 + 10*t^8.02 + 2*t^8.06 + 3*t^8.11 + 2*t^8.16 + t^8.21 + t^8.25 + 2*t^8.38 + 6*t^8.42 + 4*t^8.47 + t^8.79 + 3*t^8.83 + 5*t^8.88 + 6*t^8.93 + 3*t^8.98 - t^4.01/y - t^5.02/y - t^6.02/y - t^6.07/y - t^6.94/y - (3*t^6.98)/y - (2*t^7.03)/y + t^7.94/y + (2*t^7.99)/y + (2*t^8.04)/y - t^8.14/y + (3*t^8.9)/y + (3*t^8.95)/y - t^4.01*y - t^5.02*y - t^6.02*y - t^6.07*y - t^6.94*y - 3*t^6.98*y - 2*t^7.03*y + t^7.94*y + 2*t^7.99*y + 2*t^8.04*y - t^8.14*y + 3*t^8.9*y + 3*t^8.95*y | t^2.02/(g1^2*g3^2) + t^2.06/(g1^8*g3^8) + g1^9*g3^9*t^2.93 + g1^9*g2*t^2.98 + g1^3*g3^3*t^2.98 + (g3^6*t^2.98)/(g1^3*g2) + t^3.02/(g1^3*g3^3) + (g1^8*g2*t^3.98)/g3 + (g3^5*t^3.98)/(g1^4*g2) + (2*t^4.03)/(g1^4*g3^4) + t^4.08/(g1^10*g3^10) + t^4.13/(g1^16*g3^16) + 2*g1^7*g3^7*t^4.94 + (2*g1^7*g2*t^4.99)/g3^2 + 2*g1*g3*t^4.99 + (2*g3^4*t^4.99)/(g1^5*g2) + (g1*g2*t^5.04)/g3^8 + (3*t^5.04)/(g1^5*g3^5) + t^5.04/(g1^11*g2*g3^2) + t^5.09/(g1^11*g3^11) + (g1^14*t^5.45)/(g2*g3^4) + (g2*g3^17*t^5.45)/g1 + (g1^2*t^5.5)/(g2^2*g3^7) + (g2^2*g3^8*t^5.5)/g1 + g1^18*g3^18*t^5.86 + g1^18*g2*g3^9*t^5.9 + g1^12*g3^12*t^5.9 + (g1^6*g3^15*t^5.9)/g2 + g1^18*g2^2*t^5.95 + 3*g1^6*g3^6*t^5.95 + (g3^12*t^5.95)/(g1^6*g2^2) - 3*t^6. + (2*g1^6*g2*t^6.)/g3^3 + (2*g3^3*t^6.)/(g1^6*g2) + (3*t^6.05)/(g1^6*g3^6) + (2*t^6.1)/(g1^12*g3^12) + t^6.14/(g1^18*g3^18) + t^6.19/(g1^24*g3^24) + (g1^13*t^6.46)/(g2*g3^5) + (g2*g3^16*t^6.46)/g1^2 + (g1*t^6.5)/(g2^2*g3^8) + (g2^2*g3^7*t^6.5)/g1^2 + g1^17*g2*g3^8*t^6.91 + (g1^5*g3^14*t^6.91)/g2 + (g1^17*g2^2*t^6.96)/g3 + 5*g1^5*g3^5*t^6.96 + (g3^11*t^6.96)/(g1^7*g2^2) + (4*g1^5*g2*t^7.01)/g3^4 + t^7.01/(g1*g3) + (4*g3^2*t^7.01)/(g1^7*g2) + (g2*t^7.06)/(g1*g3^10) + (5*t^7.06)/(g1^7*g3^7) + t^7.06/(g1^13*g2*g3^4) + (g2*t^7.1)/(g1^7*g3^16) + (3*t^7.1)/(g1^13*g3^13) + t^7.1/(g1^19*g2*g3^10) + t^7.15/(g1^19*g3^19) + (g1^24*t^7.42)/g3^3 + (g3^24*t^7.42)/g1^3 + (2*g1^12*t^7.46)/(g2*g3^6) - (g1^6*t^7.46)/(g2^2*g3^3) - g1^3*g2^2*g3^12*t^7.46 + (2*g2*g3^15*t^7.46)/g1^3 + (2*t^7.51)/(g2^2*g3^9) + (2*g2^2*g3^6*t^7.51)/g1^3 + (g2^2*t^7.56)/g1^9 + t^7.56/(g1^6*g2^2*g3^15) + t^7.56/(g1^12*g2^3*g3^12) + (g2^3*t^7.56)/(g1^3*g3^3) + 2*g1^16*g3^16*t^7.87 + 3*g1^16*g2*g3^7*t^7.92 + 2*g1^10*g3^10*t^7.92 + (3*g1^4*g3^13*t^7.92)/g2 + (3*g1^16*g2^2*t^7.97)/g3^2 + 8*g1^4*g3^4*t^7.97 + (3*g3^10*t^7.97)/(g1^8*g2^2) + (g1^10*g2^2*t^8.02)/g3^8 + (5*g1^4*g2*t^8.02)/g3^5 - (2*t^8.02)/(g1^2*g3^2) + (5*g3*t^8.02)/(g1^8*g2) + (g3^4*t^8.02)/(g1^14*g2^2) + (2*t^8.06)/(g1^8*g3^8) + (3*t^8.11)/(g1^14*g3^14) + (2*t^8.16)/(g1^20*g3^20) + t^8.21/(g1^26*g3^26) + t^8.25/(g1^32*g3^32) + (g1^23*g3^5*t^8.38)/g2 + g1^8*g2*g3^26*t^8.38 + (g1^23*t^8.42)/g3^4 + (2*g1^11*g3^2*t^8.42)/g2^2 + 2*g1^8*g2^2*g3^17*t^8.42 + (g3^23*t^8.42)/g1^4 - (g1^17*t^8.47)/g3^10 + (3*g1^11*t^8.47)/(g2*g3^7) - (g1^5*t^8.47)/(g2^2*g3^4) + t^8.47/(g1*g2^3*g3) + g1^8*g2^3*g3^8*t^8.47 - g1^2*g2^2*g3^11*t^8.47 + (3*g2*g3^14*t^8.47)/g1^4 - (g3^17*t^8.47)/g1^10 - (g1^5*t^8.52)/(g2*g3^13) + (2*t^8.52)/(g1*g2^2*g3^10) - t^8.52/(g1^7*g2^3*g3^7) - g1^2*g2^3*g3^2*t^8.52 + (2*g2^2*g3^5*t^8.52)/g1^4 - (g2*g3^8*t^8.52)/g1^10 + g1^27*g3^27*t^8.79 + g1^27*g2*g3^18*t^8.83 + g1^21*g3^21*t^8.83 + (g1^15*g3^24*t^8.83)/g2 + g1^27*g2^2*g3^9*t^8.88 + 3*g1^15*g3^15*t^8.88 + (g1^3*g3^21*t^8.88)/g2^2 + g1^27*g2^3*t^8.93 + 4*g1^15*g2*g3^6*t^8.93 - 4*g1^9*g3^9*t^8.93 + (4*g1^3*g3^12*t^8.93)/g2 + (g3^18*t^8.93)/(g1^9*g2^3) - 5*g1^9*g2*t^8.98 + (3*g1^15*g2^2*t^8.98)/g3^3 + 7*g1^3*g3^3*t^8.98 - (5*g3^6*t^8.98)/(g1^3*g2) + (3*g3^9*t^8.98)/(g1^9*g2^2) - t^4.01/(g1*g3*y) - t^5.02/(g1^2*g3^2*y) - t^6.02/(g1^3*g3^3*y) - t^6.07/(g1^9*g3^9*y) - (g1^8*g3^8*t^6.94)/y - (g1^8*g2*t^6.98)/(g3*y) - (g1^2*g3^2*t^6.98)/y - (g3^5*t^6.98)/(g1^4*g2*y) - (2*t^7.03)/(g1^4*g3^4*y) + (g1^7*g3^7*t^7.94)/y + (2*g1*g3*t^7.99)/y + (g1*g2*t^8.04)/(g3^8*y) + t^8.04/(g1^11*g2*g3^2*y) - t^8.14/(g1^17*g3^17*y) + (g1^18*g2*g3^9*t^8.9)/y + (g1^12*g3^12*t^8.9)/y + (g1^6*g3^15*t^8.9)/(g2*y) + (g1^12*g2*g3^3*t^8.95)/y + (g1^6*g3^6*t^8.95)/y + (g3^9*t^8.95)/(g2*y) - (t^4.01*y)/(g1*g3) - (t^5.02*y)/(g1^2*g3^2) - (t^6.02*y)/(g1^3*g3^3) - (t^6.07*y)/(g1^9*g3^9) - g1^8*g3^8*t^6.94*y - (g1^8*g2*t^6.98*y)/g3 - g1^2*g3^2*t^6.98*y - (g3^5*t^6.98*y)/(g1^4*g2) - (2*t^7.03*y)/(g1^4*g3^4) + g1^7*g3^7*t^7.94*y + 2*g1*g3*t^7.99*y + (g1*g2*t^8.04*y)/g3^8 + (t^8.04*y)/(g1^11*g2*g3^2) - (t^8.14*y)/(g1^17*g3^17) + g1^18*g2*g3^9*t^8.9*y + g1^12*g3^12*t^8.9*y + (g1^6*g3^15*t^8.9*y)/g2 + g1^12*g2*g3^3*t^8.95*y + g1^6*g3^6*t^8.95*y + (g3^9*t^8.95*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
59464 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 1.4344 | 1.673 | 0.8574 | [X:[], M:[0.9091, 0.9091], q:[0.5455, 0.3636], qb:[0.5455, 0.3636], phi:[0.3636]] | 2*t^2.18 + 4*t^2.73 + t^3.27 + 2*t^3.82 + 5*t^4.36 + 12*t^4.91 + 13*t^5.45 + 6*t^6. - t^4.09/y - t^5.18/y - t^4.09*y - t^5.18*y | detail | {a: 15273/10648, c: 8907/5324, M1: 10/11, M2: 10/11, q1: 6/11, q2: 4/11, qb1: 6/11, qb2: 4/11, phi1: 4/11} |
58972 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.3994 | 1.6351 | 0.8558 | [X:[], M:[0.9371, 0.8345], q:[0.4037, 0.5063], qb:[0.6592, 0.3049], phi:[0.3543]] | 2*t^2.13 + t^2.43 + t^2.5 + t^2.81 + 2*t^3.19 + t^3.5 + 5*t^4.25 + 4*t^4.56 + 2*t^4.63 + 2*t^4.87 + 2*t^4.94 + t^5. + t^5.01 + t^5.24 + 7*t^5.31 + 6*t^5.62 + t^5.69 + 4*t^5.93 - 2*t^6. - t^4.06/y - t^5.13/y - t^4.06*y - t^5.13*y | detail | |
59388 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ | 1.3534 | 1.5722 | 0.8609 | [X:[1.375], M:[0.875, 1.0], q:[0.5625, 0.3125], qb:[0.5625, 0.3125], phi:[0.375]] | t^2.25 + 3*t^2.62 + t^3. + t^3.38 + 2*t^3.75 + 2*t^4.12 + 2*t^4.5 + 2*t^4.69 + 5*t^4.88 + 5*t^5.25 + 2*t^5.44 + 5*t^5.62 + 2*t^5.81 + 2*t^6. - t^4.12/y - t^5.25/y - t^4.12*y - t^5.25*y | detail | {a: 44349/32768, c: 51517/32768, X1: 11/8, M1: 7/8, M2: 1, q1: 9/16, q2: 5/16, qb1: 9/16, qb2: 5/16, phi1: 3/8} |
59489 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.5162 | 1.7667 | 0.8582 | [X:[], M:[0.9921, 0.6877, 0.671], q:[0.5035, 0.4887], qb:[0.5044, 0.4877], phi:[0.336]] | t^2.01 + t^2.02 + t^2.06 + t^2.93 + t^2.97 + 2*t^2.98 + t^3.02 + t^3.98 + 4*t^4.03 + 2*t^4.08 + t^4.13 + 3*t^4.94 + 9*t^4.99 + 6*t^5.04 + t^5.09 + 2*t^5.45 + t^5.49 + t^5.5 + t^5.86 + t^5.9 + 2*t^5.91 + 4*t^5.95 + t^5.96 + t^5.99 - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail | |
60052 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4811 | 1.711 | 0.8657 | [X:[], M:[0.9935, 0.6841], q:[0.5707, 0.523], qb:[0.4358, 0.4573], phi:[0.3355]] | t^2.01 + t^2.05 + t^2.88 + t^2.94 + t^2.98 + t^3.02 + t^3.08 + t^3.88 + 2*t^4.03 + t^4.07 + t^4.09 + t^4.1 + 2*t^4.89 + t^4.93 + 2*t^4.95 + 3*t^4.99 + 3*t^5.03 + t^5.06 + t^5.07 + 2*t^5.1 + t^5.14 + t^5.75 + t^5.82 + t^5.86 + t^5.88 + 2*t^5.9 + t^5.92 + 3*t^5.96 - t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail | |
59051 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | 1.4953 | 1.7252 | 0.8667 | [X:[], M:[0.993, 0.6852], q:[0.5, 0.493], qb:[0.507, 0.4861], phi:[0.3357]] | t^2.01 + t^2.06 + t^2.94 + t^2.96 + t^2.98 + t^3. + t^3.02 + t^3.97 + t^4.01 + 2*t^4.03 + t^4.07 + t^4.11 + 2*t^4.95 + 2*t^4.97 + 2*t^4.99 + 3*t^5.01 + 3*t^5.03 + t^5.06 + t^5.08 + t^5.44 + t^5.46 + t^5.49 + t^5.51 + t^5.87 + t^5.9 + 2*t^5.92 + t^5.94 + 3*t^5.96 + 2*t^5.98 - 2*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47935 | SU3adj1nf2 | ${}M_{1}\phi_{1}^{3}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ | 1.4747 | 1.6858 | 0.8748 | [M:[0.9898], q:[0.5051, 0.4847], qb:[0.5051, 0.4847], phi:[0.3367]] | t^2.02 + t^2.908 + 3*t^2.969 + t^3.031 + t^3.919 + 2*t^3.98 + 2*t^4.041 + 2*t^4.929 + 5*t^4.99 + 2*t^5.051 + 2*t^5.434 + 2*t^5.495 + t^5.817 + 3*t^5.878 + 6*t^5.939 + t^6. - t^4.01/y - t^5.02/y - t^4.01*y - t^5.02*y | detail |